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Abstract
Supporting High-Performance Pipelined Computatio@ommaodity-Style FPGAs
Kenneth Eguro

Chair of the Supervisory Committee:
Professor Scott Hauck
Electrical Engineering

Although the popularity of Field Programmable Gateays, or FPGASs, is a testament to their unique
mixture of flexibility and ease of use, this addgility can come at price. The programmable natfre
FPGAs introduces significant inefficiencies that démit the maximum clock frequency of mapped
circuits. While there are multiple techniques depers apply to mitigate this performance pendtgse
enhancements can generate an enormous numberitbaadregisters. These heavily registered cicui
have fundamentally different characteristics arehta significant problems for many different aspeft
FPGA application development. This dissertatiovestigates the concerns that arise for both FPGA

physical design tools and the architectures therasel

FPGA Development Toolsligh quality compilation tools are necessary teate fast and efficient FPGA-
based applications. However, heavily registeretlids can confuse existing packing, placemenimiat,
and routing tools. This dissertation examinesrtats of these problems and suggests new timingari
and register-aware physical design techniques.s& hew approaches are shown to significantly imgrov

achievable results, potentially doubling the spefechapped circuits.

FPGA ArchitecturesHeavily registered applications can also overwhéhe register resources provided
by classical FPGA architectures. While there hbgen previous research efforts to build FPGAs with
better register support, most have suggested vpegiaized systems that depart significantly from
conventional architectures and toolflows. Thissditation explores a different approach and ingastis
the practical advantages of making minimally invasarchitectural changes to both FPGA logic blocks
and interconnect resources. These architecturaices can affect the required area of implemented

designs by a factor two.

This dissertation shows that netlists with a langenber of registers can significantly change thabjgms

presented to CAD tools and the demands placed @AF&chitectures. Failing to acknowledge these
changes can be costly. That said, some problemdil@ly more pressing than others. Furthermore,
although this dissertation identifies many of tlepects of an FPGA architecture that can dramagicall
affect the required area of deeply pipelined orl@ved applications, this work merely scratches the

surface and much more research is necessary torileéewhat future FPGAs should look like.
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Chapter 1: Introduction

Field Programmable Gate Array$PGAs) are programmable semiconductor devicasctraprovide high
performance computing with low engineering effant & large variety of applications. This has pobt@

be a powerful combination, and FPGAs have growa amulti-billion dollar market in the two decades
since their introduction. FPGAs offer this fastiasasy-to-use computation by providing a largeyaofa
relatively small programmable logic elements thah e connected to each other through a flexible
communication network to form more complex caldolas. Although there are some notable exceptions,
the majority of FPGAs use SRAM to configure botk thgical elements and the interconnect structure.
This not only allows them to implement arbitrarynquutation, but also gives them the capability to be

programmed and re-programmed to perform multiptiedint functions.

For many applications, the large programmable cdatfmnal fabric FPGAs offer provides multiple
advantages over both conventional microprocessu#\pplication-Specific Integrated Circuif®SICs).
Unfortunately, although the programmable naturd-BGAs represents the greatest advantage they hold
over other technologies, it also contributes to ofiethe most serious disadvantages: a much lower
achievable clock frequency. FPGA application depets often try to reduce the impact of this inhere
performance overhead by breaking their computatiotts smaller, faster sections using registers.e On
issue this can cause is that adding registers tpalication can fundamentally change its charaties

and the demands it places on the underlying systdmdesigners demand higher and higher throughput
from their FPGA-based applications, the numberegfisters in their circuits will also rise. Thisrtluer
compounds the issues that these types of circaisspresent. This proliferation of heavily register

applications raises concerns for at least two ave&® GA research, the primary topics of this disgen.

First, FPGA application developers rely on a largege of sophisticateBomputer Aided DesigfCAD)
tools to map their computations to a physical devicThe effectiveness of these development tools is
extremely important to produce efficient, high periance implementations. However, circuits with a
large number of registers present multiple problémas existing CAD algorithms do not address. Ehes
issues can cause poor circuit performance, ingtaliithin specific compilation tools, or even iasility

in the entire toolflow. Dealing with these conceoan allow developers to obtain much better result

Second, from the perspective of the architectuhesnselves, adding registers to a circuit puts gelar
burden on the flip-flop resources provided by tle®ide. Increasing the number and accessibilityhef
registering resources can drastically improve amiG/&AB support for heavily registered applications.
Although there is a large body of academic workking into improving these attributes, many of the
proposed systems create serious problems for apipls that do not have a large amount of registers

This makes general-purpose computing very diffionltthese specialized devices and prevents them fro
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benefiting from the same technology scaling anchenves of scale that have been an essential péneof

success of mainstream FPGAs.

This dissertation discusses the nature of heaedystered applications, introduces CAD tools todban
them, and lays the groundwork for a new generatiomnigh-performance FPGA system. It is organized a

follows:

e« Chapter 2: Field Programmable Gate Arrays provides background on classic FPGA
architectures and discusses some inherent desigedifs.

» Chapter 3: Pipelining, Retiming and C-Slowingdescribes how registers can be introduced into
an application to improve circuit speed.

» Chapter 4: FPGA Development Toolsoffers details of traditional FPGA physical design
techniques and discusses some of the problembehatly registered circuits can pose.

e Chapter 5: Enhanced Timing-Driven Placementdiscusses a fundamental limitation of existing
timing-driven placement algorithms and offers a ne@hnique that dramatically improves critical
path delay.

* Chapter 6: Register-Aware Placemenillustrates some of the difficulties that the centional
toolflow encounters with heavily-registered cirsuétnd presents two new techniques to improve
performance.

» Chapter 7: Register-Aware Routingdescribes existing register-centric routing altjons and
presents a new timing-driven approach.

» Chapter 8: Register-Enhanced Architecturesconcentrates on the potential register resource
limitations of conventional FPGA architectures aigtusses several prospective improvements.

« Chapter 9: Conclusions and Future Researclsummarizes the contributions of this dissertation

and suggests some potential topics that warratitdumvestigation.



Chapter 2: Field Programmable Gate Arrays
Although FPGAs have evolved considerably over #st two decades, the fundamental benefits, trasleoff
and characteristics of the hardware remains largfeysame. FPGAs offer a large sea of programmable
logic blocks embedded in a flexible communicatiaiwork and their unique computational fabric can
offer multiple advantages over competing techn@sgi This chapter will outline the architectural

components of a modern FPGA and compare FPGA$ 1&g obmputational systems.

2.1: Conventional FPGA Architectures
The most popular FPGA arrangement today isistend-stylearchitecture. As seen in Figure 2.1, it is
named for the characteristic that its computatigaaburces are divided into small islands of Idgacks

that are surrounded by a sea of interconnect winésprogrammable communication resources.

Each logic block can generally implement any fumetof N inputs through the use of Look-Up Tables
(LUTs). LUTs are simply small memories that use thputs of the logic block to address a read-only

memory. By filling the contents of a LUT with diffent values when configuring the device, the aaer
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Figure 2.1: Conventional Island-Style FPGA
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change the behavior to calculate any arbitrary tfanc FPGAs also offer the opportunity to implernen
sequential logic by providing an optional flip-flag the output of its LUTs. This LUT/flip-flop pais
sometimes referred to asbasic logic elemen(BLE). To create a denser computation fabric mode

FPGAs often cluster multiple BLESs into a singleitoglock.

The communication resources provided by islandestyPGAs can be separated into three main
componentschannelsconnection blockandswitchboxes Channels are simply groups of individual wires
logically organized into bundles by their physi¢atation. The architecture shown in Figure 2.1 has
channels of width four since four independent wgesound each logic block. Connection blocks ngana
the movement of data in and out of channels byrobimg which wires within a channel receive a logi
block output or primary input, and which wires drig logic block input or primary output. Switchlesx
are responsible for connecting wires in differehitnels together. Although there are many differen
types of switchbox, Figure 2.1 shows one possjhiliHere, each wire in a channel has the capatifity
connecting directly across the switchbox to makegér connections in the same direction or turniig 9
degrees left and right. Similar to logic block dgmfation, connection blocks and switchboxes arit bu

from programmable elements that make arbitrary camoation possible.

The most sophisticated FPGAs today often also delspecialized communication, logic, and memory
features. In addition to the single-length intemoect wires shown in Figure 2.1, they generallyehav
longer segments that span multiple logic blockgnewp to the entire chip’s length. Although Idssible
than unit-length wires, longer segments improvegheed of long distance communication since signals
that use these resources need to traverse fewgrapnmable switch points. FPGAs may also include
dedicatedcarry chains These are specific logic and directional cornioest between blocks in the same
row or column that can improve the speed of widditamhs. These dedicated connections supplement th
generic communication network and are considerdbbter than sending signals out on to shared
interconnect channels. By a similar token, FPQ#s dffer multiple BLEs clustered within a singtgic
block often have an internal interconnect systethiwieach logic block that allows BLEs to be casthd

together without using external wires.

The logic structures themselves also often haveesspecialized resources or unique operating modes.
Modern Xilinx devices, for example, have the cafighof exposing the memory bits within their LUBs

that they can be used as very small RAMs or shiftsters [45]. FPGA architectures might also repla
some of the LUT-based logic blocks altogether. ibeéd coarse-grain functional units such as large
memories, fast multipliers or even simple microgssors are common. Thdsard coressupplement the

generic logic fabric by implementing functions tha¢ very slow or expensive to implement using LUTs
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Although not all applications might make use ofsthesophisticated resources, they are used commonly
enough that commercial FPGA companies often inclinie type of specialized feature to improve the
performance of their devices for the bulk of custorapplications. As will be discussed in more ii@ta
Chapter 8, maintaining the general-purpose perfoomand efficiency of FPGAs is critical. This megan
that while changes can be made to an architecngemodifications must have one of two charactesst
If the change is costly in terms of silicon aremjrathe case of embedded multipliers or micropssoes, it
must add a great deal of functionality or boosfqrenance dramatically for a large number of endsise
Alternatively, if a given architectural change igyuseful for some applications, it must minimadiffect
the area and performance of the FPGA for applinatibat cannot use the new feature. The implinatio

of this fundamental design decision is centrahdiscussion in Chapter 8.

2.2: FPGAs, Microprocessors and Application-Specific Inégrated Circuits

The programmable computation fabric that FPGAsroffiwe them some clear advantages over both
microprocessors and ASICs for many applications. om@ared to traditional general-purpose
microprocessors, FPGAs provide two capabilities:ahility to implement customized computation amal t

ability to execute many calculations in parallel.

Although both software running on a microprocessud a circuit implemented on an FPGA allow a user
to perform arbitrary computation, the degree ofifidity between the two platforms differs considbly.

A program written for a microprocessor must be cibeapdown to a fixed set of instructions dictated b
the processor'snstruction set On the other hand, the developer of an applinatio an FPGA has the
capability to generate specialized pieces. Fomgka, if a particular application does not use #ogting-
point computation, the transistors devoted to atfim-point unit on a modern processor will siteidl
However, since the instructions that a processoviges are fixed and many applications use flogpioigt
extensively, the processor must have dedicatedwzaiedto support this. Conversely, an FPGA can be
configured to implement one specific application,al of the available resources can be devotethdo
task at hand. Similarly, the individual instruct®that a microprocessor supports are largely ohated by
legacy compatibility and what “anticipated” progamequire. Thus, while common operations such as
simple addition and multiplication will be implenmted in the instruction set directly, less common
operations will need to be broken down into a sedginstructions that the processor does suppArt.
good example of this is the bit-wise operationsydapin encryption algorithms. Although very simple
transformations, these functions require multiplgriuctions to accomplish on a modern processaorth®
other hand, FPGAs have the capability to implenoeistom computations and can directly implement any

necessary operations.
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Furthermore, the performance of microprocessorbniged on many applications by thesequential
execution modelClassically, instructions are fetched and exetutee at a time, and even modern
superscalar processors only have the capabiligke€uting a small handful of instructions simulizungy.
FPGAs, however, have the capability to exploit mesparallelism. For example, if a user has adfi
numbers to sum together, a microprocessor wilhfetach one individually and keep a running talfhis
will require on the order oN clock cycles to complete because the sequentetugion model of the
processor limits the amount of parallelism the esystan implement. Conversely, the parallelism tlaat
be exploited on an FPGA is only limited by the sif¢he device. If an adder tree withleaf nodes can fit

on a given FPGA, the computation can be performédaigi Ntime.

FPGAs are also often used as an alternative to i¢gdfmin-Specific Integrated Circuits. As the name
suggests, ASICs are custom-fabricated chips dedigoeperform a specific computation extremely
quickly. Since they are specialized hardware desjitike FPGAs they are able to avoid the overlzat

limited parallelism of microprocessor-based implatatons. However, unlike FPGAs, they are not
programmable circuits and generally cannot be mmed for any other application. Since each new
design must be developed and manufactured indeptnd@ew devices present an extremely high
economic and intellectual hurdle. Not only musdesign go through months of development and
verification before fabrication can begin, evenhiygrelated devices will have completely uniquessett

fabrication masks, packaging concerns and teséiggirements.

FPGAs have a distinct advantage over ASICs becansechip can be used to produce a wide range of
different applications. Once a single FPGA hasnbdesigned, manufactured and tested, applications
mapped to that chip can be developed and debuggednauch more intuitive functional block level.
Combined with the fact that fabrication and packggiosts are divided among all the designs thathate
platform, using FPGAs results in a much faster ftmenarket and smaller engineering cost. Companies
such as Xilinx and Altera specialize in producingmenodity FPGAs that provide a versatile and

inexpensive pathway to producing hardware-basetcapipns.

Although all of these factors seem to indicate fRGAs are inherently superior to both microprosess
and ASICs, this heavily depends on the desirediegifn. First, computations that do not benefitri
custom operators or do not have inherent paraitehse generally far more efficiently implemented on
conventional microprocessors. Obviously, if a catagion cannot exploit any of the advantages that a
FPGA has over a microprocessor, these devices kefaniess attractive. Furthermore, FPGAs are only
economically advantageous compared to ASICs ifdibgired volume of chips is relatively low. In high

volume, the initial engineering costs become legsortant since they are amortized over so manyschip
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On the other hand, the overhead presented by éxébility of an FPGA creates a larger overall die,

increasing the per-unit manufacturing cost.

Furthermore, the universal nature of the logic e@erts, combined with the flexibility built into the
communication network, means that all of the nistlimapped to an FPGA are merely “emulated” on the
hardware and running through a level of indirectidfor example, if we would like to add two numbers
together on either a microprocessor or an ASICpthssical adder that this computation is executedan

be built from dedicated transistors communicatirgdirectly connected wires. This means that thtae
operation can be carefully designed and optimizeeciically for high performance. Conversely, an
addition performed on an FPGA must be built fromchunore generic logical pieces that are connected
through much slower, shared communication channBhais, although the underlying hardware is capable
of performing a wider range of different functionikis flexibility limits the operational efficiency The
next chapter introduces some techniques that ajolic developers can apply to their circuits to imize

the impact of this intrinsic performance penalty.



Chapter 3: Pipelining, Retiming and C-Slowing

Despite the potential economic and engineering ratdges FPGAs hold, the generic programmable logic
and interconnect offered by an FPGA can be farédéfgsent at implementing a specific computatitiar
specialized, finely tuned wires and transistors discussed in [19], it can be expected that aficaion
mapped to an FPGA will lag an ASIC counterpart pyta 40 times in terms of silicon area, 4.3 times i
terms of critical path delay and 12 times in tewwhg&lynamic power consumption. Although minimizing
area and power consumption is certainly importéme, technical specifications of many applications
dictate a required throughput. That is, for theicke to function correctly it must reach a spedifigata
rate. Thus, this chapter will focus on three téghes that application developers can apply tacuitithat

can improve the operational frequengjpelining, retiming andC-slowing

Pipelining is a very simple technique in which dagi@th is separated into multiple stages. As shiown
Figure 3.1, by breaking a function into smallerggi® we can decrease the longest path in the circuit
However, this increases thatency or number of clock cycles between when data srttex circuit and
when completed results are seen on the outputhoidth this increased latency makes it unsuitable fo
applications that are sensitive to this, the add#l latency can often be offset with a higher kloate if

the computation is split into relatively equal gart

For example, disregarding the interconnect delayafmoment and assuming an adder to have a delay of
10 units and the setup times of a register to bait, the unpipelined circuit on the left of Figudel will

have a delay of 20 units and a latency of one ctydke. The pipelined circuit on the right, howgwill

have a delay of 11 units and a latency of two clogkles. Thus, although the pipelined circuit only
requires 2 extra units of time to complete thet fiesult (20 units of delay vs. 2 x 11 = 22), iflpwroduce

new results nearly twice as fast as the unpipelaiexlit (20 units of delay versus 11).
However, to achieve this large performance benatlh small additional latency, pipelining requirtsat
the individual stages be relatively balanced imtepf delay. Considering either of the pipelinedudts in

Figure 3.2, for example, both have increased tlenty of the netlist (21 units) without decreasthg

critical path delay (still 20 or 21 units). Thgswhere retiming can be applied.
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Figure 3.1: Clock Frequency and Latency Effects dPipelining



9
Retiming is a technique used in conjunction withglining in which registers can be “pushed” or tpdl
through computational blocks to better balanceddlay of different stages. First discussed in [2iis
relies on the concept that registers can genebalynigrated either from each of a block's inputghe
block’s output or from a block’s output to eachtleé block’s inputs without changing the logical ogien
performed by the circuit. The circuit on the leftFigure 3.2 can be transformed into the optinipélined
circuit in Figure 3.1 by simply combining the twegisters on each of the adders’ inputs to a siregjester
on the output. Similarly, the circuit on the rigiftFigure 3.2 can be improved by replacing thestegon

the adder’s output with a registers on each ofttaer’s inputs.

The most famous method to implement retiming isltbiserson/Saxe approach [22]. While the authérs o
this paper actually discuss multiple different fotations of their technique, all of them are itewat
processes that operate on a netlist, given a $pdaifget critical path delay. These LeisersoréSa
techniques gradually push registers around theiitiamd can determine whether or not the systembean
retimed to reach the target delay given the curaambunt of registering in the system. By perforgnin
binary search on the target critical path delayser can reach the provably maximum clock frequdacy

a given input netlist.

While retiming can help balance delay across mialtidock cycles, this is not to say that retimiranc
overcome all limitations. First, not all pipelineghplications can be retimed because debuggintindes
and proper initialization of the circuit can becomeich more difficult after retiming is performedin
addition, there is also a theoretical limit imposgdcircuits with feedback. For example, consideircuit
that has a feedback loop, as in Figure 3.3. Alghotegisters can be migrated forwards (Figure argh
Figure 3.3b) or backwards (Figure 3.3c and Figu@dBthrough the chain of adders, the number of
registers on the loop itself cannot be changedis Tiimits the achievable clock frequency to at tefasir
adder delays. The original authors of the workedon retiming [22] discussed the limitation of heing
able to increase the number of registers on a d&mapsuggested an alternative: C-slowing. C-slowitds
additional registers onto feedback loops by dufilicpall registers in the netli€€ times. This increases

the retiming capability by interleavin@ completely separate computations. The originalistein
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Figure 3.2: Two Examples of Unbalanced Delay BetwadPipelining Registers
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Figure 3.3a or Figure 3.3c can be “2-slowed” todmae the netlist in Figure 3.3e. As seen in retime
netlist in Figure 3.3f, this approximately doubtks achievable clock frequency. Unfortunately,|@x$ng
can have limited use since it interleaves multipependent, partially completed calculations. $tthe
nature of the application itself and its 1/O praibenust be amenable to this kind of parallelization
Computations that require iterative computatioraasingle set of data may not be able to take adgandf

C-slowing.
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Despite the restrictions associated with pipelipirgiming and C-slowing, developers often utilibese
techniques whenever the netlists and applicati@tifipations allow. However, determining how tosbe
apply these techniques given a specific circuit andrget architecture can be challenging. Alttotingse
concepts will be discussed in far more detail mfitilowing chapters, these issues can be grougedwo

basic types of problems.

First, the pipelining, retiming and C-slowing dissed up to this point has only considered the delay
though the logic portion of a circuit. Howeverettlelay accumulated in the communication network is
significant part in the overall delay of a systendahe distribution of this interconnect delay cary
greatly from one net to another once it has beeppe@ to a physical architecture. Thus, the maimer
which registers could be best distributed is higtgpendant upon the arrangement of the rest of the
system, but that can be difficult for applicatiorapping tools to evaluate faithfully. This problém

discussed further in Chapters 4 — 7.

Second, as shown in Figure 3.3d and Figure 3.®fklipiing, retiming and C-slowing can dramatically
increase the amount of registers in a circuit. weler, the number and availability of physical Hflipp
locations offered by the classical FPGAs discusse@hapter 2 is relatively limited. This is largel
because FPGA applications have traditionally nquired a large number of registers. That saidtter
reasons outlined earlier, future applications Vikiély require a growing number of registers. Clea8

discusses several ways of efficiently increasimdpigéectural support for heavily registered applmas.
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Chapter 4: FPGA Development Tools
Just as the quality of a software compiler playsagor role in determining the speed of code runmng
microprocessor, FPGA CAD tools fundamentally afféot achievable performance of an application
mapped to a reconfigurable fabric. This chaptdir prvovide details regarding the traditional FPGAL
toolflow and discuss some of the issues that hgaipelined, retimed and C-slowed applications can

present.

4.1: FPGA CAD Toolflow

The logic and communication resources that FPGAsr afbviously pose a different problem to both
developers and development tools compared to progiag for conventional microprocessors. Even so,
despite significant differences in the underlyirgnfiework, the process of creating applicationgrfodern
FPGAs can be thought of much like developing saftwfmr a microprocessor. Applications generally
begin with aHardware Description Languag@DL) specification. Much like C or C++, this éslargely
platform independent representation of the apptioathat must be compiled to a specific FPGA.
Compilation for an FPGA consists of five primargs: logic synthesistechnology mappingpacking

placementandrouting.

Logic synthesis takes the high-level constructth@nHDL code and turns them into a netlist of bagites
such as NANDs, NORs and flip-flops. The technolaggpping phase uses this generic gate represantatio
and determines how these pieces could be effigidrahslated to the hardware given the specific EUT
and fixed resources offered by the target FPGA.e packing tool then takes these mapped pieces and
attempts to merge LUTs and flip-flops into groupsogic blocks. The placement tool then determities
physical location of each logic block in this pagkeetlist so as to minimize the amount of commuitca
required. Finally, routing determines how the kka the placed netlist communicate with each oklye
assigning signals to specific wires. This routetlist can then be turned into a configurationthém to

program the FPGA.

While logic synthesis and technology mapping areeesal parts of a modern FPGA compiler, this
dissertation primarily focuses on the effect nethsid architectural characteristics have on pagking
placement and routing. Thus, the discussion héliaature background on these three physicalgiesi

phases.

4.2: Packing
The most popular academic FPGA packing tool todayRack [26]. VPack uses a two-step approach in
which flip-flops are first mated with appropriat&/Ts to map to the fewest BLES, and then these BitEs
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Figure 4.1: Packing Restrictions [2]

combined to form logic blocks if the architectungplements clustered logic. The first stage examihe
way that each flip-flop is used to determine howpéak LUTs and flip-flops together. Some architees
may restrict the output of a BLE. In the case shawrigure 2.1, a LUT/flip-flop pair has the capiy to
output either the raw LUT output or the registet&dl output, but not both. Thus, as seen on thedef
Figure 4.1, if the rest of the netlist only uses thgistered output of a LUT, the optional flipglattached

to the host LUT can be used and they can be majgpadsingle BLE. However, as seen on the right of
Figure 4.1, if both the gated and non-gated ouipuieeded the LUT and flip-flop must be mapped to

separate BLEs.

The second portion of the packing process attetopt®mbine BLESs into the fewest number of clustered
logic blocks, subject to the limitations of the latecture. Although the architecture might havetiple
LUTs grouped within a single CLB, some FPGAs attetopreduce the hardware needed to implement the
connection blocks by offering fewer independenuisphan the maximum number that could be required
by the cluster. For example, if an architecturbust from clusters of four 4-input BLEs, each iofplock
might only have twelve, not sixteen, inputs. FP&ahitects do this because they realize that Iblgicks
do not necessarily require independent inputs fdBlzEs. Multiple BLEs within a logic block may ahe
common inputs, BLEs may be cascaded together amccarmimunication resources internal to the logic

block, or the function mapped to a LUT may use fethan the maximum number of inputs.

VPack iteratively clusters BLEs with one of two ha@ues. It first simply selects an unassigned B&E
seed a cluster. Other BLEs are then added to Ittstec to completely fill the logic block. Potesiti
cluster-mates are ranked based on their “attréctmnhe current cluster — how many inputs and atgp
they share. VPack iteratively gathers BLEs with llighest attraction to the current cluster uhi@l CLB

is full. Occasionally, though, a cluster may rurt of independent inputs before all BLEs are oocedpi
These situations are forwarded to a second technidtere, clustering is repeated, but BLEs are ddde

the cluster based on minimizing the number of iaput

VPack has also been extended with a timing-drivmdéilation, T-VPack. This tool is very similar to
VPack, but attempts to consider critical path tignoturing the clustering process. Although it canno
necessarily estimate the delay encountered imtlieeconnect, T-VPack evaluates how likely it istteach

BLE lies on the netlist's critical path based uglba maximum number of consecutive LUTSs, or thedabi
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depth, of the logic using the BLE. BLEs along pathat have multiple consecutive LUTs without
registering are given special priority. Since camination between BLESs in the same cluster is gaiyer
very fast compared to utilizing external routingoarces, the tool adjusts its attraction schemgreder

BLEs that are more likely to be timing sensitive.

Packing is also very useful on architectures tloahat limit the input or output connectivity of thé&JTs
and flip-flops within their CLBs. This is becausembining multiple LUTs and registers into a single
atomic unit via packing decreases the number ofablgvblocks. In turn, this dramatically simplifitee
following placement process. For example, takeesy vsmall netlist consisting of 20 4-LUTs. If a
placement tool is attempting to map this netlistie minimum-sized architecture that consists vé @-
LUT CLBs, there are roughly 3.6x¥different possible placements Obviously, searching such a large
solution space is extremely difficult. Howeverttie LUTs in the netlist are first packed into fiye@ups of
four 4-LUTs, there are only 120 different possiplacements Of course, this simplification of the
placement problem means that the vast majorithefpotential possible placements are never examined
While that is true, packing is a natural step farsinetlists because the placement problem spaityfic
tries to put interconnected blocks as close togetisepossible. Since the packing tool groups lght
coupled LUTs and registers together into the sair®, @ is likely that the placement tool will stitie able

to approach the optimal arrangement.

4.3: Placement

The most common algorithm used for FPGA placemsmimulated annealing The basic premise of
simulated annealing likens the process of detengiphysical locations for all the logic blocks imetlist

to nature finding a low-energy atomic arrangementtfie atoms in a crystal. The authors of [17pted
basic metallurgy: if an iron bar is thoroughly hehtthen quickly cooled in water, the result isyverittle

and prone to cracking. This is because the siglh-energy crystals that make up the bar contaigel
amounts of internal strain. A quick cooling prazderces atoms into whatever arrangements they can

manage before they freeze. However, if the metallowed to cool slowly in air, the result is mutlore

! This calculation assumes that the individual LUAlithin each CLB of the array are functionally ecalant. Thus, there are 5
possible different CLB locations for the first LU3 go into. Since one LUT does not fill the fiGtB location to capacity, there are
still 5 possible CLB locations for the second LWTs. This makes the number of possible soluti6tfé4*3*2 ~ 3.6x13%)

2 There are 5 possible CLB locations in which tertiee first packed CLB, 4 possible CLB locationsrtap the second packed CLB,
etc. This makes the number of possible solutibhs (20).
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flexible and resilient. This is because the sl@elng process allows the atoms to move aroundyfraed

arrange themselves into large, low-energy statstalsy

This phenomenon is mirrored in logic block placetriarseveral ways. First, the random motion atdéa

to atoms while the metal hot is paralleled by iiggarandom swaps between logic blocks. Next, the
energy state of an atomic arrangement is represddte cost function that can determine the qualitg
given placement. The most basic cost function usdePGA CAD is the total rectilinear, dlanhattan,
distance between connected logic blocks. Finalyemperature is associated with each iteratioth®f

process that allows the system to gradually mowatds better and better solutions.

Placement begins with an arbitrary initial placetremd a very high system temperature. Optimizaiton
achieved by conditionally accepting or rejectingve® while slowly decreasing the temperature of the
system. Swaps that provide a better placemerdlasgys allowed, while movements that provide a wors
placement are probabilistically allowed dependimpruthe current system temperature and how much
worse the movement would make the placement as @ewhin [3], the authors suggest that “bad”

movements should be accepted with a probabilityshia Equation 4.1.

—deltaCosf Temperatue

randomnumber{0]] < g (4.1)

Since the probability of accepting a move for tharse is directly related to the temperature anérissly
related to the change in quality, we are likelyatept virtually all moves early in the annealinggess
and gradually tend towards only accepting changesttie better as placement continues. While
performing changes that make the placement woesmseounter-productive, only accepting good moves
is similar to the quenching of metal, which resiuttdocal minima and poor placements. As it tuous,
permitting solutions that temporarily make the systworse actually encourages better overall planésne
This is because the placement tool often needsusition through “bad” solutions in order to makeger-

scale improvements.

The fact that the probability of accepting a mowe the worse is dependant upon temperature makes
controlling the rate at which the system cools vanportant. In addition, determining the initial
temperature and the total number of moves attemfgedlso critical. The work in [2] suggests a
sophisticated scheme in which these factors areewdiat tied together. First, the initial temperatis
determined by performinty random moves on the initial placement, whidriss approximately 100 times
the number of blocks in the incoming netlist. ®irthe initial placement is already arbitrary, thes@&ps

are unconditionally accepted. However, the costh@ese moves are recorded and the initial temperat



16
of the annealing is set to 20 times the standavéhtien. This insures that virtually all moves aecepted

at the beginning of the annealing.

The subsequent placement is divided itdmperature iterations During each iteration, the number of

moves attempted is based upon the size of the imgpnetlist as calculated in Equation 4.2.

MovesPerTemperatuelteration=10* (NumberBIoks)% 4.2)

At the end of each temperature iteration a newesysemperature is calculated based upon the nuaiber

moves accepted during the previous iteration. EBéhown in Equation 4.3 and Table 4.1.
New Temperatue= y* Old Temperatus (4.3)
After the system temperature is updated, the teatigin condition shown in Equation 4.4 is evaluated.

Temperatue< 0.005* M (4.4)

NumberNel

This adaptive temperature schedule allows the d®mnéa operate for a short period of time at a high
temperature to facilitate large-scale changes ® placement, and spend the bulk of its operation

performing medium-scale improvements and smallesefinements.

This type of relationship is often further reinfecc with the addition ofmovement windowing First
suggested in [20], the annealing begins by allovéing logic block to swap with any other logic blaok
the array. However, as placement continues, Wwigldecreases the range that a logic block can moeae
single swap by only attempting to change place wilocation within an imaginary frame surrounding
that block. This window slowly shrinks over timeatil we only allow nearest-neighbors to exchange

places. This can be seen in Figure 4.2.

This enhancement is particularly effective becaiisencourages the system to continue optimization

through a larger portion of the annealing. Lat¢him annealing process we have largely determinast m

Table 4.1: Temperature Update Schedule

Acceptance Rate > 0.96 y =05
0.8 < Acceptance Rate0.96 y =0.9
0.15 < Acceptance Rate0.8 y =0.95

Acceptance Ratg 0.15 y =0.8
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of the placement. Therefore, long distance movesat liable to be accepted because they arealplik
improve the placement but rather disturb the ararent we have already carefully set up. On theroth
hand, shorter distance moves are both far mory ltkemprove the placement and, if they are a desfior
the worse, any degradation will also naturally beaker. Thus, windowing prevents the annealingnfro
stagnating during the later stages of the procgsguiling the system towards shorter, more increaaien

changes. [13]

Similar to the cooling rate, the size of this moestwindow can also be determined in an adaptive
manner. The work in [2] suggests updating the ewndize at the end of each temperature iteratiagh wi
Equation 4.5. Obviously, this value is subseqyediimped between one and the maximum size of the

array.
New WindowSize= Old WindowSize* (1- 0.44+ Acceptanc&ate) (4.5)

Since the interconnect represents such a largiopat the overall delay in FPGA designs, placensst
plays a vital role in determining a netlist’'s arél path. Although discussed in more detail in@2éa8, the
authors of [3] incorporate both Manhattan distasce delay estimation into their simulated anneatiost
function. When their placer is initialized, thestsm first performs a point-to-point routing betwesl

logic blocks in the target architecture. This afothe system to fill a look-up matrix with the aglof the
fastest connection between each pair of logic lHocKkhese values are then used during annealing to
estimate the delay and timing criticality of evexgnnection in the netlist for a given placementisTis

shown in Equation 4.6.

Timing_Cos(i, j) = Delay(i, j) * Criticality(i, j)<mea" - Fxeonent (4.6)

L[] ] «—— High temperature window

— '
—] Low temperature window

BN
=
I

HinENN

Figure 4.2: Simulated Annealing Windowing
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Conventional VPR Placement

0 randomly place logic blocks onto architecture

1 determine initial temperature

2 while(!done)

3 for I = 0 to numAnnealMovesPerTemp

4 select random CLB

5 swap CLB with random CLB in move window
6 accept or reject moveCost, currTemp)
7 end for

8 update critical path delay

9 update currTemp

10 update range limit window

11 evaluate exit criteria

12 end while

Figure 4.3: Pseudo-Code for VPR Timing-Driven Placment

In thisequationTiming_Cost(i, jrepresents the cost of the link between blocksdj. The slower and the
more timing-critical the link, the more expensivelay becomes. On top of this, by increasing the
criticality exponentthe placer can further emphasize reducing detathe most critical segments. In a
similar manner to the way the movement window ispidely changed, the criticality exponent is
generally set to one at the beginning of the ammggbrocess and slowly increased as the annealing

continues.

This timing cost can then be combined with a meaelitional Manhattan distance-based cost to evaluat
the overall quality of the placement. This willcemrage the placement tool to gather the most ¢min
critical blocks close together at the expense oftleening less critical connections. Pseudo-coddhe

entire placement process is shown in Figure 4.3.

4.4: Routing

FPGA routing is generally handled with theathFinder algorithm [28]. PathFinder is an iterative
technique that allows signals to negotiate withheaitier for control over communication resourc&hie
guiding principle behind this approach is that eainal “bids” on the routing resources that it vgan
Over time, the “price” of popular resources goes apcouraging signals that can use less scarce

commodities to do so and leave more restricteduress for the signals that truly need them.

PathFinder begins by representing all of the lagid routing resources offered by the target archite as
a directed graphof verticesand edges Each logic block and wire is converted to a exrtwhile the
programmable connections offered by the connedtiooks and switchboxes are converted into direefion
edges linking these vertices. The placed netlishén mapped to this abstract graph. This mdaats t
connecting two logic blocks in our netlist is sim@ matter of finding gath or series of connected
vertices, between the nodes that represent the ldgcks in our graph. Since a given physical vaae
only carry a single signal, the challenge PathRimdest solve is to connect all of the signals in oetlist

such that no node @ngestedor allocated to too many nets.
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An essential part of PathFinderDgjkstra’s algorithm[8]. This is a fast and optimal technique thatlf
the lowest-cost path between two vertices in actiek graph. Dijkstra’s begins by starting a wave o
exploration at the source vertex. The neighborthisf node are then added to a list that is sdriethe
total cost of the path to these nodes. The sourde s marked as “visited” and the router seleatewa
vertex — the lowest cost node in the list. Theisited neighbors of this node are then added tsthtd
list and the process continues until we find thgaavertex or empty the list of routing nodes.thFader
also uses a slightly enhanced version of Dijksted¢grithm to find multi-terminal routes by stopgiand
reinitializing the search each time a sink is fouoginsidering the entire routing tree built thus da the

source.

The PathFinder algorithm uses this basic searclkewelnicouraging congestion resolution between differ
nets. It begins by initializing the cost assodatédth each vertex to a smddhse cost All signals in the
netlist can then be routed using the approach fabove. At this point, PathFinder evaluates thearse
occupancyof each vertex in the graph. If all of the nedsdrbeen connected and no vertices are congested,
the routing is valid and the algorithm is completléowever, if any vertices are congested, the abgtese
nodes is increase and another routing iteratiattempted. By gradually increasing the cost ofrosed
vertices over time, the use of these nodes is gldigcouraged. This frees them to be used by qthts.

The cost of a node during a given iteration is shawEquation 4.7.
Cnh = (bn + hn) * Pn 4.7)

Here, b, is the base cost of using the nobgjs a term that reflects the historical congestiéthe node,

andp, is a term that reflects the current congestiothefnode.

Of course, for most applications it is extremelypartant to consider critical path timing. The aughof
[28] also suggest a timing-driven formulation ofthfénder that uses a slightly modified cost functio
improve performance. This allows timing-criticadta to follow fast, but possibly congested pathdavh

encouraging non-critical nets to seek slower, log@mrgestion alternatives. This is shown in Equeadi@.
Cn= Aidh + (1— Aij)Cn (4.8)

Here, A; represents the criticality of a source/sink pairfeund during the last routing iteratiah, is the
delay of a node and, is the congestion-based cost function describedeb Sinced; falls between zero
and one, a route along the critical path of thdisiefA;=1) only considers the delay of a node without

considering its congestion cost. In this way, iit maturally seek the fastest possible path. Heevea less
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Timing-Driven PathFinder Routing

0 while(lall signals routed || congestion exists)

1 for all nets N

2 clear N.routing tree

3 put source of N into N.routing tree

4 sort sinks in decreasing order of criticalfyr (teration #1, set all criticalities to 1.0)
5 for all sinks of N

6 for all nodes in architecture clear visiteafl

7 put all nodes in routing tree into priorityegue PQ at cost C, previous node null
8 while(PQ.head not sink]i] of N && PQ not empty

9 remove head of PQ H at cost C, previous fbode
10 if(H not visited)

11 mark H visited

12 set H.costto C

13 set previous node of H to P

14 put unvisited neighbors of H into PQ atté®s neighbor cost + edge cost, previous node H
15 end if

16 end while

17 if(PQ is empty)

18 net is unroutable, exit

19 else if(PQ.head is sink[i] of N)

20 mark sink found

21 set previous node of sink to P

22 set S to sink

23 while (S not in routing tree of N)

24 add S to routing tree

25 set S to S.previous node

26 end while

27 clear PQ

28 update cost of congested nodes

29 end if

30 end for

31 end for

32 update critical path delay and sink criticaiti

33 end while

Figure 4.4: Pseudo-Code for PathFinder Routing

critical net will consider both delay and congestioAsA; approaches zero, the congestion cost will play a
larger role in determining which path is taken. isTformulation encourages less critical nets tal fin
detours so that the most timing-sensitive links ga@ the fastest, most direct wires. Pseudo-tmdine

entire timing-driven routing process is shown igu¥e 4.4.

4.5: 1ssues for Heavily-Registered Applications

Pipelining, retiming and C-slowing an applicatioriroduces additional registers into the netlisthwhe
hope that this will increase the overall throughpiuthe system. However, as discussed in Chaptgin8e
these new registers also increase the latencyeo€iticuit these registers must be carefully posée to
evenly distribute delay. This makes the effecte@nof timing-driven CAD tools crucial to the systas a
whole. However, the addition of a large numberegjfisters into an application can fundamentallyngjea
its characteristics and, by extension, the optitiozaproblem it presents to the CAD tools. This

potentially creates two unique challenges.

First, a large number of registers in a netlist canfuse existing timing-driven placement and nogiti

algorithms. As will be discussed in Chapter 5 @tpter 6, this is largely because the relativicatity
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of different parts of a circuit can change much enguickly in a heavily-registered circuit as thaqament
and routing is performed. This not only makes tihéng information that the tools use to optimitet
circuit much more difficult to keep up to date, théorithms themselves are based upon iterative
improvements that subtly rely on the fact that dnigicality on individual links does not change yer
quickly. Thus, when it does change rapidly wheerapting to process heavily-registered applications

these algorithms can produce degenerate solutions.

Second, a circuit with a large number of registidset need to be packed and retimed can exacerbate
existing problems in the CAD toolflow. As will béiscussed in Chapter 7, the traditional compilation
process described above is highly compartmentabaetisolely feed-forward. In some sense this cause
problems already since design decisions that masimbde by tools early in the flow, such as logic
synthesis and technology mapping, dictate thestefiven to tools later in the flow, such as plaeatrand
routing. However, these early portions of the CAgess also have the least amount of information
regarding the potential realities of the intercasirdelay between logic blocks. Thus, the accutche
optimizations performed by these early tools isitih, even though they potentially have the largest
impact on the quality of the final result. Packicigcuits with a large number of registers can meke
problem worse because traditional packing algoritltla not expect multiple registers on a LUT output.
Thus, they can produce packed netlists that seuéimit the options available to the placer andtesu
Retiming compounds these issues because it needsttacture the netlist as it migrates registersugh
logical elements to balance delay. However, thatgdo the toolflow in which this is most conventdn
prior to packing. Therefore, retiming is generglgrformed without considering the interconnectagel

information only known after placement and routing.
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Chapter 5: Enhancing Timing-Driven Placement

As discussed earlier, when pipelining, retiming &sdlowing are aggressively used they can instatge
number of registers into a netlist. However, theggsters make the circuit larger and increasdatancy

of the system, so obviously application developeld like to maximize the potential performance
benefits of these additional registers as much @ssiple. That said, while existing timing-driven
placement tools have shown their advantages ovelypwirelength-driven formulations [25], relatiyel
little is known about the absolute performance lodse types of algorithms. Furthermore, they have

generally only been tested on classical, relatilightly registered circuits.

This chapter will illustrate some potential shortings of the most popular timing-driven FPGA
placement approach that can lead to instabilitiethé simulated annealing placement itself. Initamid
this chapter will outline some of the different ceristics that heavily registered netlists hthat can
prevent existing timing-driven placement approachesn attaining the maximum potential of these
circuits. This will lead to the introduction of mew technique for timing-driven placement that can

significantly improve the performance of both ligteind heavily registered applications.

5.1: Background on VPR Timing-Driven Placement

VPR [3] is one of the most popular academic FPGa#e@land route tool suites. As the de facto standar
has served as both a building platform and compiartarget for countless other research efforts.RVP
includes T-VPlace, a simulated annealing basedtrdriven placement algorithm. T-VPlace considers
both a net's wirelength and delay contribution dgrplacement to achieve a good balance betweeilbver
netlist routability and critical path delay. Dugisimulated annealing, it calculates the costmbae using

Equation 5.1.

AC = 1 * A'Tlmlng_'Cost £ =AY A.\Nlrlng_.Cost (5.1)
Previous_Tming_Cost Previous_Viting_Cost

In this way, VPR can emphasize maximum routab{lity= 0.0), minimum critical path delay & 1.0) or,
most likely, strike a balance between the two. M/tiieWiring_Costis essentially just a summation of all

nets’ bounding boxes, calculating thigning_Cosis a bit more complex.

Before placement on a given architecture is stal®&R builds aistance vs. delay tabtbat estimates the
shortest path delay between each logic block addoHd in the array and every other logic block HEd
pad in the array. VPR then uses this table througthe annealing process to determine the soimke/s
delay of each connection in the netlist. This\adVPR to estimate the delay of each connectiotién

netlist for a given placement. Of course, duedoting congestion this estimate table cannot ctyrec
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reflect the real delay of every link of any placeme For example, if the annealing were stopped
immediately and the immature placement sent tordliéer, the actual delay for any given connectien a
found by the router would likely be much larger rththe shortest-path delay estimates used by the
placement tool. However, it is generally assumeat the congestion in the final placement will be
relatively low and that the most critical signaldl e able to take their fastest preferred pathirdy
routing. Thus, these delay estimates offer thegstent tool a relatively good idea regarding thartg

implications of the placement as the annealing reses.

Calculating the timing cost of the current placetmeegins by performing atatic timing analysion the
initial random placement. As seen in Figure 5tatis timing analysis uses the delay estimates ftioen
distance vs. delay table and steps through theshitim the inputs to the outputs in order to defee the
critical path through the system. As seen in Féghbrlb, this begins by setting therival time of all
primary inputs and registers to be 0. Then, usirgdelay estimates of each connection, the maximum

arrival time of all nodes is propagated throughbaetnetlist. This is seen in Figure 5.1c.

This process calculat&,,, the overall maximum critical path delay of theremt placement. Based upon
this information, theiming slackof each source/sink pair can also be calculaf€his is performed by
determining theequired timeof each node. As shown in Figure 5.1d, this bedin setting the required
time of all primary outputs and registers t@,P In a similar manner as before, the minimum resgutime
for each node is propagated through the netlistis 1§ shown in Figure 5.1e. Finally, the timingck for
each connection can then be calculated. As showigure 5.1f, this is the required time of theksininus

the arrival time of the source minus the delayhef¢connection itself.

The information from static timing analysis is thegorporated into the timing cost using Equatiér
and 5.3. As shown in Equation 5.2, first the ieétriticality of each link in the netlist is callated based

upon Dyaxand the timing slack.

Criticality(i, j) =1—w (5.2)
Timing_Cos(i, j) = Delay(i, j) * Criticality(i, j)°"-° (5.3)

As shown in Equation 5.3, VPR then weights the ichjd the delay between each source-sink pair based
upon its criticality. That is, delay along a pétht has lots of timing slack is relatively chewjle delay
anywhere along the critical path is expensive. e&xponent is also sometimes included to further

discourage high criticality links.
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Delay of links from placement

Arrival time of primary inputs &
registers setto 0

Propagation of arrival times forwards
AT, = max(AT of source + link delay)

Required time of primary outputs &
registers setto D,

Propagation of required times backwards
RT, = min(RT of source - link delay)

Slack(i, j) = RT of sin}<- AT of source
- link delay

Figure 5.1: Static Timing Analysis

Finally, Equation 5.4 shows that the overall plaeatrtiming cost is calculated as the summatiorhef t

timing cost of each source/sink pair.
Timing_Cos = > Timing_Cos(i, j) (5.4)

5.2: Implications of Static Timing Analysis

While the intent of VPR’s timing-driven formulatios indeed very important, the realities of praaitic
implementations can interfere with its effectivemefocusing on Equations 5.2 and 5.3, VPR'’s tinciogt
function is based upon the source/sink criticaditialculated during static timing analysis. Uniosdtely,
static timing analysis is far too computationalkpensive to perform after each annealing move. sThy
default VPR only performs a single timing analyasighe beginning of each temperature iteratiornthdn

uses these criticalities to calculate the qualitys@bsequent moves until the next temperaturetitera
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This means that VPR generally performs less thizmwehundred timing analysis runs instead of potditi

several millions.

Revisiting VPR’s basic cost function, this optintina can be captured formally. In Equation 5.5,R/P

calculates the criticality of each source/sink (fiaif) at the beginning of temperature iteration

Criticality(i, j, k) :1—% (5.5)

For any given placement within thieh temperature iteration, Equation 5.6 can be ueechlculate the
timing cost. This is simply the delay of the saisink pair {, j) at temperature iteratidg move numbel

multiplied by the criticality of the link as calaikd at the beginning of the temperature iteration.
Timing_Cos(i, j, k,1) = Delay(, j,k,|)* Criticality(i, j, k)*™-5® (5.6)

This makes the incremental timing cost as showBdnation 5.7 simply the change in delay between of

move (-1) and mové multiplied by the criticality of the link at theeginning of the temperature iteration.
ATC(, j,k,1) =[Delay(i, j, k1) - Delay(i, j, k,| -1)]* Criticality(i, j, k)™ -5 (5.7)

Unfortunately, while performing static timing ansiy only once per temperature iteration does make
placement orders of magnitude faster, since theeptent algorithm does not update the criticality no
critical path delay within a temperature iteratitimg timing information that the annealer has sjogéts
less and less accurate. This can lead to lesssttesfying final results. At the beginning of thenealing

the placement tool calculates the critical pathaylel This value is then used to calculate the skt
criticality of each source/sink pair. The probleecurs because, as the annealing begin to movésloc
around, a gap forms between the real criticalitiehe current placement and the values used tuleaé

the timing cost. Since a single temperature i@namight attempt tens of thousands to hundreds of
thousands of moves, the optimizations attempteditdsvthe end of a temperature iteration can agtball

self-defeating.

Figure 5.2 illustrates this problem. Here, thecptabelieves that the timing of the system will noye if it
moves blocka to reduce the delay on the critical paéih€). However, this particular move accomplishes

this by adding delay to the previously non-critipath @, b). While this change actually increases the
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Figure 5.2: Effect of Stale Criticality Information
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Figure 5.3: VPR Placement with Stale Criticality Irformation

critical path delay of the circuit from 10 to 1hetplacement tool is unaware that this is a pooiceh
because, following Equation 5.7, the timing costggdown from 11.5 to 8.5. Unfortunately, this tigi
cost is inaccurate because it only looks at thengks in delay on connections, without considerimg t

impact that this has on link criticality.

Assuming for the moment that algorithmic runtimen dze ignored, the advantages of more up-to-date
criticality information is easily demonstrated. giie 5.3 shows two placement runs of a benchmark
included with the VPR toolsuitex5p These placement runs were performed on theesgUT, single
flip-flop 4lut_sanitizedarchitecture, also included with VPR. Shown imadil is the wirelength and
estimated critical path delay calculated at the ehéach temperature iteration when one staticngmi

analysis (STA) is performed per temperature iterati Shown in gray are the results when 1000 static
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Table 5.1. Benefits of VPR Placement with Frequerstatic Timing Analysis for
Conventional MCNC Netlists (Defaulti, Default Criticality Exponent)

Static Timing Analysis/Temp Normalized Wire Cost Normalized Routed CPD
1 1.000 1.000
10 1.029 0.904
100 1.030 0.857
1000 1.031 0.864
10000 1.036 0.869

timing analysis runs are performed per temperdtaration. For a point of reference, in the catexdp

this equates to roughly one static timing analysis every 100 simulated annealing move attempts.
Clearly, while the wirelength costs for both plaenruns, denoted in squares, are very similar and
smoothly decreasing, the critical path delay fa piacement performed with the default settingsotkd

in black triangles, fluctuates considerably. Tisigparticularly concerning since this oscillatioargists
even as the placer nears the end of the annealiug$s. These oscillations represent a 20-30%gsinin
critical path delay, with no apparent guarantee tidrethe placement will end with a faster or slower
circuit. This oscillation is likely due to the fathat, with stale criticality information, the pkment tool
may not notice when it is increasing the criticatipdelay of the system. On the other hand, thegphent

performed with frequent static timing analysis se@amuch more stably decreasing critical path delay

This behavior can be demonstrated on the full safiteetlists provided by VPR, 22 of the largest MCN
benchmarks (11 combinational and 11 sequentialuigg}c Additional information regarding these
benchmarks can be found in Appendix A. Table hdws the results when the amount of static timing
analysis is increased during placement. Reportedtt®e normalized geometric mean final placement
wirelength and post-routing critical path delaysfimg was performed on th#lut_sanitizedarchitecture
using a commonly used methodology [1]: minimum dizguare arrays with 1.2x the minimum channel
width. Stated more plainly, these netlists wergpea to the smallest square array they could fiaiod
routing was performed in two stages. The firstgghaf routing searched in a binary fashion to tinel
minimum channel width architecture that the netligiuld route successfully using the timing-driven
PathFinder-based router built into VPR. The secomdting run used to produce the reported data
increased this channel width by 20% to provideightly lower-stress routing problem. This increase
channel width is commonly performed to provide Iglig more realistic results that better evaluate th
quality of the placement tool. This is done footreasons. First, modern FPGA architectures géyera
have a very large number of communication chantmlscrease their flexibility. Thus, designs are
typically placed onto systems with very low congmst Second, this slightly relaxed routing problem
avoids the potentially very poor solutions thattess can produce on heavily congested systemshidn
type of situation, much of the subtle differencasthie quality between different placements are lost

because the routed results include so many unpabdiyccircuitous paths.
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These results were obtained with #e optimizations [39] option turned off. Althoughymand the scope
of this discussion, A* is meant to improve routiumtime, without impacting quality. This option svaot

used because the aggressive implementation btdIMRR increased the unpredictably of the routing.

As seen in Table 5.1, simply increasing the amairdtatic timing analysis resulted in a relativelgar
benefit to the average critical path delay. Thisamtage also seems to get larger given 1 to 14 st
timing analysis runs per temperature, peaking@B&7x speedup. Updating more frequently thandfcht
not seem to have measurable additional benefhifmtésting. That said, while this performancediitiis
nice, there is the matter of placement runtimethéugh CPU runtime is notoriously difficult to acately
measure, in preliminary testing, placement with $@ftic timing analysis runs per temperature iterat
took 20x longer to produce than default placemefhis is because the time required to perform cstati
timing analysis quickly begins to eclipse the romdiof the other necessary calculations associaigd w

placement.

Aside from the issue of runtime, this performaneaddit also seems to come with a small average wire
cost penalty. Thus, it is possible that these epteants are unfairly taking advantage of the wider
communication channels used in this testing protegsiprove delay. However, as seen in Equatidn 5.
VPR has a parameter that can change the emphasisdpbn wire cost versus critical path delay. This
thed term. In addition, as seen in Equation 5.6, VI¥® &as a parameter that changes the progressive
penalty placed on the highest criticality nets.isTis the criticality exponent. While in some serbke
default parameters suggested by such a rigoroasted toolsuite such as VPR are an interestingjregar
point, increasing the frequency of static timinglgsis by such a large amount does change sonteeof t
basic assumptions likely made during the authansintg process. Thus, recalibrating thand criticality

exponent terms seems reasonable.

The testing process was repeated, this time bethriag thel term to increase the emphasis placed on the
wire cost and increasing the criticality exponenplace more pressure on high criticality netse Tésults

of this testing can be seen in Figure 5.4, withendetails in Table 5.2. The default parameters lse
VPR are §=0.5, crit. exponent = 8). Therefore, the defaalues can be seen in Figure 5.4 indicated by
the black line marked with black circles — the pesgive points from the top left to the bottom tigh
denoting 1 to 10,000 static timing analysis runstpenperature iteration. During this testihgvas swept
between 0.5 and 0.3 while the criticality exponeas swept between 8 and 12. Based upon the re@gults
this testing, VPR seems to obtain the best placesneith the parameters<0.3, crit. exponent = 12) and
10, 000 static timing analysis runs per temperaitgmation. Unlike the results obtained with thefeast
parameters, these placements have a lower aveiegeast (0.977x) despite their better criticalipdelay

(0.873x). However, this benefit comes with an elager algorithmic complexity problem since it is
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obtained with dramatically more static timing arsidy Although annealing with such a large amount o
static timing analysis is impractical in most sttaas, this does provide a point of reference tovsivhat

is possible with more accurate timing information.
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Figure 5.4: VPR Placemenf and Criticality Exponent Tuning for Conventional M CNC Netlists
The top left point of each line represents placeméth 1 static timing analysis per temperaturestion. Each subsequent
point towards the bottom right denotes 10, 100018010,000 static timing analysis runs per temipegsiteration.
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Table 5.2: VPR Placemeni and Criticality Exponent Tuning for Conventional M CNC Netlists

Combinational Circuits Only Sequential Circuits Only All Circuits

CritExp, A STA Normalized Normalized Normalized Normalized Normalized Normalized
Wire Cost Routed CPD Wire Cost Routed CPD Wire Cost Routed CPD
8,0.5 1 1.000 1.000 1.000 1.000 1.000 1.000
10 1.020 0.919 1.038 0.890 1.029 0.904
100 1.016 0.897 1.044 0.819 1.030 0.857
1000 1.017 0.938 1.045 0.795 1.031 0.864
10000 1.023 0.921 1.050 0.820 1.036 0.869
10,05 1 1.010 0.974 0.996 0.978 1.003 0.976
10 1.030 0.928 1.034 0.881 1.032 0.905
100 1.021 0.920 1.042 0.819 1.031 0.868
1000 1.025 0.894 1.044 0.810 1.034 0.851
10000 1.022 0.892 1.050 0.801 1.036 0.845
12,0.5 1 1.014 0.990 0.988 0.944 1.001 0.967
10 1.026 1.004 1.028 0.892 1.027 0.946
100 1.026 0.923 1.047 0.833 1.036 0.877
1000 1.027 0.893 1.041 0.767 1.034 0.827
10000 1.029 0.901 1.049 0.788 1.039 0.843
8,04 1 0.988 0.994 0.975 0.988 0.981 0.991
10 0.995 0.948 0.996 0.919 0.995 0.933
100 0.994 0.906 1.000 0.851 0.997 0.878
1000 0.994 0.937 1.010 0.827 1.002 0.880
10000 0.993 0.923 1.003 0.834 0.998 0.877
10,0.4 1 0.988 0.998 0.969 0.969 0.978 0.983
10 0.999 1.004 0.994 0.955 0.997 0.979
100 0.996 0.940 1.008 0.834 1.002 0.885
1000 1.005 0.919 1.008 0.819 1.006 0.867
10000 0.996 0.948 1.013 0.803 1.005 0.873
12.04 1 0.993 0.993 0.966 0.945 0.979 0.969
10 1.004 0.985 0.980 0.954 0.992 0.970
100 1.004 0.915 1.007 0.841 1.005 0.877
1000 1.001 0.887 1.013 0.837 1.007 0.861
10000 1.003 0.939 1.010 0.806 1.007 0.870
8,0.3 1 0.976 1.030 0.950 0.991 0.963 1.010
10 0.977 0.960 0.960 0.974 0.968 0.967
100 0.978 0.947 0.967 0.874 0.972 0.910
1000 0.975 0.931 0.963 0.862 0.969 0.896
10000 0.977 0.935 0.966 0.874 0.971 0.904
10,0.3 1 0.979 1.001 0.952 1.026 0.965 1.013
10 0.978 0.968 0.958 0.985 0.968 0.977
100 0.982 0.942 0.965 0.868 0.973 0.904
1000 0.980 0.921 0.976 0.844 0.978 0.882
10000 0.984 0.932 0.966 0.833 0.975 0.881
12,0.3 1 0.979 1.035 0.953 1.027 0.966 1.031
10 0.980 0.989 0.962 0.978 0.971 0.983
100 0.981 0.941 0.962 0.872 0.972 0.906
1000 0.983 0.931 0.965 0.848 0.974 0.888

10000 0.985 0.924 0.968 0.825 0.977 0.873
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Figure 5.5: Discrepancy in VPR Placement for Conveional Combinational and
Sequential MCNC Netlists, & = 0.3, Criticality Exponent = 12)

5.3: Characteristics of Registered Applications

One importation observation should be noted befiooging on. While essentially all of the benchmarks
benefited from the increased accuracy in timingimfation afforded by a larger amount of static tigni
analysis during placement, as seen in Figure Sebstyuential circuits seemed to respond much more
strongly than the purely combinational netlists.enbted in grey triangles, the improvement in routed
critical path delay for the sequential benchmarks0i825x while, denoted in black triangles, the

improvement for the combinational circuits is 0.924

One possible explanation for this phenomenon is ttie registers in these sequential benchmarkgecrea
some intrinsic characteristic that causes the tinghthe system to change much more quickly fos¢he
circuits during the annealing process. This waukltke increasing the accuracy of the timing infoforat
during placement far more important; the higherabeuracy, the better the results. Conversebluritbe
thought that placement performed in the classiaaimer can be far more detrimental to sequentialits.
Furthermore, it follows that increasing the numbegregisters in a netlists may cause this problerget

worse. This is a potentially very significant cent and a concept central to this dissertation.
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Figure 5.6: Timing Implications of Combinational Logic vs. Registers

A simple thought experiment can illustrate thisuess Consider the combinational circuit on the tft
Figure 5.6. If this device has unit-length comneation wires, there is a large envelope of location
which the placer can put the inverter that doeschange the timing of the circuit. Delay is simphifted

from the input of the inverter to the output. Howr the criticality of all of the nets and the oalétiming

situation of the system as a whole does not chafdes, as long as the placer does not elect teentoy
inverter outside of this window there is very éttheed to update the timing information. Howetar the

sequential circuit on the right of Figure 5.6 tisisiot the case. Here, there is a very small winglowhich

the flip-flop can move that does not make the aaltpath delay worse. For that matter, even motiieg
flip-flop to its alternate location changes thdicaility of the input and output nets. As will bsscussed in
the following sections, this makes two issues venyortant. First, accurately tracking timing infaeation

is critical for registered circuits. Second, thformation must be carefully applied to obtainthiguality

placements.

5.4: Registered Netlists & Placement Stability

At first glance, the discussion in Section 5.3 wdbséem to indicate that computational complexitthis
only hurdle for conventional placement with frequetatic timing analysis. Also, following the foem

line of thought, one would expect that it wouldHighly beneficial to increase the amount of stétiing
analysis as the number of registers in prospecinoaits goes up. However, in practice, heavilgisgered
circuits can actually uncover a unique kind of degrate situation during this kind of placement.afTis,
conventional placement with frequent static timiagalysis can induce serious annealing convergence
problems for these types of netlists. Furthermthis, problem can get worse as the frequency ditsta

timing analysis is increased.
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Figure 5.7: Registered Netlists & Placement Osciltan
Notation on nets: delay / criticality

As shown in Figure 5.7, consider what happens dutfie placement of a very simple registered circuit
For simplicity sake, the placement of the I/O pivi be fixed and the annealer will only try to @irthe
best location for the register. In this exampte initial placement shown in the top left sets thgister
slightly off center with regards to the input anatput pins. Thus, the input net is 100% criticatl dhe
output net is 50% critical. VPR first performsti&taiming analysis to obtain criticality informati. The
placer then performs a series of annealing movesdapon this information, and then static timing
analysis is repeated to obtain new criticality eslu At this point the entire process begins agdihus,
after the net criticalities of this initial placenteare determined, the annealer is ready to consihelom
swaps. Figure 5.7 shows three new possible latafior the register. The bottom left is a placemnweth
the register in the optimal location, the bottoghtiis a solution that is equally unbalanced indgpposite
direction, and the top right shows an even lesarfza@d solution. Unfortunately, VPR will tend toddhe

arrangement on the top right which has the worssibte critical path delay.

This occurs because the placement tool evaluatespassible locations for the register using old net
criticalities. In a similar situation as the exdenm Figure 5.2, this causes the placer to try @move as
much delay from slow connections as possible. drmapensate, this could mean adding as much “cheap”
delay as possible to formerly fast connections.is @an cause the placement tool to favor increésing
extreme placements, as opposed to better, moreratedslutions. Figure 5.7 shows that, based tip®n

timing cost of the three alternate placementsatireealer will tend towards the worst solution.

While this can also occur with combinational citsufit is possible to create a similar situation fioe
example shown in Figure 5.2), this becomes a largacern and affects the overall stability of plaeat
for registered netlists because, as discussecegedtiie criticalities of the nets in a registeréatigt can
change much more rapidly during placement as coeapiar a purely combinational netlist. Thus, ifds

more likely that the placer will find these degeatersituations while placing heavily registerediisist
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Furthermore, as soon as the system performs antithiag analysis, the placement problem will reeers
and the register will tend to head for the extresmleition in the other direction. In some sense rdgister
will try to occupy two very different locations depding upon which net it believes is critical. thwing

analysis is performed more often, the preferredtion of the register will oscillate faster.

This instability in the “optimal” location for regfiers presents a very difficult, constantly moviagget to
the annealer and can destabilize the system enoucgiuse the placement to not converge. This e&ss |
of a concern under the classical placement scheitheinvfrequent static timing analysis because altifo
the placer was not necessarily optimizing towatus ¢orrect goal, at least the guiding forces in the
placement within a given temperature iteration werasistent. In that way it could always make fardv

progress, albeit to a potentially less than optidestination.

The problem with placement convergence can be dstradad by repeating the static timing analysis
testing on heavily registered circuits. As seeppendix A, all 22 original MCNC benchmarks were
converted intodepth=1 versions. That is, each circuit was pipelinedsl@ved, and Leiserson/Saxe
retimed such that the maximum logical depth ofdineuit was a single LUT. To most faithfully sinaté
the modifications that an application developer hhigerform to optimize a netlist for better thropgh

the minimum amount of pipelining and C-slowing vegeplied to obtain a depth of one LUT.

Figure 5.8 shows two placement runs of the dep#x8bnetlist. Just as in the example shown in Figure
5.3, placement was performed with both the defan static timing analysis per temperature itematio
(shown in black) and 1000 static timing analysissrper temperature iteration (shown in gray). thor
testing thel and criticality exponent parameters were lefthairtdefault valuesi(= 0.5, crit. exponent =
8). Looking at this graph, the placement performéti very frequent timing analysis clearly sufférem
convergence issues. First, although the amourtaifc timing analysis was increased to improve the
accuracy of the timing information, the criticaltipaelay for this supposedly enhanced annealingoagp
never truly improves beyond that of the initial gganent. This is most likely due to the tendenaytiie

annealer to pull registers from one degeneratdisalto another.

Of even greater concern, this oscillation also se¢mnaffect the basic functionality of the annealer
wirelength optimization. The criticality exponensed by VPR begins at one and is slowly increased
during the placement process. Judging by the sudbdange in wire cost optimization that occurs atbu
temperature iteration 45, when the system beginsetdously optimize for delay by increasing the
criticality exponent, the entire placement procissdisrupted. Since the wire cost of the finalcglament
performed with frequent static timing analysis jppeoximately two to three times that of the resiritsn

placement with the default parameters, not onlysdbés placement have an extremely high criticah pa
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delay, it will likely fail to route on any architeage with a reasonable channel width. Thus, aljhoa user
may attempt to improve critical path delay by uptatiming information more often, they may end up

derailing the annealer entirely instead.

The instability of placement with frequent timingadysis for all of the depth = 1 MCNC netlists ®sn

in Table 5.3. As with the earlier testing, theliset were packed with T-VPack, placed onto minimum
sized 4lut_sanitizedarchitectures with 1.2x the minimum channel width found by default VPR and
routed using the built-in VPR timing-driven routingol with A* disabled. Here, the problems began as
soon as the amount of timing analysis is incredmaand the default amount. While performing 1Qista
timing analysis runs per temperature iteration imnps the routed critical path delay for most of the

netlists, 3 fail to route due to annealing convaogeproblems. This issue only gets worse as tteuahof
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Figure 5.8: VPR Placement Convergence Problem witBepth = 1 MCNC Netlist

Table 5.3. Instability of VPR Placement with Frequat Static Timing Analysis for Depth = 1 MCNC
Netlists (Default, Default Criticality Exponent)

Static Timing Analysis/Temp Normalized Wire Cost Normalized Routed CPD
1 1.000 1.000
10 1.053* 0.952* (3 failed to route)
100 1.031* 0.749* (5 failed to route)
1000 1.106* 0.682* (16 failed to route)

* Indicates that some of the netlists failed toteoan the 1.2x minimum channel width architecture.
The wire and routed critical path delay shown edelthe failed netlists.
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static timing analysis is increased. 100 statiirtg analysis runs per temperature iteration causetlists

to have problems and 1000 causes ¥ of the testkst fail routing.

Thus, to allow the placement tool to take advant#gaore up-to-date timing information, somethingsh

be done to dampen the oscillations in the syste®imnce these oscillations are caused by the timing
optimizations performed by the annealer, redudmgemphasis on timing considerations could solveeso
of these problems. While in some sense this coacti® the entire purpose of increasing the frequeiic
static timing analysis, to be completely fair evargssibility should be explored. Of the placement
parameters available, a user could either redute emphasize wirelength more heavily or reduce the
criticality exponent to lessen the impact of highhtical nets. In a similar manner to the testirsgd for

the conventional lightly registered benchmarkgjngsfor the depth = 1 circuits was repeated vayyioth

theX and criticality exponent.

The first phase of testing, shown in Figure 5.%hwdetails in Table 5.4, investigated the possibitif
reducing the criticality exponent from 8 to 1. Fogiven) and criticality exponent, the amount of static
timing analysis was increased until two or mordiststfailed to route on the provided architecturghe
testing performed in Table 5.3 is shown in Figur® ®ith the black circle at (1.00, 1.00). Since
performing 10 static timing analysis runs per terapige iteration caused three of the netlists tbtéa
route, no further points are shown for the defaalties of § = 0.5, crit. exponent = 8). The next test kept
the criticality exponent the same, but reduze@. = 0.4, crit. exponent = 8) in the hope that thisuld
achieve better results. Shown in black squaresetiparameters indeed performed much better. Hawev
although performing more static timing analysissper temperature iteration improved critical pd¢tay
significantly, it also encountered some convergemablems that increased the average normalized wir
cost. This caused one of the netlists to faildote at 1,000 static timing analysis runs per teatpee

iteration and three netlists to fail at 10,000.

Therefore, the next test reduckégain £ = 0.3, crit. exponent = 8). Indicated in Figur® With black
triangles, although the average wire cost for roletplacements performing anywhere between 1 10000,
static timing analysis runs per temperature iteratiemains below 1.00, one of the placements odxdain
performing 1,000 static timing analysis runs peangerature iteration failed to route. Thus, justaas
precaution X = 0.2, crit. exponent = 8) was tested next. Thmm@ameters produced routable placements
for all of the tests. However, as indicated witlhck diamonds, these parameters also begin to trade
benefits in critical path delay for an average ralined wire cost far below 1.00. Thus, the bestits
using a criticality exponent of 8 can probably Hxained withh = 0.3 and 10,000 static timing analysis

runs per temperature iteration.
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Figure 5.9: VPR Placemenf and Criticality Exponent Tuning for Depth = 1 MCNC Netlists, Phase 1
“X" denotes that a single netlist failed to routethe 1.2x minimum channel width architecture. W and routed
critical path delay shown exclude the failed netlResults with more than one unroutable netlistexcluded entirely.

The next round of testing began backiat 0.5, but reduced the criticality exponent to #he testing
methodology used to explore the benefits of redytifior a criticality exponent of 8 was repeated. The
best results with a criticality exponent of 4 thatl an average wire cost below 1.00 were obtaintthw

0.3 and 10,000 static timing analysis runs per &nampire iteration. Similar testing was repeated fo
criticality exponents of 2 and 1. Based on thesailts, a second phase of testing, shown in Figure
and Table 5.5 explored the possibilities of redgdinfurther, but increasing the criticality exponeni
similar testing methodology was used to find thstloeitical path delay results for each criticaktyponent
from 8 to 12. Like the previous testing, this feed on finding parameters that produced placenveitits

an average normalized wire cost below 1.0.

These two rounds of testing showed that VPR obtathe best placements with the parametir9.@,
crit. exponent = 8) and 10,000 static timing analyans per temperature iteration. Although vdows
and potentially flirting with instability in the ptement, this showed enormous potential. The gemme
mean routed critical path delay was improved byl 8®6while the geometric mean wire cost was improved

by 0.984x. Furthermore, this testing also corrabes the supposition made in Section 5.3 regaritiag
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Figure 5.10: VPR Placemeni and Criticality Exponent
Tuning for Depth = 1 MCNC Netlists, Phase 2

“X" denotes that a single netlist failed to routethe 1.2x minimum channel width architecture. W and routed
critical path delay shown exclude the failed netlResults with more than one unroutable netlistexcluded entirely.

way that registers affect circuit timing during gdanent. As seen in Figure 5.11, the large discr@pa
between the benefitseen by combinational and sequential circuits hegely evaporated. This is likely
because both sets of netlists now contain a langgber of registers, making all of them relativetysitive

to stale timing information.

Taking a step back for a moment, the difficultiesc@untered producing high-quality timing-driven
placements, particularly for pipelined netlistspsl not be surprising. Placement for pipelinetlists has
been a known difficult problem for some time. Eaample, the deeply pipelined radio cross-correlizto
[41] was laboriously hand-placed by the author ¢bieve good performance. This painstaking process
even inspired the authors of [4] to develop a djpeiol to assist in manual pipelining and placemeThe
extreme difficulty of such an endeavor, given tbals of even relatively small FPGA designs, is litke

indicative of the complexities these netlists pntde the design flow.
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Table 5.4: VPR Placemeni and Criticality Exponent Tuning for Depth = 1 MCNC Netlists, Phase 1

Combinational Circuits Only Sequential Circuits Only All Circuits
CritExp, A STA Norm. Norm. Norm. Norm. Norm. Norm.
Wire Cost Routed CPD Wire Cost Routed CPD Wire Cost Routed CPD
8,0.5 1 1.000 1.000 1.000 1.000 1.000 1.000
10 1.040 0.982 1.071* 0.911* (3) 1.053* 0.952* (3)
100 1.016 0.767 1.060* 0.719* (5) 1.031* 0.749* (5)
1000 1.176* 0.687* (9) 1.072% 0.680* (7) 1.106* 0.682tq)
8,0.4 1 0.969 1.005 0.936 0.990 0.952 0.997
10 0.990 0.882 1.027 0.846 1.008 0.864
100 0.995 0.783 1.065* 0.740* (1) 1.028* 0.762* (1)
1000 1.047 0.707 1.084* 0.646* (1) 1.065* 0.677* (1)
10000 1.089 0.736 1.112% 0.585* (3) 1.099* 0.668* (3)
8,0.3 1 0.939 1.011 0.883 1.055 0.911 1.033
10 0.947 0.885 0.962 0.907 0.955 0.896
100 0.942 0.835 0.978 0.717 0.960 0.774
1000 0.963 0.733 1.014* 0.669* (1) 0.988* 0.702* (1)
10000 0.952 0.628 1.018 0.607 0.984 0.618
8,0.2 1 0.900 1.005 0.861 1.157 0.880 1.078
10 0.912 0.926 0.883 0.950 0.897 0.938
100 0.910 0.808 0.884 0.841 0.897 0.824
1000 0.909 0.722 0.911 0.772 0.910 0.747
10000 0.912 0.706 0.908 0.687 0.910 0.696
4,0.5 1 0.999 0.942 1.007 1.020 1.003 0.980
10 1.022 0.823 1.111* 0.835* (1) 1.061* 0.828* (1)
100 1.008 0.688 1.079* 0.624* (5) 1.033* 0.664* (5)
4,04 1 0.950 0.901 0.945 1.014 0.947 0.956
10 0.964 0.815 1.003 0.862 0.983 0.838
100 0.959 0.741 1.005 0.693 0.982 0.717
1000 0.965 0.682 1.054 0.652 1.008 0.666
10000 0.966 0.689 1.062 0.665 1.013 0.677
4,0.3 1 0.914 0.966 0.892 1.052 0.903 1.008
10 0.923 0.828 0.922 0.861 0.923 0.844
100 0.926 0.738 0.925 0.716 0.926 0.726
1000 0.924 0.715 0.942 0.708 0.933 0.712
10000 0.923 0.755 0.946 0.664 0.934 0.708
2,05 1 0.972 0.902 0.984 0.932 0.978 0.917
10 0.975 0.817 1.014 0.751 0.994 0.783
100 0.980 0.719 1.008* 0.668* (2) 0.993* 0.695* (2)
2,04 1 0.931 0.893 0.915 0.932 0.923 0.913
10 0.933 0.821 0.949 0.786 0.941 0.804
100 0.936 0.784 0.943 0.723 0.939 0.753
1000 0.940 0.793 0.950 0.741 0.945 0.766
10000 0.936 0.765 0.949 0.723 0.942 0.744
2,03 1 0.904 0.936 0.878 1.018 0.891 0.976
10 0.906 0.850 0.888 0.942 0.897 0.895
100 0.905 0.813 0.897 0.823 0.901 0.818
1000 0.908 0.850 0.889 0.807 0.899 0.828
10000 0.906 0.837 0.897 0.793 0.901 0.815
1,06 1 1.003 0.891 1.018 0.884 1.011 0.888
10 0.996 0.845 1.013* 0.810* (1) 1.004* 0.828* (1)
100 0.994 0.876 1.011* 0.867* (2) 1.002* 0.872* (2)
1,05 1 0.956 0.909 0.953 0.879 0.955 0.894
10 0.956 0.884 0.961 0.831 0.959 0.857
100 0.955 0.860 0.958 0.827 0.956 0.844
1000 0.958 0.875 0.950* 0.806* (1) 0.954* 0.842* (1)
10000 0.957 0.845 0.958* 0.810* (2) 0.957* 0.829* (2)
1,04 1 0.921 0.942 0.909 0.902 0.915 0.922
10 0.920 0.899 0.916 0.848 0.918 0.873
100 0.926 0.882 0.913 0.876 0.920 0.879
1000 0.923 0.889 0.917 0.875 0.920 0.882
10000 0.925 0.909 0.911 0.882 0.918 0.895

*Indicates that some of the netlists failed to eooh the 1.2x minimum channel width architecturevigled. The number of
failed netlists is indicated in parenthesis. Thewnd routed critical path delay shown excludefttiled netlists.
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Table 5.5: VPR Placemeni and Criticality Exponent Tuning for Depth = 1 MCNC Netlists, Phase 2

Combinational Circuits Only Sequential Circuits Only All Circuits
CritExp, A STA Norm. Norm. Norm. Norm. Norm. Norm.
Wire Cost Routed CPD Wire Cost Routed CPD Wire Cost Routed CPD
8,0.5 1 1.000 1.000 1.000 1.000 1.000 1.000
10 1.040 0.982 1.071* 0.911* (3) 1.053* 0.952* (3)
100 1.016 0.767 1.060* 0.719* (5) 1.031* 0.749* (5)
1000 1.176* 0.687* (9) 1.072* 0.680* (7) 1.106* 0.682t€q)
8,0.4 1 0.969 1.005 0.936 0.990 0.952 0.997
10 0.990 0.882 1.027 0.846 1.008 0.864
100 0.995 0.783 1.065* 0.740* (1) 1.028* 0.762* (1)
1000 1.047 0.707 1.084* 0.646* (1) 1.065* 0.677* (1)
10000 1.089 0.736 1.112* 0.585* (3) 1.099* 0.668* (3)
8,0.3 1 0.939 1.011 0.883 1.055 0.911 1.033
10 0.947 0.885 0.962 0.907 0.955 0.896
100 0.942 0.835 0.978 0.717 0.960 0.774
1000 0.963 0.733 1.014* 0.669* (1) 0.988* 0.702* (1)
10000 0.952 0.628 1.018 0.607 0.984 0.618
8,0.2 1 0.900 1.005 0.861 1.157 0.880 1.078
10 0.912 0.926 0.883 0.950 0.897 0.938
100 0.910 0.808 0.884 0.841 0.897 0.824
1000 0.909 0.722 0.911 0.772 0.910 0.747
10000 0.912 0.706 0.908 0.687 0.910 0.696
10,0.4 1 0.968 1.005 0.930 1.070 0.949 1.037
10 0.994 0.898 0.992 0.936 0.993 0.917
100 0.991 0.818 1.063* 0.764* (2) 1.026* 0.793* (2)
10,0.3 1 0.935 0.988 0.889 1.152 0.912 1.067
10 0.951 0.898 0.960 0.927 0.955 0.912
100 0.946 0.795 0.984 0.757 0.965 0.775
1000 0.963 0.690 0.997* 0.616* (1) 0.980* 0.654* (1)
10000 0.969 0.675 1.003 0.585 0.986 0.629
10,0.2 1 0.900 1.049 0.861 1.154 0.880 1.100
10 0.916 0.904 0.885 0.988 0.901 0.945
100 0.923 0.910 0.896 0.830 0.910 0.869
1000 0.919 0.746 0.925 0.788 0.922 0.767
10000 0.923 0.720 0.926 0.661 0.925 0.690
12.04 1 0.966 1.031 0.919 1.079 0.942 1.055
10 0.990 0.919 0.997 0.980 0.994 0.949
100 0.988 0.846 1.034* 0.845* (1) 1.011* 0.846* (1)
1000 1.064 0.748 1.070* 0.633* (2) 1.067* 0.694* (2)
12,0.3 1 0.939 1.029 0.895 1.067 0.917 1.048
10 0.953 0.912 0.942 0.893 0.948 0.903
100 0.955 0.861 0.987* 0.724* (1) 0.971* 0.793* (1)
1000 0.978 0.648 0.995 0.662 0.987 0.655
10000 0.995 0.681 0.997 0.625 0.996 0.652
12,0.2 1 0.910 1.035 0.856 1.162 0.882 1.096
10 0.925 0.975 0.891 1.038 0.908 1.006
100 0.919 0.888 0.899 0.918 0.909 0.903
1000 0.921 0.678 0.932 0.746 0.926 0.711
10000 0.930 0.674 0.925 0.656 0.927 0.665

* Indicates that some of the netlists failed toteoon the 1.2x minimum channel width architectin@vjsled. The number of failed
netlists is indicated in parenthesis. The wire anded critical path delay shown exclude the thitetlists.
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Figure 5.11: Similarity in VPR Placement for Depth= 1 Combinational and
Sequential MCNC Netlists, § = 0.3, Criticality Exponent = 8)

5.5: Efficient and Stable Placement

Looking back at the problems encountered duringepteent, two primary issues come forward. First, to
produce high quality placements the annealer maa kip-to-date criticality information. How cansthe
obtained without resorting to the computationatiypractical solution of performing a full static fimgy
analysis after each move? Second, worrisome itlisgadievelops during the annealing process whestir
timing information is used during the placementedistered netlists. What can be done to stabiliee

system?

Current timing information can be obtained with loamputational effort by making simple incremental
changes to link slack. Although the methodologylined in this section can only, in the worst case,
estimate criticality, it does provide enough infation to the placement tool to reveal shifts inirign
significance. While nothing can replace a fulltistdiming analysis performed at the beginning atle
temperature iteration, this approach can help raminthe relevance of criticality information in the

meantime by reflecting changes in link delay ok kfack.

Each time an annealing move is made, VPR’s timiriged placement algorithm already evaluates the
change in link delay for all sources and sinks emted to the migrated blocks. This is seen in Eguna

5.3. However, as seen in Equations 5.9 and 5f18isi change in link delay is subtracted from timd
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slack, an estimated source/sink criticality for thew placement can be easily recalculated. Whis |
accurate than a complete timing analysis, this omguires two additional add/subtracts and one

multiplication/division to preserve the majority thie accuracy of the netlist’s criticality inforriat.

Slacki, j, k,1) = Slack(, j,k,1 1) — ADelay(i, j, k, ) (5.9)
Criticality(i, j,k,1) = 1—% (5.10)

The top left and top right illustrations of Figusel2 show this technique in action. Here, the eptarfrom
Figure 5.2 is revisited, but now the placement toctementally updates the slack and link critiyali
information. The suggested move decreases thg deldg, ¢) by six units from 7 to 1 and increases the
delay on &, b) by six units from 1 to 7. To evaluate the qualif the new placement, this change is
reflected on the links’ slacks. Sincg €) was on the critical path, the original slack v@asThus, the six
unit drop in delay can be accounted for and the slaek on this link becomes (0 - (-6) = 6). Thiglated
slack can then be easily turned into a new criticalln this case, the system still believes tifnat critical
path is 10 units, so the new criticality @ €) is 0.4. Similarly the six unit increase in delay @, b) can

be accounted for by updating the slack to (5 - -8)= This makes the criticality of this link 1.Finally,

the timing cost of this new placement can be coegbuiased upon the incrementally updated timing

information. From this the annealer can now saettie new placement is not as good as the previogs

Although this methodology does effectively addrdss large-scale problem of placement in the face of

inaccurate timing information, it should be notéattthis technique cannot guarantee perfect ditgica
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Initial placement & static timing analysis: If slack updated incrementally, then link criticality
Timing Cost = (2+7+1)*1.0 + (1+2)*0.5 = 11.5 recaloulated
Critical Path Delay = 10 Timing Cost = (2+1)* 1.0 + 7*1.1 + 1*0.4 + 2*0.5E2.1
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Figure 5.12: Incremental Slack, Criticality Updating and Accuracy
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data — that would require true static timing analysThe bottom diagram of Figure 5.12 shows th& li
slack, criticality and timing cost of the new plawnt as calculated with exact static timing analysi
information. Comparing the details of calculatigresformed for the two techniques, there are &t leeo
small problems. First, the incremental slack apphodoes not realize that the current critical phtlay
for the system has changed. Second, the emphlasisdpon the links between blocksandc and the
output pads is incorrect. However, the suggesttinates do track well, especially considering the
extremely low computational requirements. Furthreenthe accuracy of this technique is particulargh
for heavily registered circuits. The problem o&douracy mainly stems from the fact that this appio
only updates the criticality information of the satirectly connected to the moved block. Howeteg,
timing of the links between bloclksandc and the output pads changes becéuesedc are logic blocks. If
these were registers, the criticality of the coioes to the output pads would not change unless th
critical path delay of the entire system changddhus, because the computation is broken into soyman
separate pieces in a heavily registered netlis, tdthnique largely correctly calculates link icatity, at

least relative to the critical path delay foundidgrthe last static timing analysis.

However, absolutely perfect timing information ist mecessarily desirable. Rather, relative ciliticas

far more important. Figure 5.13 revisits the regisd example from Figure 5.7, but calculates itiming
cost before and after a move with completely cdrtaxing information. Using this methodology, the
placement tool does shy away from the more unbathsolution in the top right, but still tends todsithe
equally unbalanced solution on the bottom rightae Dptimal solution on the bottom left is not chose
because both the input and output nets are critiédthough the critical path delay is lower, twatical
links become more expensive as compared to oneatrdnd one semi-critical connection. To prevent
this, the placement tool must take into accountréhative criticality of links before and after damove.
Figure 5.14 again calculates the timing cost beford after a move, but now uses the old criticdh pa

delay to calculate the criticality of links in tiew placement. This technique allows the systensadtize

—
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Figure 5.13: Problems with Perfect Timing Information
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Figure 5.14: Calculating Relative Change in Criticéity

that reducing the overall critical path delay canfér more important, even if this means creatinitiple

highly critical connections. This type of behavienaturally built into the incremental updatehieique.

This discussion leads directly to the second isswehat is the source of the instability in the slaal
placement technique for registered circuits? B&dgn the problems encountered were caused byatie
that even when the tool updated its timing inforiongtit did not account for the change in criticalhefore
and after a given move. This created a mismattlidan the real criticalities in the new placemant the
criticalities used to calculate the cost of the racement. This caused the system to unwittipgéfer
unbalanced delay, which opened the door for pakemscillation. However, since the incremental
criticality updating technique described above nsakkepossible to evaluate relative timing inforroati
after every single move, the placement tool canpamthe cost of the old placement, calculated thi¢h
old criticalities, with the cost of the new placarhecalculated with the new relative criticalitieshis leads

to subtle, yet extremely importance differencehia tost function.

More formally, given the incremental slack updappraach in Equations 5.9 and 5.10, the new critical
of each source/sink link is determined after a mioased upon the critical path delay of the systeuamd

at the beginning of the temperature iteration.c8ithe delay of each source/sink pair is updatest afich
move, the timing cost of a given placement can éfindd as the summation of all source/sink delays

multiplied by their current estimated criticality.his is shown in Equations 5.11 and 5.12
Timing_Cos(i, j,k,1) = Delay(i, j, k,1)* Criticality(i, j, k,1)*-5®  (5.11)

Timing_Cos(k,|) = 3" Timing_Cos(, j, k) (5.12)
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Taking a look at how this affects the way changetsvben two placements actually manifest, the timing
cost delta is now calculated in an inherently défé way. This is shown in Equation 5.13. Here th
previous delay is multiplied by the previous cality and the new delay is multiplied by the new
criticality. This is quite different from the timg cost delta shown in Equation 5.3 and leans heavi

towards the most accurate algorithm suggesteddogxbimple in Figure 5.14.

ATC(, j,k,1)=

Delay(i, j,k,1)* Delay(i, j,k,I —1)* 1
Crltlcallty(|, j'k'I)Crit_Exp Crltlcallty(l, j,k,l _l)Crit_Exp ( . )

5.6: Delay Imbalance and Optimality

One key feature of the approach described abotiatsit removes the tendency of the system to prefe
unbalanced placements. However, the examples shimwenfar have made some assumptions regarding
the underlying architecture. If a netlist is pldaen a device that provides different resourceis, ¢an
change the behavior of the suggested technique namg cause the annealer to favor unbalanced

placements.

For example, the scenario in Figure 5.14 assunssathlong as the register is placed somewhereckeatw
the input and output pins, the total amount of ylela the input and output nets summed togetherheill
the same regardless of the balance between thesedmnections. That is, to make one link slower,
another link must get faster by an equal amountil&\this is generally true, this is not necesyattile
case, particularly in devices with longer wire segits. This difference in total delay along a péin

affect the way the placer deals with balanced \&ewsibalanced connections.
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Consider the two placements in Figure 5.15 on ahitcture with length-four wires. The placement o
the left is faster because the delay between thetiand output connections is balanced. HoweVer, t
annealer may prefer the placement on the right usc#he total delay on the input and output nets is
slightly smaller. Rather than using four full wdrethe placement on the right uses three full wémed a
short length-one stub. The timing cost for the tplacements is shown in Equation 5.14 and Equation
5.15.

Delay( Crit _Exp
Timing CoStawnc=2* Dela 5.14
; oo 1
Crit _Exp Crit _Exp
Timing CoStuwaaea= Delay Delay + Delay Delay (5.15)
CPD CPD

Comparing these two equations and simplifying, éimmealer will prefer the unbalanced placement if
Equation 5.16 is true. Thus, some obvious questisa: 1) for what values @felay, andDelay, does this
relationship hold, and 2) how much slower &lay, be compared tDelay?

2* Delay((cri'[_EXp-Fl) > Delaw(crit_EXp'Fl) + Delaﬁ(crit_Exp{D (516)

To answer these questions, the three delay termsbearelated to each other by incorporating two
additional variables: aontractionterm and dalanceterm. As seen in Equation 5.17, the contractsmmt
defines how much smaller the total delay of the alahced placement is compared to the balanced
placement. As seen in Equation 5.18, the balagrre tletermines how much largeelay, is compared to
Delay,.

Delay, + Delay: = Contractin* 2* Delay (5.17)
Delay, = Balance* Delay: (5.18)

Plugging Equations 5.17 and 5.18 into Equation 5ah@ solving for the contraction term results in
Equation 5.19.

(5.19)

2% (1+ Balance(crit_Exml) %Cl’it_Exp+l)
2(Crit_Exp+1) * (l +BalanCéCrit_Exp+l))

Contractiln < (



47
This equation can then be graphed varying bothbtilance and the criticality exponent terms. This i
shown in Figure 5.16. Any contraction value beltw indicated lines will cause the annealer togartfe
unbalanced placement. For example, using a diiticaxponent of 1 allows the system to prefer
unbalanced placements with relatively little coatien. Delay, can be twice as large 8®lay, (balance =
0.5) as long as the total amount of delay alongutitealanced placement is less than about 0.95tothk
delay along the balanced placemddlay, + Delay, < 0.95 * [Delay, + Delay]).

These contraction and balance values can be plugggdinto Equation 5.17 and 5.18 to get the vatfes
Delay,, normalizingDelay, to 1.0. This is shown in Figure 5.17. In thiseathe annealer will prefer the
unbalanced placementlifelay, is below the values indicated by the various linEsr the parameters used
previously (crit exponent = 1, balance = 0.5, cactipn~ 0.95), this means th&telay, can be nearly 1.27x

Delay.

However, taking at closer look at Figure 5.16 aigliFe 5.17, the potential sub-optimality of theqaleent
tool cannot get very bad for typical criticality ponent values. From the prospective of placement
imbalance, the slope of the criticality exponentl8,and 12 lines in Figure 5.16 is relatively highor
example, an imbalance dDélay, = 0.75 *Delay,) requires contraction factor of less than abo88%.for

any criticality exponent larger than 8. Howeverisi unlikely that such paths will exist in real GRs.
While there may be a slight difference betweenféisgest paths through different register locationsome
architectures, this difference will likely be rélely small, perhaps no more than a few percemteré&fore,

it is unlikely that the placement tool will encoanta situation in which such a viable unbalancedgmnent

exists.

For that matter, this will also generally not aff¢lee final critical path delay. This is becauas,seen in
Figure 5.17, the maximum allowable valuesD¥lay, drop very quickly as the criticality exponent is
raised. For criticality exponents of 8, 10 and D2Jay, can only become about 1.08x, 1.07x, and 1.05x
worse, respectively. Thus, while the system mafgurunbalanced placements to a certain extentrunde
some special circumstances, the potential fortthisause larger problems is likely relatively lowhis is
particularly true if the criticality exponent isderelatively high. Although unbalanced placemenmitsnot
genuinely affect the testing performed in this dbagince the architecture used has unit-lengtesyit is

likely best to keep the criticality exponent asthas possible. This will become important in Chabt
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5.7: Testing and Results
The improved timing-driven placement technique witlhcremental criticality updating and the
reformulated cost function was tested using theesaet of 22 classical and 22 depth = 1 MCNC netlist
With the exception of the placement tool, all othensiderations were kept the same. That is, ¢tiésts
were packed with T-VPack, placed onto minimum-siz8dt_sanitized architectures with 1.2x the
minimum channel width as found by default VPR aodted using the built-in VPR timing-driven routing
tool with A* disabled. Due to the fundamental changes madeet@nnealing structure, differektand
criticality exponent parameters were explored. fdseilts of this testing for the original MCNC nstt$ are
shown in Figure 5.18 and the results for the depth netlists are shown in Figure 5.19. More dethil
results for this tuning process are provided inl&&h6 and Table 5.7. As with the earlier testitgy,
provide easy comparison with the results from VBRwire costs and post-routing critical path delay
reported have been normalized to the default VRRIt® Also, as in the earlier testing, the béstegment
parameters were determined by selecting the rewiftsthe best geometric mean critical path thét st

maintained a geometric mean wire cost below 1.0.

The most obvious result of this testing is thatcplaent with the new cost formulation requires much
smaller values ok to produce good results. While VPR obtained thst placements with( = 0.3), this
new tool required) = 0.1) for the conventional MCNC netlists and £ 0.025) for the heavily registered
circuits. Looking at Equations 5.9 and 5.10, theise of this tendency becomes clear. When the new
placer reduces delay on a given link, from the dypaint of the classical VPR framework, the modifeax$t
formulation somewhat double-counts this reductidrhis is because, unlike what VPR is expecting, the
criticality of this link will also be updated toftect the smaller delay. Thus, when the two fextare
multiplied together, the new delta timing cost &urally much larger than the range that the exgstiPR

framework is expecting. A similar situation hottse for when delay is increased on a given link.

Looking at the results in Figure 5.18 and Table §16 new incremental slack update technique coaebin
with the reformulated cost function produces theth@acements on the purely combinational or lightl
registered original MCNC netlists when the paramsefe = 0.1, criticality exponent = 12) are used. The
new placement approach was able to produce angeverdical path delay 0.888x faster than the déefau
VPR placer with a slightly better 0.981x averageewdost. Additional details of the placement ressoh

the original MCNC netlists with the parametexs£ 0.1, criticality exponent = 12) are shown irblea5.8.

As an aside, it should be noted that while soméhefplacements performed with the new incremental
update approach failed to route, unlike VPR witkgfrent static timing analysis, this is likely natedto
convergence problems caused by instability within placer itself but simply because thtactor was too

high, guiding the annealing towards placements slitihtly larger wire costs.
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Figure 5.18: Incremental Criticality Update Placemet A and Criticality
Exponent Tuning for Conventional MCNC Netlists
“X" denotes that a single netlist failed to routethe 1.2x minimum channel width architecture.
The wire and routed critical path delay shown edelthe failed netlist.
Table 5.6: Incremental Criticality Update Placementk and Criticality Exponent
Tuning for Conventional MCNC Netlists
Combinational Circuits Only Sequential Circuits Only All Circuits
Crit Exo . & Norm. Norm. Norm. Norm. Norm. Norm.
P Wire Cost Routed CPD Wire Cost Routed CPD Wire Cost Routed CPD
8,0.3 1.038 0.927 1.032* 0.885* (1) 1.036* 0.909* (1
8,0.2 1.004 0.952 1.008 0.859 1.006 0.904
8,0.1 0.970 1.002 0.971 0.846 0.971 0.921
10, 0.3 1.058 0.906 1.054* 0.816* (1) 1.056* 0.862* (1
10, 0.2 1.013 0.923 1.028 0.809 1.021 0.864
10, 0.1 0.976 0.952 0.977 0.835 0.977 0.892
12,0.3 1.076 1.002 1.059* 0.813* (1) 1.068* 0.907* (1
12,0.2 1.022 0.951 1.043 0.809 1.032 0.877
12,0.1 0.983 0.963 0.979 0.820 0.981 0.888
Default VPR 1.000 1.000 1.000 1.000 1.000 1.000
Best VPR w/
Frequent STA 0.985 0.924 0.968 0.825 0.977 0.873

* Indicates that some of the netlists failed toteoan the 1.2x minimum channel width architectufée number of failed netlists is
indicated in parenthesis. The wire and routedcatipath delay shown exclude the failed netlists.

Looking at the results in Figure 5.19 and Table & new placement technique produces the bagtses
on the heavily registered depth = 1 MCNC netlistewthe parameters (= 0.05, criticality exponent = 8)
are used. This produced 0.581x better post-routiitigal path delay compared to default VPR plaeem
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Figure 5.19: Incremental Criticality Update Placemet A and
Criticality Exponent Tuning for Depth = 1 MCNC Netlists

“X" denotes that a single netlist failed to routethe 1.2x minimum channel width architecture. Wi and routed
critical path delay shown exclude the failed netlResults with more than one unroutable netlistexcluded entirely.

Table 5.7: Incremental Criticality Update Placementh and Criticality Exponent
Tuning for Depth = 1 MCNC Netlists

Combinational Circuits Only Sequential Circuits Only All Circuits
Crit Exp , & l_\lorm. Norm. l_\lorm. Norm. l_\lorm. Norm.
' Wire Cost Routed CPD Wire Cost Routed CPD Wire Cost Routed CPD
8,0.1 1.021 0.604 1.134* 0.530* (3) 1.067* 0.572* (3)
8, 0.05 0.938 0.604 0.965 0.548 0.951 0.576
8, 0.025 0.894 0.709 0.862 0.672 0.878 0.690
10,0.1 1.045 0.622 1.127* 0.490* (5) 1.073* 0.572* (5)
10, 0.05 0.963 0.611 1.019* 0.526* (1) 0.989* 0.569* (1)
10, 0.025 0.907 0.619 0.884 0.636 0.896 0.628
12,0.1 1.071 0.592 1.115* 0.453* (6) 1.085* 0.548* (6)
12, 0.05 0.976 0.578 1.070* 0.461* (3) 1.017* 0.523* (3)
12, 0.025 0.916 0.612 0.912 0.560 0.914 0.585
Default VPR 1.000 1.000 1.000 1.000 1.000 1.000
Best VPR
w/Frequent STA 0.952 0.628 1.018 0.607 0.984 0.618

* Indicates that some of the netlists failed toteoan the 1.2x minimum channel width architectufée number of failed netlists is
indicated in parenthesis. The wire and routedcatipath delay shown exclude the failed netlists.

with 0.951x better wire cost. Additional detailstbe placement results on the depth = 1 MCNC sistli
with the parameters.(= 0.05, criticality exponent = 8) are shown irblea5.9.



52

Both of these results also compare favorably whith best results produced by VPR with frequentcstati
timing analysis. Perhaps most easily seen in Ei§L20, the results for the purely combinationdigittly
registered original MCNC netlists only differ frothe results produced by VPR with 10,000 static igni
analysis runs per temperature iteration by a fexggre. However, the new placement technique presluc
these results with several orders of magnitudedessputation. This is because the new placemetiiade
only performs one static timing analysis per terapge iteration with extremely fast incremental ajgs

in between. The depth = 1 netlists produce simitmults. In this case, both placement approaches
produce dramatically faster circuits, but the ressabtained by the incremental criticality updaehnique

are not only slightly better, but are also freethed runtime and stability issues associated withrtiore

traditional placement approach with performed fesgjistatic timing analysis.
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Figure 5.20: Comparison Between VPR and IncrementaCriticality Update Placement
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Table 5.8: Conventional MCNC Netlist Placement Comarison

Default VPR Frequent STA VPR Incremental Slack
A=0.5,CritExp=8.0 | A=0.3,CritExp =12, 10K STA/Temp A=0.1,CritExp =12
Raw Values Norm. Values Raw Values Norm. Value
Netlist Wire CPD Wire CPD Wire | CPD Wire CPD Wire | CPD

e64 30.21 3.12E-08 29.48 3.12E-08 0.976 1.001 29.81 8B08| 0.987| 1.019
ex5p 178.17 6.75E-08 171.49 6.78E-08 0.963 1.05 169,66.99E-08 | 0.952| 1.037
apex4 192.57 7.74E-08 189.14 7.49E-08 0.982 0.967 184,78.46E-08| 0.959| 1.093
misex3 199.39 7.34E-08 196.62 6.91E-08 0.986 0.942 194,78.75E-08 | 0.977| 0.92(
alud 201.10 7.83E-08 199.62 7.72E-08 0.993 0.486 199,37.58E-08| 0.991| 0.964
des 249.48 9.12E-08 245.25 7.10E-08 0.983 0.478 258,01.16E-08| 1.034| 0.784
seq 259.92 7.90E-08 255.99 7.01E-08 0.985 0.487 254/12.12E-08| 0.978| 1.02§
apex2 280.18 9.66E-08 274.22 8.37E-08 0.9Y9 0.467 272,08.61E-08| 0.971] 0.897%
spla 625.59 1.35E-07 634.98 1.48E-Q7 1.015 1.499 627,76.37E-07| 1.003| 1.019
pdc 934.04 1.49E-07 912.37| 1.33E-Q7 0.9Y7 0.492 916/11.54E-07| 0.981| 1.034
ex1010 678.37 1.81E-07 677.56 1.43E-Q7 0.999 0.491 663.71.52E-07 | 0.978| 0.84(
s1423 16.37 5.82E-08 15.95 5.93E-08 0.974 1.0r0 1556 GSEAB | 0.950| 1.213
tseng 102.62 5.53E-08 96.77 5.17E-08 0.943 0.936 95.51 58508 | 0.931| 1.010
dsip 199.69 7.34E-08 193.36 5.39E-08 0.968 0.434 228,00.82E-08| 1.142| 0.656
diffeq 157.43 6.24E-08 149.72 6.47E-08 0.951 1.437 147,88.24E-08| 0.939| 1.00]
bigkey 206.92 7.56E-08 204.73 5.27E-08 0.989 0.497 237\22.32E-08| 1.146| 0.577%
s$298 228.22 1.32E-07 217.23 1.28E-Q7 0.952 0.971 211104.33E-07| 0.925] 1.004
frisc 584.86 1.62E-07 557.68 1.26E-Q7 0.954 0.480 536/85.29E-07| 0.918| 0.794
elliptic 502.36 1.11E-07 483.49 1.07E-Q7 0.962 0.964  46558.55E-08| 0.927| 0.867%
s$38584.1 678.84 1.06E-07 673.69 7.32E-08 0.992 0.494 686/98.14E-08| 1.012| 0.677%
s38417 693.47 1.02E-07 675.70 7.69E-08 0.9Y4 0.451 663,02.10E-08| 0.956| 0.797%
clma 1481.57 2.42E-07] 147254 150E-Q7 0.994 0.422 7424.1.59E-07| 0.962 0.658
Geometric Mean 0.977 | 0.873 0.98 0.888

Table 5.9: Depth = 1 MCNC Netlist Placement Compasion

Default VPR Frequent STA VPR Incremental Slack
A=0.5,CritExp=8.0 | A=0.3,CritExp = 8.0, 10K STA/Temp A=0.05CritExp=8
Raw Values Norm. Values Raw Values Norm. Value:
Netlist Wire CPD Wire CPD Wire | CPD Wire CPD Wire | CPD
e64 44.35 1.99E-08 41.59 1.17E-0B8 0.938 0.589 41.79 2EHA8 | 0.942| 0.56(
ex5p 224.83 2.65E-08 218.35 2.12E-08 0.9Y1 0.499 216.26.64E-08| 0.962| 0.61§
apex4 213.56 3.24E-08 208.40 2.13E-08 0.9Y6 0.458 204,8B.87E-08| 0.959] 0.577
misex3 269.73 3.53E-08 250.93 2.89E-08 0.980 0.417 242,12.30E-08 | 0.898] 0.65]
alud 291.84 3.83E-08 256.71] 3.12E-08 0.880 0.9414 258.32.64E-08| 0.885 0.684
des 352.68 4.65E-08 345.94 243E-08 0.981 0.522 347\52.05E-08| 0.985 0.44
seq 355.04 4.49E-08 331.02 2.42E-08 0.982 0.439 332.32.36E-08| 0.936 0.524
apex2 407.76 4.,03E-08 372.87| 243E-08 0.914 0.403 369.62.43E-08| 0.906/ 0.60%
spla 846.56 5.33E-08 827.47 3.13E-08 0.9Y7 0.987 806.33.08E-08 | 0.952] 1.14]
pdc 1185.60 7.69E-08 1175.18 3.48E-08 0.991 0.453 0¥25.3.30E-08| 0.949 0.429
ex1010 876.20 5.40E-08 866.71] 3.51E-08 0989 0.449 8258246E-08| 0.943] 0.641]
s1423 75.38 2.24E-08 73.87 1.67E-0B 0.980 0.745 68.83 O0B3@® | 0.913| 0.442
tseng 308.53 4.55E-08 326.61] 2.61E-08 1.059 0.473 3189864E-08| 1.034 0.574
dsip 259.39 4.31E-08 227.70 2.90E-08 0.8Y8 0.472 235.68.58E-08 | 0.909] 0.59¢
diffeq 485.70 5.38E-08 507.69 2.67E-08 1.045 0.496 492,12.66E-08| 1.013] 0.494
bigkey 269.51 4.70E-08 258.60| 2.78E-08 0.960 0.490 254/68.30E-08| 0.945 0.701]
298 456.04 4.85E-08 442.93 3.60E-08 0971 0.442 43853.70E-08| 0.962] 0.55
frisc 1427.26 7.17E-08 1554.48 2.79E-08 1.089 0.388 2454.2.78E-08| 1.019 0.388
elliptic 1430.86 8.41E-08] 1453.92 4.52E-08 1.016 0.437 B395.4.76E-08| 0.975 0.566
s$38584.1 1721.81 1.19E-07 1812.62 9.16E-08 1.063 0.169 941y.8.12E-08| 0.940 0.681
s38417 1976.38 7.21E-08] 2399.60 4.74E-08 1.214 0.457 BO06.3.40E-08| 1.015 0.472
clma 2414.58 9.42E-08] 232940 591E-08 0.965 0.427 3B6f.6.11E-08| 0.898 0.649
Geometric Mean 0.984 | 0.618 0.95 0.57p
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5.8: Conclusions and Future Research

This chapter identified a longstanding but reldivpoorly understood problem surrounding FPGA
placement. Although previous research has shoamtitiming-driven placement can improve criticaltpat
delay for conventional netlists, existing methodids have a fundamental shortcoming. Specifically,
classical placement relies solely on the link callity information provided by static timing anailys
However, static timing analysis is too computatignaxpensive to perform very often, so the bulkttod
optimizations performed by conventional annealingdone with stale and potentially very inaccurate
timing information.

Although this can be mitigated somewhat by simplgning static timing analysis more often, not only
does this dramatically increase the computatioaguirements of the placement tool, it does notytrul
address the larger scale problem. Inherentlyptheement tool must be able to accurately evaltrate
change in timing considerations before and aftehemnealing move. While increasing the amount of
static timing analysis can improve the wider-sc@meuracy of the timing information, conventional
placement approaches still use old timing infororaton a move-by-move basis. Although subtle, this
approach makes the intrinsic assumption that thieally of any given connection in the system wibbt
change very quickly. However, as demonstrated,ithclearly not true, even for simple registerigduits.
This very basic incorrect assumption can causayktem to prefer degenerate solutions. Whilelimigs

the potential benefits of more accurate timing tinfation, more seriously it can open the door for
oscillations during the placement of heavily registl applications. These oscillations can regulsgvere
convergence problems that destroy the basic fumality of the placement tool. Oddly enough, tisan
issue that can also plague timing-driven routeis tais concept will be revisited in Chapter 7 dgrihe
discussion of register-aware routing.

This chapter suggests two modifications to thesitaming-driven placement approach that addresse
issues. First, the accuracy of timing informatioan be maintained very efficiently by applying
incremental changes during placement. While tlppr@ach cannot guarantee completely accurate
criticality information, this fundamental differem@nables the system to evaluate the timing siaif a
placement on a per-move basis. This new capabibitiyrally leads to a change in the cost function.
Degenerate solutions and the accompanying osoitlatcan be avoided by reflecting potential changes
made to link criticality in the cost of a move. i§imew approach produces much higher quality placgsn
without significant affecting the computational vég@ments. For conventional combinational or lightl
registered netlists it produce placements thabaraverage 0.888x faster in terms critical pattayl&lith

no degradation in routability. For heavily regisi netlists it generated placements that are &.%gkter
with 0.951x better wirelength.
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While this approach dramatically improves placemguoality, this is not to say that this topic has
necessarily been fully explored. Because FPGAe lixed, finite resources and because the placement
tool directly affects the interconnect charact@ssof the final system, placement is often a Iypinhin the
CAD process. While the next chapter will discussynaf the timing-related issues concerning how the
placement tool interacts with earlier parts of tretlist compilation flow, there are still open qliess

regarding how accurate timing information affe¢ts system within the placement tool itself.

For example, while it is obvious that updating linkticality before the cost of a new placement is
evaluated is important, moderately registered stetland applications with a low logic depth present
unique opportunity for a different approach. Omengary problem that has been discussed is that stat
timing analysis of the entire circuit is impractita perform frequently during annealing. Howevielis
possible to perform an incremental static timinglgsis after each annealing move. As discussdikear
determining the new critical path of the systemas essential. Rather, determining the changelative
criticality is much more important. Thus, it isgsible to propagate changes in the delay on a mloet
forwards and backwards through the circuit in sdiméted fashion without evaluating the entire rttli
These changes would only have to spread alongatinfand fan-out cone of the moved block untilythe

reached a register or an I/O pin.

Of course, one reason that the incremental timppte technique described above performs so wilhis

it is very fast and its error for heavily registreircuits is extremely low. However, circuits it
moderate number of registers and applications avigmall number of logic blocks along the deepett pa
are particularly amenable to updating with a limit#atic timing analysis. This is because the remab
logic blocks that would need to be updated aftenave is relatively small. Thus, it is possible tlaat
limited, but incremental static timing analysis dmperformed very quickly and could provide evettdr

accuracy. Incorporating such a technique intgptheer could lead to even better results.

Furthermore, this chapter has focused on simulatettaling-based placement. While the basic issues
addressed in this chapter are important for vilyuall placement algorithms, actually applying taes
techniques and the impact they will have is notessarily clear for other placement techniquesis It
generally accepted that although simulated anrgalinduces good results, it generally comes attist

of a large runtime. Thus, while the discussiort@hputational requirement in this chapter is patéidy
relevant, many commercial systems to handle vegelaircuits often avoid simulated annealing as lmuc
as possible. These types of tools use a two-gilegEment process in which a faster, but less ateur
approach is first used to obtaingéobal placementThis type of tool takes the place of the earlghhi
temperature annealing to determine the large-smadmtation of the blocks and leaves a much simpler

detailed placemenproblem for a following annealing-based placem this case, since only smaller
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optimizations need to be made, the annealing iengélg started at a much lower temperature. Tdiis,

course, leads to a much shorter runtime.

While the problem of inaccurate timing informatiawould seem to be a problem for any iterative
placement algorithm, the challenges that such apfase system faces may be different. First, d¢loba
placement tools such as quadratic placement [18]foirwed-directed placement [5] have dramatically
different techniques to incorporate timing informat during the placement process [30]. This irlfts
poses a problem because it is not obvious how theskls might integrate more up-to-date timing
information. However, the problem even changes eseoimat within the secondary annealing-based
placement phase. Because the larger structuteegilacement has already been determined by tialglo
placer, the optimizations options that are avaflatd the annealer are much more limited and any
improvements must be done much more quickly. Wittike basic issue of annealing with stale timing
information still stands, it would be interestimgyrneasure the effect the suggested improvementhaan

in such a different placement situation.
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Chapter 6: Register-Aware Placement

The enhanced timing-driven simulated annealingréttyn described in Chapter 5 showed the benefits of
using more accurate timing information during plaeat. However, in some sense there is still an
inherent limit to the performance benefits that banachieved because of systemic problems in thie ba
toolflow itself. As discussed in Chapter 4, egrbrtions of the netlist compilation tool chain, buas logic
synthesis and packing, define the netlist thabfelhg tools, such as placement and routing, worthwi
However, these early tools must make design chaoigdés very little information about the intercontec
characteristics of the final implementation. Sinde traditional toolflow is purely feed-forward,
conventional placement and routing tools have ngodpnity to fix these errors, even once this
information is known.

This chapter will describe some of the basic litiitas that applications developers can encounttr thie
traditional feed-forward CAD toolflow. The discims will further focus on how registers in a ndtiésn
make these problems worse. This will lead to amary of existing attempts to address this problech a
the introduction of a new technique for placeméat incorporates aspectsptysical synthesisPhysical
synthesis optimizations change parts of the ndiised upon information that can only be obtaiagel ih
the netlist compilation process. By allowing tHagement tool to modify a netlist during placemehg

system is able to significantly improve both wigstand critical path delay.

6.1: Feed-Forward Design Flow — Implications for PackingRetiming and Placement

Similar to writing high-performance software, deyghg applications for an FPGA is generally a very
iterative process. Until the HDL code is compilteda routed netlist, it is very difficult to deteime the
performance or area requirements of an applicatiBinst, the logical requirements of a netlist catnbe
accurately measured until the application has bkesugh synthesis, technology mapping, and packing.
However, even at this point the packed netlist a@ywes as a lower bound on the necessary FPGA size

and an upper bound on the achievable clock frequenc

This is only a lower bound on the FPGA area bec#ussubsequent placement and routing may require a
larger fabric to provide sufficient communicati@sources to connect all the logic blocks togetfdris is
because some applications may have many signdla¢lea to traverse a specific area of the chipthdf
number of signals exceeds the communication capaé€ithat area, the netlist needs to be mapped to a
larger FPGA so that the logic blocks in congestggilans can be spread out, distributing traffic awnere
routing channels.

Along the same lines, this is only an upper boundh® clock frequency of the design because whie t

delay through the necessary logic can be determthédonly represents a portion of the overalbgiéh
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the final circuit. The majority of the delay inrmodern FPGA is accumulated in the programmable
interconnect. Since the precise path a signaltakié is not determined until after routing is cdetgd, it

is very difficult to determine a large portion ofnat’s timing requirement. All of these factoranduine
and FPGA application developers must generallyhgough multiple iterations from HDL code to routed

circuit to meet performance or device area spetifios.

While the long engineering and debug cycle of FP#pflication design can complicate the development
of high performance circuits, in some sense thé ¢bain itself is somewhat constrained by its hyghl
compartmentalized and feed-forward nature. Fomgte, as discussed in Section 4.2, conventional CAD
tools group registers and logic together duringpgheking process. However, this limits the optamians
that the placement tool can perform since it cdy orove entire logic blocks around. While this ipably
does not create a concern for conventional netlises large number of registers in heavily pipalin€-
slowed and retimed applications can cause problerhss is because packing algorithms such as T-WPac
[1] implicitly assume that flip-flops will be driveby a LUT and the two should be packed into theesa
CLB whenever possible. While this approach isllilaufficient if the number of registers in theauiit is

relatively low, heavily registered netlists wilkély have signals with many flip-flops.

These multi-register connections create two proble@onsider the example in Figure 6.1. If thisuit is
mapped to an architecture that has two LUTs aripZléps per CLB, the packing tool will wrapUT A
and two of its following flip-flops into a singlet@mic unit before placement. This greatly limitet
potential for the placer to use these registersitigate interconnect delay if the LUT’s output rsé
requires a long wire and ends up being timing aalti Furthermore, packing can fuse unrelated logic
blocks and flip-flops together. The third registerthe output oEUT A cannot fit into the same CLB as its
source, so it will be arbitrarily combined with serather logic block before placement. Not onlysites
limit the placer’s ability to use registers to distite interconnect delay, this artificially tiearelated parts

of the circuit together, making the placement peabmore difficult.

Furthermore, following the conventional toolflowperations that can restructure the netlist, such as
retiming, must be performed prior to packing. Utdoately, since packing is performed before plagaim

this general approach can encounter problemst, Hiesretiming may not be very effective. Withauty

Figure 6.1: Packing Implications for Heavily Registred Netlists
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placement information the retiming tool can onlyweoughly estimate interconnect delay. In genatal
must retime using a simple unit delay model foriddgocks and largely ignore the potentially sigeaht

delay accumulated in the interconnect.

On the other hand, once the circuit has gone alvthy through the entire CAD toolflow, if the retiud
implementation does not meet timing specificati@ms application developer might attempt to repeat
retiming on the original netlist for another runpcking, placement and routing. However, it islear
how useful it might be to try and forward timinganmation from a previous placement and routingkbac
to the retimer for another iteration of the CAD I®o This is because there is no guarantee that thi
information would be accurate or relevant to thevrnenplementation — the placement may change
considerably in the meantime. Nets that were tjrdritical in an earlier placement may not remain s
This holds true even if the netlist were not chahgeall but simply re-placed. Thus, a subseqtegithing
may actually degrade the performance of the cirmdtead of improving it. This is referred to as a

problem withtiming closure

6.2: Previous Retiming-Aware Approaches

Since the precise delay of each net cannot be knowihthe later stages of the CAD process, mutipl
research groups have taken steps towards applgtimging after placement or routing. These effads

be split into two general categories. The firstides specific architectures that are particularhenable

to absorbing the registers generated by retimiimgthese systems, allocating new registers is dasyto
the unique characteristics of the underlying hargwar hus, retiming can be applied after routingheit
changing the existing paths.  The second gengrptoach relies on sophisticated CAD tools that
incorporate the new registers caused by retimitman existing placed netlist. Although the predaglay

of each net cannot be known for certain until aftarting due to congestion concerns, as discussed i
Chapter 5, the placement can generally give aivelgtaccurate idea of signal criticality. Thushile
retiming can be applied with much more precisidre thallenge that these tools face is merging the
registers generated by retiming into the existintacgment without changing the larger-scale

characteristics.

Unfortunately, in some sense all of these prevapsoaches still struggle with the same basic problof

the conventional approach. That is, late in thelfmwv it is much safer to apply retiming very
conservatively. However, this also makes the p@ktenefits quite limited. On the other hand, if
retiming is applied very aggressively, the new s&gs introduced into the system can overwhelm the

register resources that are available and causznaatic or unpredictable change to the existinggrizent.
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6.2.1:Previous Architectural Retiming Solutions

Perhaps the most straightforward manner to dedl thié problems associated with retiming is to modif
the architecture itself to allow retiming to be foemed after placement and routing, without disioghthe

existing configuration. In this way, the system sédestep any problems with timing closure.

For example, the system suggested in [38] is astexgid track-graph FPGA. A track-graph FPGA is
unique because the entire communication netwospli into completely separate, but overlaid rogtin
domains. If the switchbox architecture in Figurdabis used, once a signal is routed onto a givies, all

of the other wires it can connect to are locatedhim same relative position in their respectivetinmu
channels. Stated another way, all of the routinoghain N wires are connected together, with no eross
connections to the wires in other routing domailsFigure 6.2a, a signal that enters the switchtnoxhe
first track from the left can only reach the fitsack in the routing channels exiting the top andtdm.
Although for clarity only an edge case is showe, $hme segregated connectivity is maintained tiouig

the rest of the FPGA. Thus, this architecture \Wélve 4 completely separate sets of communication
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resources that are merely sitting side-by-sidecaimtrast, if the universal switchbox architecturd-igure
6.2b is used, signals can connect to wires witfediht relative positions in their routing channgl.signal
that enters the switchbox on the first track frame 1left can reach multiple tracks exiting the toml a

bottom. For that matter, the signal can even netut the left side on the bottom-most track.

While the differences between these two routindniggctures is somewhat subtle, as discussed in [44]
more flexible switchboxes such as the universalgietend to improve the routability of the FPGA as
whole. However, from a CAD standpoint track-graphbhitectures are attractive because signals on one
routing domain cannot interfere with signals ontheo It is exactly this characteristic that thehars of

[38] exploit to incorporate specialized retimingisters.

The authors of [38] replace the conventional trgcdph switchboxes with registered switchboxes the
one shown in Figure 6.2c. In this case, the cotimes that use routing domadnhave the option to enter a
register at each switchbox. The results in [38]gast architectures should replace approximatelg@®6
of the routing domains with registered connectio$e toolflow for this system encourages potelytial
timing-constrained connections to use registeracktdomains. It begins with conventional timingvdn
placement and routing, ignoring the registers erdbddn the interconnect. At this point, timingtioal
links in the routed configuration are identifieddesingled out. If they are not already connectiedawvire
domain that is outfitted with optional registets tonnection is swapped to an equivalent wire dohat
does. At this point, a restricted retiming algomit is applied. Instead of performing true LeisalSaxe
retiming, this approach limits the number of regjistthat can be pushed onto a specific conneaidhet

number of optional retiming registers that alreaslist along the current route.

Unfortunately, while this is a simple solution,shgreatly limits the optimizations available to tle¢imer.
First, the retimer is specifically limited to onlging the specialized retiming-specific registetded to the
interconnect structure that are along the existoyge. This makes efficiently using the registerghe
system very difficult. For instance, this approades not consider using the potentially large nemds
registers in switchboxes or logic blocks that ad@eent to, but not directly along, a given patlcduese
this would require changing the routing. Furtheredhe system completely segregates flip-flopsgme
in the original netlist and registers created bymimg. Flip-flops within the CLB can only be uség
registers in the original netlist and flip-flops leedded in the interconnect can only be used bystergi
moved by retiming. This can lead to fragmentati@tween the two essentially identical resourcebe T
strict division in the CAD tools means that botheavily registered netlist that does not requitaniag or
a relatively lightly registered netlist that redesr extensive retiming will be unable to use alltlodé

available registers in the system.
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This problem with register efficiency leads to arem larger issue. This approach makes the amdunt o
retiming that the architecture can support heaaffected by the number of additional retiming régis

put into the system. Thus, providing sufficiensoarces to support applications with a lot of retim
registers is very expensive. In some sense thiglynpushes the design paradox associated witimiregi
from being a problem for the CAD tool to being algem for the FPGA architect. Adding too many
retiming registers makes the overhead for the tchire very large. However, adding too few anitifily
limits the options for aggressive retiming. Of cey all of these issues are also on top of theemor
fundamental problem that this type of approach amiyks on a very specific and specialized registere

interconnect structure.

6.2.2:Previous CAD Retiming Solutions

Efficiently supporting more general registeringaeses requires new CAD tools. Towards this goal,
there have been a number of research projectshthat attempted to perform retiming after placement.
These approaches generally use multiple stagesooégsing, with a specialized placement tool foddw

by a retiming phase.

The work in [5] was among the first efforts to agleh retiming as a placement problem. Although this
work actually involvedfloorplanning a precursor to placement that can be thoughtsod aery rough
global placement, it laid the groundwork for theriwmn [7]. The authors of [7] clearly define aderstage
approach for retiming-aware placement. This tegqmifirst borrows a cue from classical timing-drive
placement by incorporating static timing analysishwva modified simulated annealing cost function to
identify potentially critical nets. It uses thisormation to keep these links as short as possileen the
annealing is complete, they perform a classicaiiag step to improve delay. This is followed bgleort
simulated annealing process to re-distribute reggsthat are created or deleted and keep the bgaks
relatively even in size. Unfortunately, this wddtgeted an ASIC development flow. Since ASICate
completely custom chips, the CAD tools are abliatgely create or delete resources at will. SIRB&As
must use the finite resources offered by a speaifahitecture, there are strict limitations as teerve the

system can and cannot create a register.

These FPGA-specific concerns were addressed insasarkh as [31], [43] and [37]. [31] suggested iy ve
straightforward solution in which conventional pawent is followed by a constrained retiming step.
Similar to the architectural solution describedliegrthe retimer can only push a limited number of
registers onto a specific link. In this case, tbtmer could choose to either use or not use ltheldps
present in the BLEs already allocated by the plargrphase. Again, while this is a simple and adese
form solution, like the approach in [38] this teajue greatly limits the optimization available toet
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retimer since this does not allow the system tmriporate the resources that might exist in neighigor

unoccupied BLEs.

In contrast, [43] explored the opposite end ofrétéming problem. In this approach, the authoitslstgin
with a good timing-driven placement, but then rétignis performed without any restrictions on the
number of registers that can be placed on a givin |Although they include an algorithm to assteias
many registers as possible with their host LUT taximize the use of the flip flops in the same BLE,
additional registers are allocated by simply seacgchn a spiral pattern for the closest unusedstegi
Thus, this technique offers no guarantee of tiningvergence since the retimer can create an uslimit
number of registers in potentially very sensitiveas of the array, with no good way of cleaningthgp

placement.

The approach discussed in [37] was the first teplmnithat truly attempted to address the basic pnobl
between balancing potential retiming improvementsl &sues with timing closure. Their approach
follows the work in [7] relatively closely with dtee-stage retiming-aware placement process. Titsty
use a modified simulated annealing cost functiondentify timing-sensitive nets, specifically tatigy
feedback loops and the relationship between clkipaths and near-critical paths. This is followsda
heuristic retiming step. Primarily, this retimeies to move registers in the netlist, keeping indCLB
legalizationissues. CLB legalization is a problem becausg wirk focused on architectures with logic
blocks that do not have full input and output carivy, like those in Figure 6.3a. Retiming cresinew
registers that need to be integrated into theakeste netlist. Thus, this disturbs the originatking of the
netlist. This change in packing makes it possib& certain CLBs may not have enough input or wutp
pins to accommodate the new contents. The autid&] attempt to retime while minimizing this iragt

by estimating the cost associated with each patentitiming move. They identified three possible

situations in which they could insert a registe¢oia net. In order of preference, these cases are:

1) Where a register is pushed onto a net very clogbem®utput of the LUT and the entire net uses the
registered result. In this case, the LUT andfiljp can share a BLE.

2) Where a register is inserted somewhere betweenutmit of a BLE and some of the sinks. In this
case they require an additional BLE, either becahseflip-flop associated with the source LUT is
already used or because the net requires accbsghtdhe pipelined and unpipelined LUT output.

3) Where a register is pushed onto a net very closent specific sink. In this case not only is an

additional BLE needed, this register is also ombgely associated with one specific logic block.
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Figure 6.3: Non-Independently and Independently Acessible Flip-Flop Architectures

Similar to [7], this FPGA-centric retiming stepfalowed by a very short iterative legalization gka This
step is primarily concerned with resolving anydké¢ CLBs created by the retiming process. Of ogurs
because the retiming phase preferentially creagisters that can be easily absorbed by the s&ltEe

the tool generates relatively few registers thajune new BLEs. This lowers the demands on the

legalization phase.

Unfortunately, this approach still has two issuE#st, much of their work focuses on solving atebiure-
specific CLB input and output legalization problem$lowever, this is not necessarily a concern for
modern devices. Recent FPGAs such as the Virtg4d] do not require cluster legalization. This is
because they not only provide independent accelsd s and flip-flops (Figure 6.3b), they offer fldILB
input and output connectivity. For example, ifrth@re eight 4-LUTs and eight flip-flops in a CLiBe
logic blocks will have the capability to take 4@@pendent inputs (8 x 4 LUT inputs + 8 flip-flopins)
and produce 16 independent outputs (8 LUT outp@dlip-flop outputs).

More importantly, this methodology still may notopuce feasible or convergent placements. This is
because the retiming is still wholly decoupled frtra legalization phase. This means that the estimay
produce a netlist that requires registers in aa #rat currently does not have any available inetkisting
placement. At this point, the post-processing stepto choose between producing an illegal plaoere
risk disrupting the timing of the system. This typlesituation is particularly likely given netlisigith a
large number of registers, since, by the very matirthe netlist itself, there might be relativédyv empty
register locations in the array and many of the nedy be critical or nearly critical. Thus, thémer must

be tuned very conservatively to specifically avitidse kinds of circumstances.

Taking a step back, perhaps it is a better ideactusider the source of these problems. All of the
complications regarding retiming stem from the fam#ntal approach that has been used. The problem i
that retiming cannot be performed as an isolated)es-shot optimization step if the system is tbme as
aggressively as possible while still maintaining triginal placement that provided the timing imhation.
Essentially, all of the approaches discussed sarfasstill fundamentally patchwork tools in thagyhrely

on completely distinct placement and retiming peas€o obtain the best results from heavily regeste

netlists, it is likely that retiming needs to benswered in a more holistic sense. In other woreksning
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needs to be a far more integral part of the plactmpeocess itself. This philosophy would allow the

system to apply retiming more effectively and pcéally.

The work in [36] is the most encouraging work tdedan FPGA retiming because it provides the most
unified placement and retiming approach. This mégpe begins much like the work in [37] with a
relatively standard timing-driven placement. Hoeevafter annealing, the placement is given to an
iterative incremental retiming and placement tadere, instead of performing a single traditioreiming
run, such as Leiserson/Saxe, followed by a singmllzation phase, the tool alternates multipleem
between very short, incremental retiming steps @id legalization phases. The retiming tool is
incremental because it does not try to solve timing problems of the entire circuit at once. Ateysic
retiming can potentially move all of the registergdhe system through multiple levels of logic isiagle
step. Of course, such a drastic change to théshedll entirely disrupt the existing placemenRather,
this tool simply examines the effect of graduallyshing a register through one level of logic aneet It
examines each of the registers in the netlist amdarn to see if its input or output net is criicor near
critical. If the output net is critical, the re@mattempts to push the register forwards throinghldogic
blocks directly driven by its output net. Convédysd the input net is critical, the retimer attpta to pull

the register backwards through the logic block thiates its input net. Of course, this type oframoental
retiming limits the scope of the improvements ttah be made in a single step, but the retimer haille

multiple chances to further improve the system.

Each of these comparatively gentle retiming phésésllowed by a greedy legalization phase. Ag#ir,
primary goal of this tool is to eliminate the oveeuwf CLB input and output pins. This legalizattonl is
referred to as greedy because while it attemptdanswaps like simulated annealing, unlike anngatin
only considers making moves that reduce the tosahber of illegal CLBs. If the placement remains
illegal after a relatively small number of attemptise new retiming is considered un-placeable ded t
system reverts to the previous netlist. This stege retiming and legalization process is repeatgd no

more improvements are made to the circuit’s crifjizgh delay.

6.3: Integrated Placement and Physical Synthesis

While the approach described in [36] integratesnieg into the placement process far more thaniprev
tools, it still uses a somewhat artificially segr@ehtechnique. For example, although it beging wit
standard simulated annealing for placement, it @wsa®lely greedy post-retiming legalization phase t
integrate new registers into the existing placemefihis shift in placement approaches seems largely
unnecessary. Since simulated annealing providels ayowerful optimization framework, it is idealr f
merging new registers into the system gracefuljor that matter, while the approach in [36] remains

overwhelmingly preoccupied with CLB legalization, some sense the basic philosophy that it uses does
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not make this a priority. When retiming, additibregisters may need to be created. However, raliza
retiming first, putting new registers into CLBs thraake the placement illegal and then trying totfir
problem later, it is likely safer to only retimeetisystem when it is certain that reasonable lemgzdtions
are available. This allows the natural optimizatiharacteristics of the simulated annealing prodtes
migrate registers into the proper locations withomtroducing additional legalization worries.
Furthermore, this approach only considers retinaifigr annealing has finished. It is entirely pbksthat
retiming a particular register is a good idea, tousee this requires larger-scale changes to ttersythat
can only occur during simulated annealing. Findlere is also the matter of CLB packing. Therapph
in [36] does not address the two tendencies discussSection 6.1 in which the packing tool unnallyr
combines multiple registers into a single CLB asds unrelated logic and registers together. Dgalith

this problem during placement is critical to proithgcgood placements for heavily registered appithcst

This section introduces a new technique that addeeall of these concerns by performing simultaseou
simulated annealing-based placement and physicaynthesis. This approach begins by first
incorporating both traditional CLB-level moves ahméF-level moves into the conventional placement
framework. FF-level placement moves give the alemethe ability to migrate individual registers
separately from the rest of their host CLB. Thiews the placement tool to change the packing of
registers and more effectively use them to distabiterconnect delay. This approach continues by
integrating retiming into placement. Although damito the work in [36], the technique presentedehe
merges retiming moves more smoothly into placem@nttreating them as much as possible like
conventional placement moves. Essentially, retjmmoves are accepted or rejected by the same
temperature/cost/benefit structure as normal Idgack swaps. This level of integration allows the

retiming to more fully leverage the power of simathannealing placement.

6.3.1:Packing and FF-Level Placement

While packing reduces the problem size presentéde@nnealer, in some sense it also interferds tivé
optimizations that are made during placement. i8su$ses earlier, this is because packing locksterg
into specific logic blocks early in the compilatigmocess. However, dealing with this problem i$ no
necessarily as simple as reverting to placemetiteaindividual LUT and flip-flop level. This is bause
such an approach raises several serious concéffisle this has obvious dramatic implications foe th
annealing runtime, it can also lead to problemssirfinding high quality placements. For the m#ypof
registers it makes sense for a LUT and its compefiije-flop to reside in the same CLB. Specifigalihis
configuration is special because the connectiowéet the LUT and flip-flop does not incur the detay
potential wiring congestion associated with exita@LB, traveling along shared interconnect wiaay]

re-entering another CLB. However, if the placemardl is only able to move LUTs and flip-flops
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independently from one another, it makes it vergyefar a LUT and flip-flop to separate, but muchremo

difficult for them to reunite.

Consider the two possible states that a LUT andflitip can be in (together in the same CLB or apart
different CLBs), shown in Figure 6.4. If the LUTdaflip-flop are initially together within a 5x5 igr of
CLBs, all possible moves of either the LUT or ffilpp will break them apart. However, once in thiate,
only two in the 48 possible moves (24 possible fmvations for the LUT and 24 possible new locations
for the flip-flop) will bring them back togetherFurthermore, once they do reunite, after the ammgal
cools past a certain critical temperature it isikaty that the placement tool will be able to mave
LUT/flip-flop pair to any other CLB location. This because moving both would require the placement
tool to first separate them, with some comparagiveégh cost, before reuniting them in the new CLBhis

will cause the placement tool to artificially stallt relatively early in the annealing process bseait is

unable to make further improvements.

This problem can be addressed by adding a hybrid-@iel/FF-level move function to the basic
placement tool. Since the incremental timing updabcement approach from Chapter 5 produces such
good results, this is an obvious platform to begith. As seen in lines 4, 12 and 18 of Figure @hiis
technique requires four new placement parameterBFdevel placementctivation point criticality
threshold separation probability and homing probability These parameters allow this technique to

compensate for the problems associated with FH-f#aeement.

The FF-level placement activation point determimdgen the system turns on the capability to move
registers in the netlist separately from their OsBs. Since the annealing begins with an arbyjtraitial
placement, the early portion of the annealing psede primarily devoted to simply roughing out tamge-
scale structure of the netlist. It is likely thabving registers separately during these earlyestag not
necessary or desirable since moving entire CLBs\allithe system to settle down more rapidly. Asisee
lines 4-6 of Figure 6.5, this technique uses atfiifeature of the placement tool to determine Hamthe
overall annealing has progressed - the range lviiidlow. The FF-level placement activation point is

simply some fraction of the maximum annealing wiwwdsize. It could vary between the 1.0, beginning

___________

Figure 6.4: Probability of LUT and Flip-Flop Separation Versus Reunion
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Placement with CLB and FF-Level Moves

0 randomly place logic blocks onto architecture

1 determine initial temperature

2 while(!done)

3 for i = 0 to numAnnealMovesPerTemp

4 if range limit window <= (FF-level activatioropt * max window size)

5 activate FF-level placement

6 end if

7 select random LUT or FF in netlist

8 if (selected LUT || IFF-level placement active)

9 swap entire CLB contents with random CLB

10 else

11 if FF in same CLB as source

12 if (FF max link criticality >= FF-level plament criticality thresehold) &&
(rand <= FF-level placement separatiorbabdlity)

13 swap FF with random FF in move window

14 else

15 swap entire CLB contents with random CLBniove window

16 end if

17 else

18 if rand <= FF-level placement homing proligbi

19 swap FF with a FF in source CLB

20 else

21 swap FF with random FF in move window

22 end if

23 end if

24 end if

25 accept or reject moveCost, currTemp)

26 end for

27 update critical path delay

28 update currTemp

29 update range limit window

30 evaluate exit criteria

31 end while

Figure 6.5: Pseudo-Code for Incorporating FF-LevePlacement Moves

FF-level moves right from the start of placemewt,0t0, beginning FF-level moves very late in the

annealing process.

As seen in lines 7-10 of Figure 6.5, the move siele®f this approach begins by selecting a randaim
or flip-flop in the netlist. If a LUT is selectedy if FF-level placement has not been turned dn tye
entire contents of the host CLB is swapped withtla@orandom CLB within the movement window.
However, if a flip-flop is selected and FF-leveapément has been activated, the system perfornesasev

tests to determine what to do next.

As seen in lines 11-16, if the register is in tlzene CLB as its source, the placement tool checg&s th
criticality of the nets to which it is connecte@stensibly, this approach would like to disturb triginal
packing only when it senses that the current asarmnt is limiting the options of the placement timolise
a register to evenly distribute delay. Thus, tlee@ment tool only has the potential to perforntimffop
level move to separate the register from its hosB @f the register is connected to a net that has a
criticality equal to or larger than the FF-levehpément criticality threshold. If the registeraiong a

highly critical path, the probability of performinfe separation is controlled by the FF-level phaeet
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separation probability. If either the net critibalor separation probability checks fail, a contvenal

CLB-level move is performed.

On the other hand, as seen in lines 17-22, ifpafltip is selected that is not in the same CLBtaisource,
the placement tool has the potential to expliaidynite the two. This probability is controlled the FF-
level placement homing probability. Again, althbugacking a register into the same CLB as its soigc
generally advantageous, once the two have beemasegat is comparatively hard for them to find leac
other again. The homing probability factor canréase the likelihood that the register will rettonthe
same CLB as its source. However, if the systens ¢ elect to return the register to the same @tls

source, it simply swaps with some other flip-flogthin the movement window.

6.3.2:Retiming

As mentioned earlier, although Leiserson/Saxe faginhas some unique optimality characteristicss it
likely that the key to better overall results isnare incremental approach that can be better iatedrinto

the placement process. Thus, the second parisohédw simulated annealing-based physical re-sgighe
approach borrows many concepts from the techniqy&d]. However, this new approach leverages the
inherent optimization aspects of simulated anngalamd applies it to retiming. Here, conditional
incremental retiming moves are applied alongsi@daddrd placement moves as an integral part of the
annealing process. Of course to accomplish thésjcbsimulated-annealing retiming moves must be

defined and multiple issues must be addressed.

First, how does the placement tool actually impletran annealing-based retiming move? Essentidiéy,
retiming itself can operate much like the incremaéngétiming moves in [36], in that individual regss are
either pushed or pulled one by one through a sileylel of logic. However, it is integrated much mao
fully into the placement process itself becauséesns of using the complicated cost structure fr8 fo
determine whether or not a given register will ljkeause legalization problems, the cost of the new
retimed placement is simply evaluated using theesamathod as any other placement move. Stated more
plainly, after each retiming move is made, the varal timing costs of the new retimed placement are
compared with the costs of the old placement. rBtiening move is either accepted or rejected usiiry

same probabilistic technique as conventional placgmoves.

This approach can use a unified cost function bseat deals with newly created registers slightly
differently. For example, moving between Figuréaband Figure 6.6b, two new registers are created o
the inputs ofLUT B to retime the register backwards. Unlike the apph in [36], before the placement

tool attempts this move, it first ensures thatréttéming is feasible. It is entirely possible thla¢re are not

enough register locations available in the architecto support the new registers needed to perfban
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retiming. If this is the case, rather than cragtam illegal placement, the annealer will not atiemhis
retiming move at all. However, if it is a feasibbeove, it places these new registers into the closes
available legal register locations to the sourceheir respective signals. However, retiming does
necessarily have to create a new register. Fanpbea moving between Figure 6.6c and Figure 6.6, o
of the inputs toLUT B can share the input bUT C. In either case, because each retiming move is
required to produce a legal placement and is eteduandividually based upon the change in cost, the

placement tool will likely retime the netlist as afuor as little as the prevailing conditions wilbav.

The second obvious question is how and when shthddannealer attempt a retiming move versus a
placement move? While the placer could simply dlipoin each time it selects an eligible logic klabe
computational ramifications of performing a retimimove should also be considered. Specifically, as
discussed in Chapter 5, the underlying placemenit tttat this approach is built on relies on the enor
accurate timing information provided by the incremtag slack analysis approach. Therefore, the impact

that retiming moves have on the accuracy of timirigrmation should be examined.

It is likely that retiming moves will disrupt theystem more than conventional placement swaps.
Furthermore, retiming moves specifically focus anpioving the critical path delay of the existing
placement. These two factors together indicaterétaming should probably be performed using thesm
accurate timing information possible. However, ptetely accurate timing information can only be
obtained by performing a relatively computationalypensive static timing analysis. Thus, simitathe
issues brought up in Chapter 5, this means that stming analysis cannot be performed before after
each incremental retiming move. Of course, thishfsm becomes worse as the number of registetsein t

netlist gets larger. Thus, to maximize the accyrat the timing information while minimizing the
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Figure 6.6: Incorporating New Registers Created ByRetiming
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computational cost, much like the approach in [36§ placement tool bundles multiple retiming moves
together. Full static timing analysis is performatte before the retiming moves are attempted ozmce

after the series has completed.

Following the spirit of the improved placement t@olChapter 5, the timing information of the systeam

be incrementally updated between each retiming mowonsider the example in Figure 6.7. The
placement tool will update the slack on all of thbeled nets. The slack on néfsand2’ are obvious
because the departure time of sources do not chemgdjehe required time of all registers is equathi
current critical path delay of the system. Howewgrdating the slack on ned$, 5, and6 is a bit more
complicated. This is because the placement tootdaecalculate the departure and required timhésJd

B. Since the departure time of all registers i®z#hre departure time of LUB can be calculated as:

LUT Bbeparturerime = FFclock tooutpu + MaX(Delays, DelayG) (6.1)

Furthermore, the required time of whatever LBTrives also does not change. Thus, the requiinesl af

LUT B can be calculated as:

LUT Bkrequiredrime = Sinkrequiredtime — Delay4- (6.2)

If the retiming was reversed and the registers ftioeinputs of LUTB were pushed forwards to the output,
a similar incremental computation could be perfatne recalculate the departure and required tinfes o
LUT B.

As seen in the pseudo-code in Figure 6.8, thignated retiming and placement technique takes 3 new
placement parameters: a retimiagtivation point criticality threshold andfrequency Lines 4-6 show
that the retiming activation point functions muckel the FF-level placement activation point frone th
previous section. Essentially, this parameter ratmtwhen the placement tool will begin to attempt
retiming and placement, as opposed to placememgt ohdain, since the annealing begins with an aabjt

initial placement, the early portions of the plaesmprocess can change the system dramaticalllius,T
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Figure 6.7: Updating Timing Information for New Retiming Registers
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Placement with Integrated Retiming Moves

0 numMovesPerRetiming = numAnnealMovesPerTempimieg frequency
1 randomly place logic blocks onto architecture

2 determine initial temperature

3 while(!done)

4 if range limit window <= (retiming activation jm * max window size)
5 activate retiming placement

6 end if

7 for i = 0 to numAnnealMovesPerTemp

8 if retiming active && (i%numMovesPerRetiming £

9 update critical path delay

10 for all logic blocks

11 if max input criticality >= retimeCrit && caretime backwards
12 try to retime once backwards

13 accept or reject retimingCost, currTemp)

14 end if

15 if max output criticality >= retimeCrit &&an retime forwards
16 try to retime once forwards

17 accept or reject retimingCost, currTemp)

18 end if

19 end for

20 update critical path delay

21 end if

22 attempt placement move

23 accept or reject moveCost, currTemp)

24 end for

25 update critical path delay

26 update currTemp

27 update range limit window

28 evaluate exit criteria

29 end while

Figure 6.8: Pseudo-Code for Simulated Annealing-Basl Retiming

retiming is unlikely to contribute much during tleesarly stages. Rather, the extra noise retimiegtes in

the netlist would probably only serve to createlpems for the placement tool. Instead, it is kbktter

to wait until the placement begins to settle doamd leave retiming to the later stages of the mhere
process. Similarly, the retiming criticality thredd plays the same role as the FF-level placement
criticality threshold. As shown in lines 11 and 1% retiming criticality threshold filters loghldocks that

are eligible for retiming based upon the maximunticality of their input or output connections.
Obviously, the more critical a given path is, thermimportant it becomes to retime the logic bloaksg

it. Since it is probably best to disrupt the plaeat as little as possible, the placement toolds/oetiming
logic blocks that are not along highly critical jpst Lastly, as shown in lines 0 and 8, the retgmin
frequency factor controls how often the placementl tattempts to perform a concentrated suite of

conditional retiming moves.

6.4: Testing and Results

Like the placement approach in Chapter 5, this sewultaneous placement and physical re-synthesis
approach was tested using the MCNC netlists pravigieh VPR. However, because this approach focuses
on the packing and retiming of registers, obviouslg 11 purely combinational MCNC circuits are not
suitable. Thus, these circuits were not part eftdsting process. Furthermore, while the samaeph =

1 netlists used in Chapter 5 were part of the igstif this new tool, 22lepth = 0.33netlists were also
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created. These netlists have at least 3 flip-finipesr each LUT, rather than only 1. This set@fchmarks
simulate an application developer’s attempt toardy pipeline the logic of a circuit but also encage the
system to pipeline the interconnect wires. Thextéists were created in a very similar manner todbpth
=1 netlists. Specifically, each netlist was mialiy pipelined, C-slowed and Leiserson/Saxe retirsech
that the maximum logical depth of the circuit wasirgle LUT. In addition, a single register waag#d
on each of the primary input pins. After this, trgire netlist was 3-slowed to provide 3 flip-flopn each
connection along the critical path. Additionaldrhation regarding these benchmarks can be found in

Appendix A.

These three groups of netlists were also placed amtew architecture. While the single LUT/sintijle-
flop/unit-length wire architecture used in the poess chapter provided a very simple platform fatiteg
and tuning the incremental timing analysis placemag@proach, this does not necessarily accuratéligcie
the types of resources present in modern commdfBi@As. Thus, this new tool was tested using ahmuc
more realistic architecture with four 4-LUTs, 4pflilops, 20 input pins, and 8 output pins per CLidla
length 4 interconnect wires. While not exactly aene as the resources available in recent Alevices,
this does provide a reasonable analog of commeacdlitectures and is very similar to the architest

suggested by [1].

Testing began by first performing CLB-level placemhesing the enhanced timing placement technique
described in Chapter 5. This provided a good lrasdbr comparison. Each of the netlists were pdck
using T-VPack and routed using timing-driven Patller. The primary placement parametérsagd
criticality exponent) used to gather these resubtse set to values suggested by the testing in €h&p
Although the exact parameters found during thifieratesting were used for the original sequerfd@NC
netlists { = 0.3, criticality exponent = 12), due to the dission in Section 5.6, the best criticality expdnen
= 12 parameters were used for the depth = 1 reflist 0.025, criticality exponent = 12). The same
parameters were also used for the depth = 0.38tsetl Thesel and criticality exponent values were

maintained throughout the rest of the testing psce

The first round of testing focused on determinirgp@ values to use for the new FF-level placement
parameters: the activation point, criticality tsineld, separation probability, and homing probahiliDue

to the very large number of potential axes, twopdifications were made to the exploration proceBsst,
rather than testing with all 55 benchmarks, 9 redtyy small representational benchmarks were seteet3
from each group of logic depths. These includ&d23 diffeq andbigkey Second, some preliminary
testing was performed to gather reasonable vabreslifof the parameters before more detailedrigstias

implemented on each individually. This preliminaesting found that reasonable results were oldaine
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with an activation point of 0.9, a criticality thsfeold of 0.9, a separation probability of 0.1 anldoaning
probability of 0.01.

As seen in Table 6.1, the FF-level placement atitimgpoint was first swept through a range of value
while holding the criticality threshold at 0.9, theparation probability at 0.1 and the homing pbilig at
0.01. Four activation points were selected fotings First, 1.0 started FF-level placement frame t
beginning of the annealing process. The activagiomts of 0.9 and 0.0001 started FF-level placgmen
when the movement window reached a value of 90%othezall size of the array and 1, respectively.
These activation points roughly represent begintireyFF-level placement one-third or two-thirdstlod
way through the placement process. An activatidntpaf 0.0 waited until the conventional placemesats
finished and then restarted the annealing at &tdlidnigher temperature for an additional shortlE¥el
placement phase. This typically gave the anneatether 5 - 10 temperature iterations to improwe th

placement with FF-level moves.

The results of this testing are shown in Table &l.9 of the exploratory netlists were placed andted 3
times for each set of placement parameters. Tdmepient with the smallest routed critical path yéta a
given setting was selected as the best placem€able 6.1 shows the geometric mean normalized wire
cost and post-routing critical path delay for allee netlists within each group of benchmarks. ifdggg
FF-level placement at an activation point of 0.8duced the best FF-level placements for all threegs

of benchmarks. Thus, this activation point wagduse all subsequent testing.

As seen in Table 6.2, the FF-level placement dlitic threshold was tested next. Here, the cilitiga
threshold was swept through a range of values wialding the activation point at best value fouryckloe
previous experiment (0.9), the separation proksali 0.1 and the homing probability at 0.01. Tieisting
showed that performing FF-level placement on regssthat were connected to nets that were 90%alriti
or more produced the best results for the origsegjuential and depth = 1 netlists used for exptoratA
criticality threshold of 80% or greater produced tiest results for the depth = 0.33 netlists testeghin,
these values were passed on to the subsequentsrotitesting. Finally, as seen in Table 6.3 andl§a
6.4, the FF-level placement separation probalslitend homing probabilities were tested. Here, a
separation probability of 0.1 and a homing probgbdf 0.1 produced the best results for all of greups

of netlists.

The best FF-level placement parameters discoveyalebinitial round of testing were used to platieof
the 11 original sequential MCNC netlists, the 2ptte= 1 netlists and the 22 depth = 0.33 netlidthis is
shown in Table 6.5. Looking at these results,afiginal sequential netlists do not seem to resporfeF-

level placement. The routed critical path delaytfese circuits actually degraded very slightly0QI7x).
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In some sense, this is to be expected since packingraditional methods makes sense given thelsmal

number of registers in these applications. Howether depth = 1 and depth = 0.33 netlists do seem t

benefit quite a bit from performing FF-level placamh The depth = 1 netlists obtain an average8i@x

Table 6.1: FF-Level Placement Activation Point Expdration (Clustered Architecture)

Original Sequen. Netlists Depth =1 Depth = 0.33
Crit. Thres. = 0.9 Crit. Thres. = 0.9 Crit. Thres. =0.9
Sep. Prob. =0.1 Sep. Prob. =0.1 Sep. Prob. =0.1
Homing Prob = 0.01 Homing Prob = 0.01 Homing Prob = 0.01
Activation Norm. Norm. Norm. Norm. Norm. Norm.
Point Wire Cost Routed Wire Cost Routed Wire Cost Routed
CPD CPD CPD
CLB-Level Placement - 1.000 1.000 1.000 1.000 1.000 1.000
From Beginning 1.0 0.999 1.011 0.915 0.959 0.859 633.
From 1/3 Complete 0.9 0.998 1.007 0.916 0.957 0.842 0.631
From 2/3 Complete 0.0001 0.997 1.031 0.954 0.964 910. 0.724
Post-Processing 0.0 0.997 1.031 0.954 0.964 0.91p 7240

Best of 3 placement and routing attempts

Table 6.2: FF-Level Placement Criticality ThresholdExploration (Clustered Architecture)

Original Sequential Netlists
Activation = 0.9
Sep. Prob. =0.1
Homing Prob = 0.01

Depth =1
Activation = 0.9
Sep. Prob. =0.1

Homing Prob = 0.01

Depth =0.33
Activation = 0.9
Sep. Prob. =0.1

Homing Prob = 0.01

Norm. Norm. Norm. Norm. Norm. Norm.

Wire Cost Routed CPD Wire Cost Routed CPD Wire Cost Routed CPD
CLB-Level Placement 1.000 1.000 1.000 1.000 1.000 .00
Crit. Threshold = 0.95 0.999 1.013 0.911 0.982 0.86 0.639
Crit. Threshold = 0.9 0.998 1.007 0.916 0.957 0.842 0.631
Crit. Threshold = 0.8 1.004 1.011 0.909 0.963 0.872 0.622

Best of 3 placement and routing attempts

Table 6.3: FF-Level Placement Separation Probabilit Exploration (Clustered Architecture)

Original Sequential Netlists
Activation = 0.9
Crit. Thres. = 0.9
Homing Prob = 0.01

Depth =1
Activation = 0.9
Crit. Thres. = 0.9

Homing Prob = 0.01

Depth =0.33
Activation = 0.9
Crit. Thres. = 0.8

Homing Prob = 0.01

Norm. Norm. Norm. Norm. Norm. Norm.
Wire Cost Routed CPD Wire Cost Routed CPD Wire Cost Routed CPD

CLB-Level Placement 1.000 1.000 1.000 1.000 1.000 .00
Separation = 0.1 0.998 1.007 0.916 0.957 0.872 0.622
Separation = 0.2 1.004 1.007 0.913 0.965 0.874 20.62
Separation =0.4 1.001 1.014 0.911 0.970 0.891 90.68

Best of 3 placement and routing attempts

Table 6.4: FF-Level Placement Homing Probability Eploration (Clustered Architecture)

Original Sequential Netlists Depth =1 Depth = 0.33
Activation = 0.9 Activation = 0.9 Activation = 0.9
Crit. Thres. = 0.9 Crit. Thres. = 0.9 Crit. Thres. = 0.8
Sep. Prob =0.1 Sep. Prob =0.1 Sep. Prob =0.1
Norm. Norm. Norm. Norm. Norm. Norm.
Wire Cost Routed CPD Wire Cost Routed CPD Wire Cost Routed CPD
CLB-Level Placement 1.000 1.000 1.000 1.000 1.000 .00
Homing = 0.001 1.015 1.023 1.053 1.048 1.113 0.917
Homing = 0.01 0.998 1.007 0.916 0.957 0.872 0.622
Homing = 0.1 1.001 1.006 0.892 0.949 0.750 0.608

Best of 3 placement and routing attempts
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Table 6.5: FF-Level Placement Results (Clustered A&hitecture)

Original Sequential Netlists Depth =1 Depth = 0.33
Activation = 0.9 Activation = 0.9 Activation = 0.9
Crit. Thres. = 0.9 Crit. Thres. = 0.9 Crit. Thres. = 0.8
Sep. Prob =0.1 Sep. Prob=0.1 Sep. Prob =0.1
Homing Prob = 0.1 Homing Prob = 0.1 Homing Prob = 0.1
Norm. Norm. Norm. Norm. Norm. Norm.
Wire Cost Routed CPD Wire Cost Routed CPD Wire Cost Routed CPD
e64 0.937 0.903 0.830 0.622
ex5p 0.926 0.889 0.762 0.749
apex4 0.971 0.959 0.760 0.732
misex3 0.919 0.945 0.726 0.744
alu4 0.946 0.929 0.726 0.786
des 0.916 0.930 0.682 0.610
seq 0.925 0.993 0.704 0.740
apex2 0.912 1.008 0.701 0.642
spla 0.896 0.887 0.655 0.512
pdc 0.899 0.823 0.642 0.623
ex1010 0.852 0.890 0.604 0.315
s1423 1.001 1.026 0.916 0.938 0.871 0.719
tseng 0.999 0.959 0.837 1.008 0.722 0.700
dsip 0.997 1.004 0.993 0.907 0.709 0.572
diffeq 0.996 0.982 0.845 0.924 0.714 0.573
bigkey 0.998 1.014 0.976 1.010 0.677 0.545
298 1.007 1.006 0.847 0.975 0.717 0.685
frisc 0.992 1.000 0.735 0.864 0.576 0.588
elliptic 0.991 1.015 0.804 1.006 0.632 0.634
s$38584.1 0.998 1.018 0.666 0.475 0.575 0.330
s38417 0.983 0.983 0.682 0.442 0.538 0.532
clma 0.992 1.068 0.747 0.798 0.584 0.363
Geo Mean 0.996 1.007 0.865 0.870 0.682 0.588

Best of 3 placement and routing attempts

better critical path delay with 0.865x better witest. The depth = 0.33 netlists respond even more
positively with an enormous 0.588x improvement iiitical path delay and 0.682x better wire cost.isTh

behavior clearly shows the difficulties that a Ergumber of registers pose to existing packing @ggres.

The next phase of testing examined the benefitadafing simultaneous retiming on top of FF-level
placement. A similar testing methodology was usedune this aspect of the tool, but here only the
retiming activation point was explored. This is hese, first, the exploration into FF-level placetmen
provided a great deal of information regarding hwaets of different criticalities interact. Thus,nitakes
sense to use the same criticality threshold paenaéund in Table 6.2 for retiming. Second, théning
frequency was pegged to 1. This represents atiegnfii retime one set of registers either backward
forwards through each logic block per simulatedeating temperature iteration. This mimics the lvéra

of the tool in [36].

Table 6.6 shows the exploration of different retignactivation points from 0.9 to 0.0. Similar tetFF-
level placement activation point, a retiming adiiwa point of 0.9 begins retiming moves when the

placement window has reached 90% the maximum gifleecarray, a retiming activation point of 0.0001
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Original Sequential Depth =1 Depth = 0.33
Netlists Crit. Thres. = 0.9 Crit. Thres. = 0.8
Crit. Thres. = 0.9 Retiming Freq. = 1.0 Retiming Freq. = 1.0
Retiming Freq. = 1.0
Activation Norm. Norm. Norm. Norm. Norm. Norm.
Paint Wire Cost Routed Wire Cost Routed Wire Cost Routed
CPD CPD CPD
CLB-Level Placement] - 1.000 1.000 1.000 1.000 1.000 1.000
Best FF-Level
Placement - 1.001 1.006 0.892 0.949 0.750 0.608
From 1/3 Complete 0.9 1.044 1.018 0.919 0.987 0.771 0.634
From 2/3 Complete 0.0001 1.007 1.030 0.909 0.966 0.769 0.642
Post-Processing 0.0 1.002 0.999 0.914 0.983 0.759 0.615
Best of 3 placement and routing attempts
Table 6.7: Simultaneous Retiming and Placement Reks (Clustered Architecture)
Original Sequential Netlists Depth =1 Depth =0.33
Activation = 0.0 Activation = 0.0001 Activation = 0.0
Crit. Thres. = 0.9 Crit. Thres. = 0.9 Crit. Thres. = 0.8
Retiming Freq. = 1.0 Retiming Freq. = 1.0 Retiming Freq. = 1.0
Norm. Norm. Norm. Norm. Norm. Norm.
Wire Cost Routed CPD Wire Cost Routed CPD Wire Cost Routed CPD
e64 0.904 0.882 0.830* 0.622*
ex5p 0.926* 0.889* 0.762* 0.749*
apex4 0.971* 0.959* 0.781 0.732
misex3 0.919* 0.945* 0.726* 0.744*
alu4 0.946* 0.929* 0.726* 0.786*
des 0.897 0.885 0.682* 0.610*
seq 0.903 0.966 0.701 0.701
apex2 0.885 1.000 0.701* 0.642*
spla 0.864 0.844 0.666 0.505
pdc 0.858 0.797 0.642* 0.623*
ex1010 0.852* 0.890* 0.604* 0.315*
51423 1.007 0.991 0.905 0.922 0.869 0.705
tseng 0.999 0.959 0.840 1.002 0.720 0.700
dsip 0.997 1.000 0.993* 0.907* 0.709* 0.572*
diffeq 0.998 0.982 0.845* 0.924* 0.734 0.573
bigkey 0.998* 1.014* 0.976 1.003 0.677* 0.545*
$298 1.007* 1.006* 0.847* 0.975* 0.708 0.678
frisc 0.992* 1.000* 0.735* 0.864* 0.571 0.588
elliptic 0.995 0.978 0.800 1.000 0.631 0.586
$38584.1 0.998* 1.018* 0.645 0.473 0.570 0.330
s38417 0.983* 0.983* 0.645 0.431 0.538* 0.532*
clma 0.999 1.045 0.747* 0.798* 0.584* 0.363*
Geo Mean 0.998 0.998 0.854 0.860 0.683 0.583

Best of 3 placement and routing attempts.

begins retiming moves when the placement windowrbashed 1 and a retiming activation point of 0.0
runs an additional post-placement retiming and almg phase. This retiming was performed on top of
FF-level placement with the best parameters sugdeby Table 6.4. Again, this initial testing was

performed by placing and routing each of the 9 epgibry benchmarks 3 times for each set of placémen

*Indisaesult reverted to values from

FF-level placegmen

parameters. The placement with the smallest routéidal path delay for a given setting was seddcas

the best placement.

normalized to the results produced by performin@&ével placement.

Table 6.6 shows the geomatdan wire cost and routed critical path delay
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Unfortunately, looking at these results, it appeassthough the addition of retiming does not gyeat!
improve upon the performance of only applying F¥eleplacement. While retiming with an activation
point of 0.0 very slightly helped the original segtial MCNC netlists used for exploration, even liest
setting of retiming actually degraded the resutisthe depth = 1 and depth = 0.33 netlists compéred
only performing FF-level placement. These mediae®ults were further confirmed when testing was
expanded to the full set of benchmarks, as shovifalsle 6.7. It should be noted that the resup®red
here are actually a mixture of the results obtaibggerforming only FF-level placement and retimorg
top of FF-level placement. Since the retiming\adion point suggested by the testing in TableférGhe
original sequential and the depth = 0.33 netlistactually after normal placement has been conthletsy
degradation caused by the retiming can be elimihate simply reverting the system to the placement
found before retiming was activated. These coeckcesults are denoted with an asterisk. Whiléta b
more difficult for the depth = 1 netlists, since thest retiming activation point found during theyious
testing was 0.0001, a similar correction can beariayl performing two partial placement runs once the
movement window reaches 1 — once implementing megnand once without. That said, despite best
attempts, the benefits of retiming seem relativghall compared to only performing FF-level placemen

Performing retiming did not seem to improve critipath delay by more than about 1%.

These results are somewhat surprising. The testinf87] and [36] showed a 0.838x and 0.930x
improvement in critical path delay for their resipee integrated retiming approaches. However, when
comparing the results of this new technique to jpevresults, the baseline that these previousrparsed

should also be kept in mind. Both of these papaily compared their retiming approach to relatively
classical placement techniques. On the other hwedtechnique suggested here is compared to d&high
enhanced placement approach and a placement tointplements FF-level placement. This change in
comparison target creates two fundamental diffexsriietween the results from these previous woréls an

the results gathered here.

First, since the incremental slack analysis placgrapproach described in Chapter 5 already obtioh
good results compared to conventional placemeriniqoes, from the viewpoint of this toolflow, the
baseline placements used for comparison in prewouk likely contain a lot of room for improvement.
Stated another way, incremental slack update planeaiready improves performance so much that yt ma
subsume the gains reported by previous retimingrisfjust by itself. For that matter, this alsokes it

much more difficult for any retimer built on top tfis placement algorithm to achieve further gains.

Second, although very little is known about thecptaent tool used for comparison in [36], VPR celtai
does not change the packing of a netlist duringegteent. Thus, in some sense the results reporeadian

the gains provided by FF-level placement. Thigdsause the legalization phases of both the todi37]
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and [36] migrate registers between different CLB®ider to make room for the new registers crebied
retiming. These legalization tools specificallgk@ut registers based upon net criticality, 6 fiossible
that a large portion of their respective gainsspecifically due to changes in CLB packing, notassarily

the retiming itself.

However, this is not to say that retiming duringg@ment should be ignored. Rather, the resulisatel
that there are other forces at work in the tesgiagormed thus far. First, placement with moreuaate
timing information improves circuit quality signitantly. Second, packing is a much more pressisigeis
when mapping netlists with a large number registerarchitectures with multiple BLEs per CLB. LUgst
there is likely some characteristic that these aeghitectures have that makes retiming after plagm

less fruitful.

The impact of a placement tool that has a more rateuvay of tracking timing is relatively easy to
guantify. This can be done by simply repeatingcptaent with a VPR-style timing update approach.
Unfortunately though, evaluating the contributiohobhanging the packing of the system is a bit more
difficult. However, this factor can be minimizeg mapping to an architecture that only has one BEE
CLB. While retiming can still be performed on apptions mapped to this kind of architecture, iesmot
pose a very large packing problem since each litip-ust be mapped to its own CLB. Although some
flip flops must still be packed into CLBs with LUTthe system does not have to worry about theainiti
packing limiting the placement because it put regss from different parts of the circuit into thanse

CLB. This problem can be further reduced by elemiimg the very heavily registered depth = 0.33iststl

Finally, it is likely that retiming was less effea on the architectures used for the testing ibl&@&.7
because they had multi-segment wires. Longer vdresgenerally incorporated into FPGAs because they
allow the system to make connections using fewegmmmable wire segments. However, this also
means that each logic block can reach a much lang@ber of other logic blocks with a single wirdage
Consider the two architectures in Figure 6.9. WIiach logic block can reach four others with glsin
wire delay in the architecture with unit-length @gr each logic block can reach 26 others with glesiwire
delay in an architecture with length-4 wires. B tsame token, the number of logic blocks thatlman
reached with two wire delays is 8 for an architeztwith unit-length wires and 116 for an architeetwith

length-4 wires.

This much larger number of locations that can laemed quickly means that the timing-driven placemen
problem is easier. In turn, this makes retiminteraplacement less critical. On a unit-length wire

architecture, certain wires have to be made lobgeause not every block can fit next to the othecks
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a) b)

Figure 6.9: Logic Blocks Reachable with 1 Wire Segemt

to which it is connected. These longer wires ma&gain connections slower than others. However,
which connections are going to be the slow oned, lgnhow much, is impossible to determine without
information about the placement. This makes retjmafter placement very important. However, with
length-4 wires, and further compounded by clusteZé@s, a much larger fraction of the blocks can be
close to the other blocks to which they are coreteciThis strongly reduces the need for long, siives

and makes the delay of all the connections in yiséesn much more predictable.

This behavior can be seen by repeating the tesfibgth FF-level placement and retiming placemtns,
time mapping to an unclustered, unit-length wirehétecture. As seen in Table 6.8 and Table 6.9, as
expected, FF-level placement plays a much smabler an these architectures. The critical pathyéda
only reduced by 0.991x for the original sequentiellists and by only 0.980x for the depth = 1 s&dli
However, retiming improves critical path delay bynach larger amount, 0.947x for the original sedjaén
netlists and 0.952x for the depth = 1 netlists.isTtasting not only shows that simultaneous retgramd
placement can improve critical path delay, it adsiggests that the benefit can be somewhat aralnigect
dependent. Furthermore, it is also obvious thatewthe incremental slack analysis placement apgroa
described in Chapter 5 produces much better plactsniean VPR, there is still a small amount of roiom

further improvement.

The effect that the architecture has on retiming edso be seen Table 6.10. Here, the fastest
implementations found by FF-level placement wetamed using the Leiserson/Saxe method. However,
unlike the Leiserson/Saxe retiming applied befdez@ment, this retiming was performed using theact

wire delays in the final placement. Of course, ¢thical path delay reported by retiming netligtsthis
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way is wildly optimistic. Not only does this runto the problems discussed earlier regarding figpdin

enough registers and disturbing the existing plasenthis “optimal” retiming also assumes that ségis

Table 6.8: Comparison of FF-Level Placement and Righing Placement
(Unclustered Architecture) — Original Sequential MONC Netlists

VPR CLB-Level Incremental Slack CLB- FF-Level Placement Retiming Placement
Placement Level Placement
Wire CPD Wire CPD Wire CPD Wire CPD
51423 1.028 0.914 1.000 1.000 1.004 0.95] 0.996 980.8
tseng 1.046 1.042 1.000 1.000 0.988 0.9413 0.988* 942.
dsip 0.837 1.333 1.000 1.000 1.008 0.887 1.027 50.75
diffeq 1.051 1.119 1.000 1.000 1.001 1.052 0.99¢ 014.
bigkey 0.876 1.538 1.000 1.000 0.997 0.965 1.004 9510.
$298 1.079 0.990 1.000 1.000 0.997 0.984 0.997* 853.9
frisc 1.081 1.067 1.000 1.000 0.999 0.986 1.01( 6D.9
elliptic 1.067 1.205 1.000 1.000 0.994 1.057 1.008 0.980
s38584.1 0.985 1.258 1.000 1.000 0.997 0.98¢ 0.997 0.968
s38417 1.011 1.205 1.000 1.000 1.001] 0.98 1.009 9640.
clma 1.053 1.451 1.000 1.000 1.025 1.125 1.028 21.02
Geo Mean 1.007 1.179 1.000 1.000 1.001 0.991 1.005 0.946
Best of 3 placement and routing attempts. *Indisaésult reverted to values from FF-level placement
Table 6.9: Comparison of FF-Level Placement and Righing Placement
(Unclustered Architecture) — Depth = 1 MCNC Netliss
VPR CLB-Level Incremental Slack CLB- FF-Level Placement Retiming Placement
Placement Level Placement
Wire CPD Wire CPD Wire CPD Wire CPD
e64 1.055 1.818 1.000 1.000 1.000 1.044 1.000* 2t.04
ex5p 1.057 1.619 1.000 1.000 0.997 1.059 0.996 61.02
apex4 1.065 1.608 1.000 1.000 1.005 1.00] 1.004 021.0
misex3 1.146 1.445 1.000 1.000 1.005 0.983 1.00¢ 8630.
alu4 1.162 1.366 1.000 1.000 0.998 1.002 0.99% 01.00
des 1.048 1.756 1.000 1.000 1.029 0.90¢ 1.018 0.906
seq 1.076 1.784 1.000 1.000 1.001 1.053 1.000 1.0582
apex2 1.100 1.721 1.000 1.000 0.997 0.97] 0.997 700.9
spla 1.081 1.213 1.000 1.000 1.014 0.921 0.997 00.73
pdc 1.080 2.104 1.000 1.000 0.999 1.002 0.99% 0.940
ex1010 1.107 1.479 1.000 1.000 1.007 1.09 1.00D 0851.
51423 1.038 2.002 1.000 1.000 1.012 0.91 1.014 760.8
tseng 1.076 1.853 1.000 1.000 1.027 0.90% 1.02f7 080.9
dsip 1.242 1.245 1.000 1.000 1.013 0.97( 1.036 90.91]
diffeq 1.051 1.870 1.000 1.000 1.031 0.939 1.051 918.
bigkey 1.152 1.547 1.000 1.000 1.011 0.979 1.011* 979
$298 1.108 1.484 1.000 1.000 0.997 0.944 0.99p 20.92
frisc 1.000 2.452 1.000 1.000 0.997 0.973 0.997 7D.9
elliptic 1.097 1.761 1.000 1.000 1.007 0.962 1.007 0.962
s38584.1 1.158 1.226 1.000 1.000 1.018 1.01y 1.025 1.016
38417 1.031 2.060 1.000 1.000 0.992] 0.971 1.028 9170.
clma 1.109 1.350 1.000 1.000 0.997 0.991 0.999 40.98
Geo Mean 1.091 1.643 1.000 1.000 1.007 0.980 1.009 0.951

Best of 3 placement and routing attempts. *Indisaésult reverted to values from FF-level placement

Table 6.10: Effect of Architecture on Leiserson/Sax Retiming After Placement

Clustered Architecture
Four BLEs, Length-4 Wires

Unclustered Architecture
One BLE, Unit-Length Wires

Depth = N Netlists

0.936

0.717

Depth = 1 Netlist

0.734

0.639

Results normalized to critical path delay foun@&iafF-level placement.
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can be placed wherever they are needed — potgnitiathe middle of wires rather than in discreteBCL
locations.  That said, this “theoretical” retimirgffers some upper bound on how much room for
improvement there is after placement. While thatide= N netlists could only be improve by an avera§
0.936x when placed on the clustered, length-4 aichitecture, they could be improved by an avexHge
0.717x when placed on the unclustered, unit-lervgtie architecture. Similarly, the depth = 1 nddis
could only be improve by an average of 0.734x whpkted on the clustered, length-4 wire architegture
they could be improved by an average of 0.639x wpkted on the unclustered, unit-length wire
architecture. Although these results are puredptatical, they suggest that the placer can bbtkmce
delay along the critical path in netlists mappeth®clustered, length-4 wire architecture. Thesams that
retiming after placement is probably less esseatiedn mapping to more sophisticated architectuateer

than simpler devices.

6.5: Conclusions and Future Research

This chapter investigated how classical packingimiag and placement tools interact. While the
conventional toolflow works relatively well for Iigly registered applications, its highly
compartmentalized and purely feed-forward natureaause problems when attempting to deal with more

heavily registered netlists.

Packing is particularly vulnerable to some of thisseies because the conventional approach that likel
VPR use generally applies packing to a netlistofe#d by strictly CLB-level placement. Because
traditional packing techniques tend to put regssiato the same CLB as their source LUT, this ¢anit |
the capability of the system to use these registetsalance delay along long connections. Furtbeem
when attempting to handle netlists with signalg treve multiple registers, conventional packingsaan
fuse unrelated parts of the circuit together. Thiakes the placement problem much more difficudthb

from the standpoint of reducing wiring cost and impng critical path delay.

However, solving this problem is not simply a matté opening the placement tool to FF-level anmenli
moves. Doing so can not only dramatically increthgetime required for simulate annealing, it ceeate
problems for the basic achievable quality as wibving flip-flops and LUTSs strictly separate frosach
other can prevent the system from making largelesoeves. Simply put, the placement tool needs to
have the capability to perform both CLB and FF-len®ves. This allows the system to change the
packing of CLBs while still maintaining the abilitp make coarser changes to the placement. Towards
that end, this chapter introduces a new hybrid epteant approach that gives the placement tool the
capability to either move an entire CLB, or indiv&ly migrate highly critical flip-flops.
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Retiming also presents a problem to the conventimadflow. Since retiming can create or deletgiseers
within a netlist, the most obvious point to apptyis before packing and placement. However, the
optimizations that can be made at this point arg limited since very little is known about the potial
delay required by the interconnect. Unfortunatéyis also not obvious how retiming could be apgli
after placement when more is known about the aliticof each of the nets. This is because retingan
change the netlist significantly, necessitatingrand new placement that may or may not have thessam
timing characteristics as the original. Althougkre have been multiple previous research attetopisal
with this problem, the majority of these approachase still struggled with the same basic issuev hm
support aggressive retiming without creating a fmobfor timing convergence.
Essentially, the problem is that it is unreasonablexpect that the system will be able to cleaslitup
satisfactorily when the retimer makes major anddsudchanges to the netlist. Thus, this chapter als
introduced a new integrated retiming and placermapproach. This technique differs from previous kvor
in three main ways. First, rather than performiaiming as a single, highly disruptive step, ipkgs
multiple stages of more incremental annealing-basgthing moves. Second, the new registers crdayed
these much smaller retiming steps are then intedriato the rest of the placement with a hybrid (B
level placement approach. Third, this techniqueidssissues with CLB input and output legalizatimn

never creating an illegal placement in the firstoel.

Unfortunately, determining how well this new intatgd placement and physical re-synthesis approach
performs was a bit difficult. Largely, this is lserse the problems that packing and retiming faee ar
greatly dependant on the characteristics of bathithoming netlist and target architecture. Speslify,
conventional packing works very well when the numbkregisters in a netlist is relatively low or &m
mapping to an architecture with few BLEs in eachBCL At best, the FF-level placement technique
suggested in this chapter only provided a vanighismall improvement for the original sequential MC
netlists on both the clustered and unclustereditaxthres, as compared to CLB-level placement.s Thi
because these netlists do not have enough registeneate a problem for conventional packing. The
improvement for more heavily registered circuitsalso relatively small for unclustered architecture
Compared to CLB-level placement, the depth = lisietbnly obtained a 0.980x improvement in critical
path delay when mapped to a single LUT/single fliqp- architecture. This is because the packing fimo

an unclustered architecture does not inherentlgleuenough LUTs and flip-flops together in a sinGleB

to greatly restrict the subsequent placement stdpwever, when the number of registers in a neidist
relatively high and there are multiple BLEs in edChB of the architecture, packing becomes a much
larger problem. The depth = 1 and depth = 0.38stetobtained a 0.890x and 0.625x improvement in
critical path delay, respectively, when mapped tlowa 4-LUT/four flip-flop architecture using theFF

level placement approach described in this chapteopposed to a CLB-level only technique.
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Retiming has a similar issue regarding dependendbdearchitecture. Here, it is likely that thaggment
problem for the netlists used in this study washard enough to truly present a challenge on archites
with longer wire segments and clustered CLBs. ddtpretiming provided a few percent critical pdétay
improvement for placement on architectures withgtem wires and four BLEs in each CLB. This is
probably because the logic blocks in these ardhites can reach a dramatically larger number oéroth
logic blocks with relatively few wires. This mak#®ese architectures inherently faster and, perhape
importantly, the delay of different nets more poealble, even prior to placement. However, retinprays

a much larger factor on architectures with shontiees and unclustered CLBs. Retiming during plagetn
on a unit-length wire architecture with one BLE [g&ltB improved delay by a factor of 0.954x for the
original sequential MCNC netlists and by a factb0®70x for the depth = 1 netlists as compared Ei--

level placement approach without retiming.

Looking to the future, it is likely that the issussrrounding packing will only get worse. This lssne
interesting implications for the runtime of placerhe First, as consumers demand more complex and
higher performance devices, it is likely that thenier of LUTs and registers in applications will gjo.

For that matter, recent trends in commercial devigand towards using CLBs that incorporate a larger
number of BLEs. Thus, while the hybrid CLB/FF-ley#acement approach described in this chapter
appeared to work very well, the runtime of any aithon based solely upon simulated annealing wikly

be extremely long for future applications. Howevas mentioned in Chapter 5, many commercial
placement tools use a fast, but relatively inadeuegproach to provide a global placement. Tharaht
speed advantage of these tools makes low-leveépiant far more tractable. It would be interestmgee
how a non-simulated annealing global placement¢oald interact with a hybrid CLB/FF-level placerhen

tool.

Furthermore, there is a large body of work that ¢@ssidered another kind of physical re-synthdeigic
duplication Like retiming, logic duplication can cause pmabk for the classical toolflow. As discussed
in [24], logic duplication attempts to replicaterppons of a netlist that limit performance due tmdut.
Consider the example in Figure 6.10. After placetnthe original netlist on the left has a longevio
connectLUT AandLUT C. This type of situation could occur for a varietiyreasons, but most likely the
placement of the blocks that connect.tdTs BandC pull these blocks in opposite directions. Howewasr
seen on the right, duplicatingJT A could reduce the number of long wires in the systeOf course,
duplicating parts of the circuit restructures thelist and increases the area requirements, sornhst be
done very carefully. Unfortunately, determining ieth nets present a bottleneck can only really be
performed after placement, so logic duplication safier from the same type of problems regardingrig

closure as retiming.
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However, similar to retiming, the effect of logiamlication is also likely architecture dependerit
preliminary testing that attempted to replicateitigncritical registers on an architecture with léng
wires, the potential improvement in critical palal was relatively minor. It is possible thatstig due to
the fact that architectures with longer wire segmaeio not need as much duplication, but some aahditi
investigation is necessary to more fully explore gossibilities and limitations of duplication orodern

architectures.

— LUT > — LUT >
» LUT » LUT
— A g—’ — A g—’
LUT|—, —LuT S LUT |,
—» C — A’ —» C

Figure 6.10: Logic Duplication
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Chapter 7: Register-Aware Routing

Although all of the tools in a netlist compilati@AD flow play some role in determining the perfomma

of an application mapped to an FPGA, addressinggraoncerns during the routing process is padidyl
important. This is because routing sets the es@ectmunication paths between different logic blockée
communication in an FPGA-based application isaaltbecause the delay accumulated in the interanne
contributes so heavily to the overall timing of 8ystem. However, while Section 4.4 discusseassital
algorithm for timing-driven routing, this type opproach cannot necessarily be used to map applicato

all FPGAs. This is because the register resoutit@ssome architectures provide pose a fundamgntall

different routing problem, breaking some of theibassumptions necessary to use classical techgique

This chapter will discuss the nature of some ob¢harchitectural design decisions and describe thew
connectivity of the registers in an FPGA can affgrt CAD algorithms needed to effectively use these
resources. This will lead to a discussion of piygelined routing problenand an introduction to the only
two known heuristics that addressRipeRouteand QuickRoute Unfortunately, both of these algorithms
are purely congestion-driven, and this chapter ailline some of the issues that prevent thesecappes
from borrowing existing timing-driven routing metthalogies. Finally, this chapter will suggest a new
timing-driven pipelined routing algorithm that adeithese problems and can significantly improveugir

performance for architectures that require pipelireuting.

7.1: Registers with Limited Connectivity

Some FPGA architectures may limit the accessibditgome of the registers in the system. For examp
in the registered track-graph FPGA discussed inldse chapter [38], the flip-flops embedded in the
communication network are only connected to a marinof four wires. As seen in Figure 6.2c, the
incoming and outgoing signals of each of thesestegs must be routed on one specific wire domain.
Thus, to use one of these registers, it must besdrfrom one of four wires coming from either tlog,t
bottom, left or right of the switchbox. The registd output can then leave on one of the wireshen t
remaining three sides. This extremely limited aeotivity is a stark contrast to the accessibilifytize
more conventional registers found inside CLBs.pHfllbps within logic blocks are generally connected
all or most of the wires inside the channels thataind each CLB. Since the wire channels in moder
FPGAs contain hundreds of individual wires, thetirog flexibility of registers inside logic blocks i

extremely high.

However, limited register accessibility is commam architectures that attempt to increase the nuraber
registers they provide. In general, this is beedhgese systems would like to introduce as manitiaddl
registers as they can while minimally disturbing tlest of the system. From an area and performance

standpoint, an architecture like in [38] cannotoadf to connect the registers embedded in the
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communication network to all of the wires that erde exit its switchbox. As seen on the left ofjfie
7.1, fully connecting even one register can requaseremely wide input multiplexers and output
demultiplexers. As seen on the right of Figure FRGA architecture designers would rather incrélase

number of registers but decrease the communicégésibility of each one.

This architectural choice has a subtle but veryartgmt impact on the CAD tools. Specifically, thacer
cannot map flip-flops in a netlist in the traditedrway to registers in an architecture that hawetdéid input
and output connectivity. Although the placemerdl toan temporarily map flip-flops to these locason
during the annealing process to get a generaldatiescal register supply versus demand, these assgts

cannot be binding like the placement of LUTs arglsters with a high degree of connectivity.

In the conventional toolflow, after placement ismgdeted the locations of all the LUTs and flip-flom
the netlist are fixed. However, if the placemehtlip-flops mapped to registers with limited coruigity
is fixed after annealing, this can interfere withslz routability of the system. This is becausing the
location of these registers during placement atsoefs the system to use specific wires to get thaut of
these resources. In some sense, because thesienmegire connected to so few wires, this alscftke
routing for these signals. This characteristieetively blocks the capability of the router to oke the
path of these signals. Unlike the more conventioegisters mapped to logic block locations, theteo
cannot change the wires it uses to get to thedsteeg to resolve congestion. This can dramayicefect
the routability of netlists that make use of registwith low degrees of connectivity. Thus, to main the
routability of the device, the CAD tools must bdeato reassign the locations of flip-flops mapped t
registers with limited connectivity after placeméntompleted.

A W N P

Figure 7.1: Impact of Connectivity on Area and Numler of Switchbox Registers
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7.2: Pipelined Routing Problem

In a way, the CAD tool flow described in [38] andalissed in Section 6.2 avoids this problem ewytioel
their architecture by only assigning flip-flopsametlist to the registers in the interconnectrgitacement
and routing has been completed. However, as nrextichis severely limits the usability of thesgiseers
and makes it impossible for the system to map ffips that are not generated by retiming to these

interconnect registers. This leads to poor regigiézation.

A new CAD approach is necessary to more efficieng registers with limited connectivity. Whileeth
discussion in the previous section suggests tlatQAD tools should assign these registers durirg th
routing process, this fundamentally changes theraaif routing itself. No longer is it simply a trex of
finding the cheapest path between a source and tsiakouter now needs to find a path between acsou
and sink that goes through exachyregisters. Formally introduced in [34], this ple is officially

known as théN-Delay Routingoroblem and has been proven toNie-Complete

While PathFinder [28] and its predecessors dematesir that the conventional routing problem of
congestion resolution for multi-terminal, multi-netrcuits is very difficult on most modern FPGA
architectures, it breaks down into much simpler-gudblems. For example, ignoring congestion,
Dijkstra’s shortest-path algorithm can be used tickly find routes for all two-terminal nets. The
difficulty of the N-delay routing problem stems from the fact that &laelitional latency constraint on a
signal precludes the use of Dijkstra’s algorithrithis is a large handicap since conventional routing

techniques generally use some form of Dijkstragoeathm as a foundation.

The N-delay routing problem breaks Dijkstra’s in two wayFirst, the lowest cost path from source to the
sink may not meet the specified latency requiremédvibre importantly, the cheapest path to any given
node along the way may not be the hggh, since it may not even form the prefix of &gal route. This
issue is clearly illustrated in Figure 7.2. listexample, the router would like to find a pathween the
sourceS and the sinkk that goes through exactly one pipelining regist&ssuming a unit cost model,
Dijkstra’s algorithm fails to find a valid one-latey path. Obviously, d, g, f, K) is the cheapest path, but

it does not meet the one clock cycle latency reamént.

Figure 7.2: Failure of Dijkstra’s Algorithm for the N-Delay Routing Problem



89
Of greater concern, though, is why Dijkstra’s failEhe reason that Dijkstra’s does not find thadsahth
through registeb is because nodgis explored first by the zero-latency search fr(Bnd, €). Since
Dijkstra’s algorithm marks all nodes when they wisited, this prevents the initially more expens{&ea,
b, ¢) route from continuing on to the sink. This prabl becomes even more complicated when

considering multi-terminal, multi-latency nets ahé need for congestion resolution.

The two following sections describe the only knoslgorithms to address thé-Delay routing problem:
PipeRoute and QuickRoute. Details of these algowst are discussed and their advantages and

disadvantages are examined.

7.2.1:PipeRoute

PipeRoutg33] was the first heuristic designed to confrir@N-delay routing problem. Although it is NP-
Complete, the authors prove in [34] that a onenl@¢eroute can be found in polynomial time. Thegibe
by showing that a normal Dijkstra’s breadth-firegch is not sufficient given the difference betwére
input and output nets of a register. As seenguié 7.3, ifSis both the source and sink, the router will not
find a valid one-latency path if it simply marksdas visited or not visited. This is because reifearch
can complete a path around the ring. Assumingigcost model, the search fron$, (a, b, ¢) cannot
continue to nodé because it has already been visited by the othiéiohthe search througlg(d, €). By

the same token, the search fraddq, e, f) cannot continue to nodebecause it has already been visited by
the other half of the search through 4, b). To solve this problem the router must also ribé&eassociated
latency when a node is explored. That is, a pegister wave (latency=1) can expand to a given rvda

if it has already been explored by a pre-registavev(latency=0) and vice versa. This is called a
Combined-Phased Breath-First Search

However, the authors go on to show that even ¢himt entirely adequate. Consider the examplegare
7.4. Even if the router allows nodes to be visitedth at latency zero and latency one separatebgn
enter a similar deadlock if the graph is slightiffetent. Here, the latency 0 search throu§hd| €, c)

cannot continue to nodebecause it has already been explored at latetleyoQgh G, a). However, the

Figure 7.3: Combined-Phase Breadth-First Search
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Figure 7.6: PipeRoute and Self Intersection

latency 1 search througl$, (a, b, c) cannot continue to node because it has already been explored at
latency 1 through§, d, f) and the latency 1 search throu@hd, f, €) cannot continue to nodebecause it
has already been explored at latency 1 thro&gh, (). In [34] the authors prove that these problears ¢
be avoided and they can guarantee optimality ifrtheer allows nodes to be visited once at latererp

and twice at latency one. This is calle@ombined-Phased BFS

PipeRoute uses this 1-delay router to iterativelyrf multiple latency paths. As seen in Figure %5ijnd
a two-latency path from the sourBdo the sinkK, PipeRoute first attempts to find a one-latencthpdf
this initial single-register route elects to usgiseere, as in the top right of Figure 7.5, the next sgefo
attempt to replace either the link fro&to e or e to K with its own one-latency route. As shown in the
bottom left of Figure 7.5, PipeRoute would selée bbwest cost alternative between the rous,(e, f,

K) and § d, g, j, K). Unfortunately, this is a greedy accumulationgass. For example, if the netlist
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required a four-latency route and PipeRoute sedeateinterim three-latency path through &, e, j, K), it
would be unable to find a valid route. This is &ase there is no way for any of the lins~@a), (a—¢),

(e—j), or (—K) to be replaced with its own single latency link.

PipeRoute uses this iterative multi-latency sededhnique to replace Dijkstra’s algorithm in Patidér.

It maintains PathFinder’s iterative routing scheara cost formulation in an outer loop to gradually
resolve congestion. Unfortunately, this approaal sfome subtle yet serious limitations. Althoulgé t
authors prove that their 1-delay router is optinttadir definition of an optimal path allows a rotbecross
over itself. For example, on the left side of Fgyi.6, ifSis both the source and sink, PipeRoute realizes
that the shortest one-latency path is the ro8te, (g, f, d, §. Unfortunately, this path visits a register and
then doubles back onto itself. This is clearly asalid physical route since one node must simebasly

carry a value from the current clock cycle andpghevious one.

The authors justify their definition of an optimadth by indicating that since they use PathFindeheir
outer loop, its natural congestion avoidance wabalve these problems over multiple routing iterai
Unfortunately, PathFinder may not be able to disage this type of path self-intersection on many
common architectures. First, present sharing avsthep, term in Equation 4.7, cannot play any role in
preventing self-intersection regardless of architer design. This is because, as seen in Figure 4.4
PathFinder does not update the present sharingnyofnade until it has found a complete route from a
source to sink. Thus, an exploration will not fered effects of present sharing between the phargeand
phase one routes until after it has already coragléhe search. Furthermore, PathFinder cannotteipda
present sharing during a routing exploration itsslice a phase one search has no efficient way of
distinguishing between when it is wrapping backooitéelf versus attempting to explore a node thas w
used at latency zero by an unrelated exploratibikewise, this problem cannot be resolved by histor
cost, theh, term in Equation 4.7. Consider a symmetrical ickure as shown in the right side of Figure
7.6. Here, the self-intersecting problem will slynalternate between the top and bottom loop, never

realizing that a valid alternative exists.

This characteristic makes PipeRoute unsuitablenfany FPGA architectures. First, the interconnect
flexibility of modern devices will encourage thelfdatersecting path problem. In other words, the
generally high connectivity within the communicatiéabric allows a routing node to easily re-disaove
itself after going through a register. If modefGAs were purely directional devices (outputs cauity
drive inputs that were to the right or below a givecation, for example), this might not be a pevbl

Second, the majority of interconnection networkseha great deal of symmetry. One routing track is



Figure 7.8: QuickRoute and Self Blocking

likely to have the same access to pipelining resssiras neighboring tracks. This will encourage
explorations to fold all available options back mihemselves and prevent valid non-overlappinge®ut

from being found.

7.2.2:QuickRoute

QuickRoute [23] was the second heuristic to additessl-delay routing problem. Like PipeRoute, it also
retains an outer loop of PathFinder congestionluéso and simply replaces Dijkstra’s algorithm to
perform the inner loop searches. However, unlikgeRoute it attempts to find fulN-latency paths
directly. Although performed for latencies larglean one, it is similar to the Combined-Phased BBE&
PipeRoute in that the router must record the pbés@& exploration when a node is visited. In Q&okite,

a wave is allowed to explore a given node if thdenbas been visited by fewer thaother waves at the
same latency. For example, in the top right figofréigure 7.7, if the router is trying to find ar@gister
path fromSto K, assuming=2, the pathsg a, b) and §, €, b) would both be considered. However, unlike
PipeRoute, QuickRoute does not allow paths to $eierthemselves. To accomplish this, it records th
path back to the source for every exploratory wamd does not allow an exploration to revisit a node
already used by itself earlier in the search. hia bottom left illustration of Figure 7.7, a patfat goes
through nodeéb will not consider it again for subsequent explmmat This multi-latency search process is

continued until the sink is discovered at the appate latency.
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QuickRoute

0 while(lall signals routed || congestion exists)

1 for all nets N

2 if N is nota pipelined net, use PathFinder

3 else

4 clear N.routing tree

5 put source of N into N.routing tree

6 sort sinks by non-decreasing latency

7 for all sinks of N

8 for all nodes in architecture, for all latecL, set visited[L] = 0

9 put all nodes in routing tree into priorityepe PQ at cost C, path P, latency L

10 while(PQ.head not sink[i] of N && PQ not etyp

11 remove head of PQ H at cost C, path Phdste

12 if(H.visited[L] < k)

13 set H.cost[L] to C

14 add Hto P

15 increment H.visited[L]

16 if (neighbor of H is not register && naigor of H.visited < k && neighbor not in P)
17 put neighbor into PQ at cost C + neightost + edge cost, path P, latency L
18 else if (neighbor of H is register && nblgpr of H.visited < k && neighbor not in P)
19 put neighbor into PQ at cost C + neigtdust + edge cost, path P, latency L+1
20 end if

21 end if

22 end while

23 if(PQ is empty)

24 net unroutable, exit

25 else if(PQ.head is sink[i] of net N)

26 mark sink found

27 add new parts of P to N.routing tree

28 clear PQ

29 update cost of congested nodes

30 end if

31 end for

32 end if

33 end for

34 update critical path delay and sink criticati

35 end while

Figure 7.9: Pseudo-Code for QuickRoute

Of course, since the problem is still NP-Compl&@eijckRoute cannot guarantee a solution. For exampl
if a slight modification is made to the routing gha as in Figure 7.8, the router will run into plerbs.
Assumingk=1 and the router needs to go fr@ro K accumulating two registers, it will fail to find a
solution. This is because nobés initially used by the doomed route throu@ 4, b, c, d) that, in turn,
prevents the correct route through €, f, g, h) from exploring nodel. Unfortunately, no matter how large
k is made, it is possible to construct a routingpfr¢hat will cause QuickRoute to self-block by addi

additional 1-register paths betwdeandd.

However, QuickRoute still holds multiple advantageer PipeRoute. Not only does QuickRoute defend
itself from the self-intersection problem of PipeR it has the flexibility to improve its routirgpility by

increasing thé& factor. Pseudocode for QuickRoute is shown inufég’.9.

7.3: Timing-Driven Pipelined Routing
Although both PipeRoute and QuickRoute do addiesdasidN-Delay routing problem, they also share a

critical shortcoming: neither implements timingsdmn routing. This is surprising for two reasorarst,
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registers are generally added to a netlist becthesapplication developer seeks better criticah uilay.
Thus, not considering the timing concerns of aniagfion during the routing process can nullify rhuaf

the advantags these registers might provide. S$ka@mdiscussed in Chapter 4, PathFinder alreaslyaha
timing-driven mode that simultaneously balancesgestion and delay very nicely. However, PipeRoute
and QuickRoute cannot leverage PathFinder’s tindrigen formulation because of multiple differences
between the conventional routing problem and tipelpied routing problem. The following sectiondlwi

discuss the nature of these issues and introdune sew solutions.

7.3.1:Determining Link Criticality

Returning to Equation 4.8, Pathfinder determines dbst of a path based upép the criticality of the
source/sink pair as found during the last routiteration. One key problem that prevents previous
pipelined routing algorithms from using PathFindetiming-driven methodology stems from the fact,tha
in the classical CAD sense, they continuously ckatite very nature of the netlist during the routing

process. This makes using the criticality inforimafrom one routing iteration in the next unrelab

As shown in top illustration of Figure 7.10, contienal CAD tools map registers to logic block ldoas.
Since the placement process determines the locafiati the blocks before routing begins, it camiage
relatively consistent iteration-to-iteration netiticality. This allows the classical PathFindersto
formulation to function well. In this example, tipg|acement tool has decided that CaBnust route to
CLB b before going to CLE.. As routing progresses, Pathfinder can use tlieadity of the last route
found to determine the next route. In this waythPander relies on the fact that the routing wititn
drastically change between iterations. In otherdspit assumes that it is unlikely that conse@utiouting
iterations will choose vastly faster or slower emifroma to b orb toc. However, if this does occur, the
router will over or under-penalize the congesti@nsus delay contribution to the overall path coBbr
example, if the last routing iteration resultedairtiming-critical path for the link frona to b, but the
present routing iteration manages to find a muskefapath, the cost of the route will greatly openalize

delay while erroneously ignoring congestion.

Pipelined routing differs strongly from classicalting because it must find the location of regsia the
netlist during the routing process. These registee not locked into position by the placement.too
While this is a hard problem in itself, it also peats a completely new issue for timing optimizati®ince
registers are the start and end points of a clychkec their placement is naturally very importantthe
timing of the nets to which they are attached. Ewsv, since a pipelined router determines the ptace
of at least some portion of the registers in thilisteduring routing, the timing significance ofgiven net
can change dramatically depending on the locatlttmsen by a given routing iteration. Looking at the

pipelined routing problem from the standpoint ofeentional routing, it is as if the placement dftake
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Figure 7.10: Timing Implications for Conventional Routing Versus Pipelined Routing

registers that need to be found during routing dzenge every routing iteration. This makes it veagy
to use the wrong criticality value and over or unplenalize the congestion versus delay contributittine

overall path cost.

Consider the same netlist used before, but in alipgd routing framework. This is shown in bottom
illustration of Figure 7.10. Notice that the rdgishas been replaced by a latency annotation ®rdge
betweena andc. In this situation, LUTa must be connected to LUT by a single latency link, but the
router must find the register as part of the rapfnocess itself. However, the criticality of timelividual
links betweera and the register and the register amwdll heavily depend upon the registering locattbat

is chosen. The relative criticality of these linkil change completely if the router chooses tgister ati
versusii. However, the system cannot anticipate this chamgtween routing iterations, so it can only
follow the classical PathFinder methodology andvend criticality information calculated in one i&tion
for use in the next. However, potential inaccureeryarding the criticality of the nets will resirtpossibly
grossly miscalculating the true cost of a pathtinuitely, this will lead to timing oscillations apposite

sides of a register along critical or nearly catipaths vie for dominance.

If the first iteration chooses to registeli athe second iteration will choose to registeii adespite that fact
that it would be more advantageous, from a timiagdpoint, to select a register closer to the ceoftéhe
array. This problem occurs because the pre-redistewill have a very low criticality, making day on

this segment during the next routing iteration viegxpensive. Conversely, the post-register linlk lvave



96

Figure 7.11: Multi-Terminal Criticality Problem

a very high criticality, making delay very costlyrthg the next routing iteration. Thus, ignoring
congestion for the moment, the post-register linkweant to become as short as possible at the rsgef
the pre-register link. For similar reasons, adhauting iteration will return to the registeriatThis means

that the router will alternately select equally poegister locations and never find a better sofuti

Essentially, this type of behavior occurs becalme rbuter utilizes old, and dramatically incorreet
criticality information to determine future route3he criticality of a link to a register used ineorouting
iteration has little relevance in the next if tloaiter selects a different register. Notice that tismatch
that occurs between the real criticality of a larkd the criticality used for calculating the coka@ath is
very reminiscent of the problem encountered dutiing placement of registered netlists discussed in
Section 5.4. For that matter, the fundamental €aisthis problem is also the same: the technidpa¢ t
conventional timing-driven routers use implicithgsames that the criticality of any connection ie th
system will not change significantly between rogtiterations. However, if the criticality does ciga

significantly, the algorithm can produce degenesatations.

This problem becomes even further complicated clemgig multi-terminal and multi-latency nets. As
shown in Figure 7.11, there are certain situationgvhich sinks may want to share registers to reduc
congestion. However, depending upon their relagilazements and if this net becomes critical or nea
critical, each sink might wish to use a separagister. Unfortunately, it becomes unclear whitazlity

to assign any of the nets to allow these “zipped! @aunzipped” paths to exist in consecutive iteyas and
still produce high-quality results. Should theicatity of all latencyN segments be averaged? Should the
worst criticality of any segment define the critibaof all links? This becomes an issue becahservuter
can fundamentally changing the nature of the natlising routing. Similar to before, from the vipaint

of a conventional router it is as if a limited fowhlogic synthesis or, at the very least, registigplication

can be performed between every routing iteration.

7.3.2:Assumed Criticality Searching
Clearly, if a pipelined router is to obtain highadjty results, it cannot use criticality informatigleaned

from previous routing iterations to guide futurgkxation. However, PathFinder has shown thatetisil
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needs to be some mechanism to allow more timingHggnt links to trade higher congestion for lower
delay, and less important signals to trade additidelay for less congestion. A potential solutioAllow

each exploration to discover its own criticality.

While the router would normally obtain the timingiportance of the signal from the previous routing
iteration, this cannot be done for pipelined signaDne possible alternative is for an exploratmuild

its own criticality based upon the delay it hasnstwis far. In this scenario, the router wouldtstath a
very low criticality at the source when the exptaya has not accumulated any delay, and gradually
increase the timing significance as the searchimoes and paths becomes slower. Unfortunatelylewhi
this may work for low and mid-criticality links, i will not perform well on high criticality segmemn
This is because the early portion of searches magnher to avoid congestion. As the path becomes
longer, the search will opt for more direct rout@she sink. Unfortunately for critical nets, tti@amage has

already been done and they will never obtain thrgestion-blind routes that they should.

Instead, it is possible for an exploration to dedide proper criticality for a route at the onlyirgdhat the
decision can actually be made — when it arrives aink. In this formulation, the router staA€
independent waves from the source, each assunmengethhas a different criticality, ranging fromAT to
1.0. In this manner, the system will have multiplaultaneous searches that each emphasizes dgksysv
congestion in a slightly different way. The fiestploration to reach the sink will be the leastengive
and, thus, represent approximately the proper belaf congestion versus delay. Furthermore, dléer
can trade runtime for further timing accuracy aceviversa by adjustingC. This technique is called an

Assumed Criticality Search

However, assumed criticality searching could datkd to grossly incorrect routing. Looking back at
Equation 4.8, this is because high criticality nalways emphasize low delay and low criticality snet
always emphasize low congestion. This relationshikes it possible for assumed criticality seardbes
degenerate to always selecting either the lowekigirest assumed criticality for all nets. Forrepée, if
the delay values along most paths from the sourdke sink are coincidentally smaller in magnitdidan
their congestion counterparts, searches that assurosticality of 1.0 will always be the cheapest,
regardless as to whether they are truly timingaaiit A similar situation occurs for the minimurssamed
criticality if the relative values are reversed.hM this problem could be addressed by ensuriag tie
delay and congestion values are always balancedjstmot a feasible solution as the congestionesl
must be able to grow as the routing progresseghFiraler relies on gradually escalating congestiosts

to resolve sharing.

To deal with this problem the assumed criticaliyiter needs to incorporate the real criticalityaopath

back into the cost calculation. This can be acdmied by using the assumed criticality values to
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calculate the cost of route up to, but not inclggdlithe sink or register. Then, just as the rorgaches this
node, it can determine the real criticality of tieate that it actually found. At this point theuter can re-
calculate the cost of the path based upon the lactitigality. This will ensure that a sink is gnpushed
into the search queue with the true cost of thé.pathis will prevent the scenario in which low as®d

criticality searches rush ahead along uncongebigidslow links and form an unnecessarily high caitity

path. This is because just as these searchedaue ta reach the sink or register, they will cédte the
real criticality of the paths found. The cost bése searches will then rise dramatically to réftheir

newly revealed high delay and high criticality. ig ill allow higher assumed criticality searchegyich

will presumably find faster, slightly more congeksegaths, to catch up and have the opportunity o fa

more appropriate mid-criticality link.

The complete assumed criticality search methodgl@gy seen in Figure 7.12, has several attractive
features. First, it solves the problem of routingccuracy due to iteration-to-iteration varianoepath
criticality. Second, this approach does not drécaly increase the computational effort of routing
Obviously, if the router conductedlC completely independent searches for each soumkefsir, this
would only invoke PathFinder’s inner lo@gC-1 additional times. However, the router can aasily run

all of these searches simultaneously and prunepnoductive explorations along the way. Of coumsge

one search has reached the sink, the router caalleexploration. However, it can even prune inpbete

Assumed Criticality Breadth-First Search

0 fori=1to AC

1 put source into priority queue PQ at cost =iz ¢/AC

2 end for

3 while(PQ.head not sink && PQ not empty)

4 remove head of PQ H at cost C, crit CR, previmae P

5 if(H not visited at crit[CR])

6 mark H visited at crit{CR]

7 set H.cost[CR] to C

8 set H.previous node[CR] to P

9 for each neighbor of H

10 if neighbor is not sink

11 if CR 1= 1.0 && neighbor.delay > (CR + 1/A€¥ritical path

12 continue

13 else

14 put unvisited neighbor of H into PQ at d@st neighbor cost + edge cost, crit CR,
previous node H

15 end if

16 else if neighbor is sink

17 calculate actual criticality of current path

18 recalculate cost of path

19 put sink into PQ at updated cost, crit Cleyjpus node H

20 end if

21 end for

22 end if

23 end while
24 if(PQ is empty)

25 sink is unroutable, exit

26 else if(PQ.head is sink)

27 add path net’s routing tree
28 end if

Figure 7.12: Assumed Criticality Searching
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searches. For example, fAC=5 the router will launch five explorations withitaralities (0.2, 0.4, 0.6,
0.8, 1.0). If the current critical path is 10, m@atvith a delay of 4 or more do not need to beaned by the
0.2 assumed criticality wave. Those paths will btdy serviced by the 0.4 assumed criticality esgdlon.
Thus, with the exception of the highest criticalitgve, the router can prune a search when thentypeth

delay would make the exploration’s criticality larghan the next higher assumed criticality search.

7.3.3:New Cost Formulation

Another issue that appears concerns the congestimus timing cost formulation itself. As mentidne

the previous section during the discussion of tbeeqtial pitfalls of the assumed criticality metlodahy,

the lowest cost path obtained by using Equation e8vily depends upon the relative values of an
architecture’s delay and congestion costs. Unfately, this can cause further undesirable behavim

considering pipelined routing.

Consider the scenario in Figure 7.13. Here, tlagectwo potential one-latency paths fr@mo K. If the
notation in the figure isdglay costongestion co¥t and the cost of a path is considered to be dheesof
the congestion and delay costs of all of it linkspth paths have the same total congestion and/.dela
However, the top path is a comparatively poor obdiecause the post-register path is both highticaki
and highly congested. Using Equation 4.8 as afoostion, the cost of the top and bottom pathsshi@vn

in Equations 7.1 and 7.2, respectively. For matiteral simplicity, the critical path delay of thgssem is
assumed to be #i0for the moment. The effect of system criticallpdelay will be further examined in
Section 7.6.

0.1(d) +0.9(c) + 0.9(9d) +0.1(9c) =8.2d + 1.8c (7.1)

05(5d) +05(5¢) + 05(5d) + 05(5c) = 5d + 5¢ (7.2)

Based on these equations, the selection of balaneexiis unbalanced paths depends entirely upon the
relative values of ¢ and d, an architecture’s ayerdase congestion and delay cost. In this exartipte
more balanced path is only selected if c < d. Hememaintaining this relationship is very diffitulEven

if the router were to scales the base cost ofalting nodes so that it initially selected moreaakd
paths, the natural congestion cost escalation gfF#ader will cause later iterations to tend towarorse
selections. Not only do these unbalanced patreteciee more difficult timing problem, they actualiyprk
contrary to PathFinder's own attempts at congestésolution. This is because as the router erhers
later stages of routing, the average congestiohwibsrise to resolve sharing. However, based ugioe

observation here, the router will actually tend aods more extreme congestion options.
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Figure 7.13: Congestion vs. Timing Concerns For Padined Routing

This problem occurs because the delay and congestiotributions to the overall path cost are linked
While the A; versus (14;) terms guarantee that paths can trade delay fogesiion and vice-versa, this
intertwines the two components, making their relatralues very sensitive. To address this isssepte
change can be made that removes this vulnerabiliguation 7.3 is obtained by dividing both sidés o
Equation 4.8 by ().

Ch _ Aidh A-A)o . A
= + = th + Cn (7.3)
1-Ai 1-Aj 1- A 1- A

While this change scales all path costs by B{)l-since all explorations compete with each other
simultaneously, this likely does not change patteci®n for conventional non-pipelined routing.
However, this does change the behavior for pipdisignals. Revisiting the example from Figure 7oL8
substituting the new cost formulation, the costhe unbalanced top path and balanced bottom path ar

shown in Equations 7.4 and 7.5, respectively.

c%(d) + c+%(d) +9c=01Yd)+c+9(9d) + 9c=8111d +10c  (7.4)

% (5d) +5d +£ (5d) +5d =1(5d) +5c +1(5d) +5c=10d +10c  (7.5)

Since both the congestion and delay costs are setiyspositive numbers, more balanced paths are no
always selected over unbalanced paths without &®el o meticulously adjust the relative values of a
architecture’s congestion and delay costs. Howetle router still has the option of selecting the

unbalanced path should this path become less cmupmsfuture routing iterations.

One concern that might arise regarding Equatioris/tBat the criticality of a connectiod, is divided by

1 minus the criticality, or (¥). This term could become undefined for connedtititat are along the
critical path sincey; is 1.0, resulting in a division by zero. Howevihis does not occur because timing-
driven routers generally cap the criticality usedctlculate routing costs to 0.99 [2]. Looking bat

Equation 4.8, the reason that the criticality i¢yaallowed to reach a maximum of 0.99 is becausgers
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do not want to create situation in which paths eatirely ignore congestion. K; were equal to 1.0, (1-
A;) would equal zero, allowing a path to solely foomsdelay with absolutely no concern for congestion
Thus, two critical paths that fight over a singbsgurce would never be able to resolve their adnfll his

cap on a path’s criticality helps the router betésolve congestion.

This limit also has an effect on routes slower tti@current critical path. For example, it is gibke that
in an attempt to resolve congestion, the systensiders a slower route for some connections. Witlaou
cap on the criticality of a connection, the assumgeticality methodology could find a route with a
criticality larger than 1.0, causing the congestierm to become negative. This might actually eatire
system to use highly congested paths, just to vedéie cost benefit. However, with the limit irapé, the
router can still feel the effects of slower patimees the delay term is larger, but without potdhtiereating

a problem for congestion resolution.

7.4: Armada

The assumed criticality search technique and the cust function can be integrated into the Quickigou
algorithm. This new pipelined routing algorithmciglled Armada [10]. As shown in Figure 7.14, Adaa
launches a series of multi-criticality searchesrfittie source. In this example the router would tik find

a one-latency path betwe&andK. The first series of searches expand from theceouWhen one of
these waves encounters a register, it recalcutatepath cost based upon the real criticality nesglito
reach the register along the given path. Wherchigapest path to the register is popped from tiueiyr
gueue, it launches a new series of assumed citiyicgdarches of its own at latency one. Notice tha
although all zero-latency searches may reach thistez and push it into the priority queue, onlegath
will be deemed the least expensive and, thus, éséway to use this particular register. Only trash will

continue on with one-latency explorations.

However, this example brings up the issue of defjrthe cost of a multiple latency route. In Figidr&4,
eventually both registers in the architecture Vgilinch their own set of one-latency exploratiods they
nearkK, the router needs to determine which path bestnigak not only the congestion and delay of their
zero and one-latency paths individually, but thenbmation of the two. Since each time the router

encounters a register it determines the actudtalitty of the link, the cost of ah-latency path can be

o 2@ .

Figure 7.14: QuickRoute with Assumed Criticality Sarching
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defined as the total of the timing and congestiosis of all zero to L-latency segments. This isvahin

Equation 7.6.
L
C =) (timingCosi + congestioost) (7.6)
i=0

Furthermore, as seen in line 6 of the pseudocod€igure 7.16, Armada borrows a concept from
QuickRoute and sorts the sinks of each net itspoasible for routing. To give priority to higheniticality
links, it sorts each net’s sinks first by non-desiag order of latencf# of registers required on the path),
then by non-increasing order of maximum link catity found in the previous routing iteration. finis
way, the most timing-critical sinks with the fewedtances to amortize path delay over multiple clock

cycles determine the earliest stages of the routeey

To build successive multi-terminal routes, Armadastmalso define how pre-existing routes should
initialize the priority queue. As seen in Figurd5, after the router has found a one-latency roukg the
router pushes this existing route into the priogteue to reflect all of the possible routing opsido the 2-
latency sink]. This can be seen in lines 9-17 of the pseudoto&égure 7.16. While building a link from

b would allow for the maximum register sharing anill \ikely cause the minimum congestion impact,
developing a wholly new path may offer some timbenefits. Borrowing a concept from timing-driven
PathFinder, Armada considers existing routes tdrd in terms of congestion, and it only considwesirt
delay impact on further sinks. Based upon the rhddzussed in Equation 7.6, Armada pushes nodes
along existing routes into the priority queue bynsting only the timing cost of all upstream zeroLto
latency segments. For the example in Figure Adg&ombine this concept with the assumed critigalit
searching technique, all nodes alangvould be pushed into the priority queA€ times using different
assumed criticalities to determine their timingtco®Vhile all nodes along would also be added to the
priority queueAC times, they would all share some common portiotheir cost — the zero-latency timing

cost incurred along.

J U o

Figure 7.15: Re-initializing PQ for Multi-Terminal Nets
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Armada

0 while(lall signals routed || congestion exists)

1 for all nets N

2 if N is not pipelined net, use PathFinder

3 else

4 clear N.routing tree

5 put source of N into N.routing tree

6 sort sinks by non-decreasing latency, none@sing criticality

7 for all sinks of N

8 for all nodes in architecture, for all laterecL, for all assumed criticalities CR set visftdfCR] = 0

Initialize priority queue PQ with existing ting tree

9 for all CR = 1/AC to 0.99

10 for all nodes X in routing tree

11 if CR 1= 0.99 && X.delay > (CR + 1/AC) *itical Path

12 continue /I prune search for startinmiso

13 else

14 put X into PQ at cost C, path P, latelncgssumed criticality CR

15 end if

16 end for

17 end for

18 while(PQ.head notsink[i] of N && PQ not emgpt/ search for L-latency route to sink

19 remove head of PQ H at cost C, path Padgte, assumed criticality CR

20 if(H.visited[L][CR] < k)

21 set H.cost[L][CR] to C

22 addHto P

23 increment H.visited[L][CR]

24 for each neighbor of H

25 if neighbor is not sink

26 if CR 1= 1.0 && neighbor.delay > (CR #AC) * critical path

27 continue /I prune searches

28 else if neighbor of H.vistexlk || neighbor in P

29 continue /I don’t explore visited oopback neighbors

29 else if (neighbor of H is not register)

30 put neighbor into PQ at cost C + ne@htost + edge cost, path P,
latency L, assumed criticality CR

31 else if (neighbor of H is register)

32 calculate actual criticality of curreyath

33 recalculate cost of path

34 put neighbor into PQ at updated caséighbor cost + edge cost, path P,
latency L+1, assumed criticality CR

35 end if

36 else if neighbor is sink

37 calculate actual criticality of curreyath

38 recalculate cost of path

39 put sink into PQ at updated cost, patlaténcy L, assumed criticality CR

40 end if

41 end for

42 end if

43 end while

44 if(PQ is empty)

45 net unroutable, exit

46 else if(PQ.head is sink[i] of net N)

47 mark sink found

48 add new parts of P to N.routing tree

49 clear PQ

50 update cost of congested nodes

51 end if

52 end for

53 end if

54 end for

55 update critical path delay

56 end while

Figure 7.16: Pseudo-Code for Armada Timing-Driven ipelined Routing
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7.5: Testing and Results

As described in [34], the pipeline routing probleras first inspired by the RaPiD [9] architecturEhus,

to determine the effectiveness of the Armada allgoriit was tested with RaPiD architectures and RaPi
netlists. RaPiD is a coarse-grain, one-dimensioaabnfigurable array with a word-width interconhec
network. As seen in Figure 7.17, logic blocks gamithe top of the array with a mixture of shartia
long-distance routing wires below. Although sheites cannot be concatenated to make longer raunes
are not connected to specialized interconnect texgislong wires can be concatenated for up to-ahile
routes and can acquire between zero and thregeeasencies at each switchpoint, also known assa
connector Bus connectors are represented with small squaeveen long wire segments. Furthermore,

multiple RaPiD cells can be abutted side by sideotastruct larger arrays.

In the existing RaPiD toolflow, a high-level langgacompiler produces a retimed netlist that must be
mapped to a device given specific latency requir@men each connection. Although RaPiD architestur
contain a wealth of register locations, any spedifis connector can only communicate with the wires
immediately to its left and right. Because of th@nnectivity, register assignment cannot be paréat
during placement. This is because, like the reggst track-graph architecture in [38], deciding clya
which registers should be used for a given sigtsd eostly determines the detailed routing for thet.
Unfortunately, deferring register assignment urdilting also presents a problem since it is notias/
how to find routes that contains exactly the cdrreamber of pipelining registers. A conventionaliter
cannot be used because the architecture has linpiteelining resources that determine the overall
characteristics of each path. For example, lofpcks that are placed physically close to eachrotinay

not be able to be connected via the most directerouf the connection between these blocks regquire
multiple pipelining delays, the router may needtéate a more circuitous path to acquire sufficient

registering.

Testing was performed using nine RaPiD netlistst ttegpresent a wide range of pipeline register
requirements. These netlists, detailed in Apperdixwere mapped to three different RaPiD architexgur
the original architecture that contains 16 logiodis per cell, length-4 short wires, length-16 laviges,
and three optional registers at each bus conneatud, two other architectures that are similar, but

substitute long wires of length 8 and 4.

The Armada router was compared to both PipeRouteQuickRoute. PipeRoute was represented by a
slightly augmented version from [32] that addedudimentary timing-driven formulation to the origina
PipeRoute algorithm. In the new PipeRoute methmgigl the maximum criticality encountered by any
link between a given source and sink determinedotrerall net criticality during the following rouni

iteration. Of course, this technique introducemsdnaccuracies into the system. Not only does thi



105

ol 12l la |2l | & Ll leblad |2l lo |2 1o | &
=N Enr=hdEnn S hnEhndenm=nnenm=nn Enn=nn e
Fﬂzmz::ﬂ:x:xzm:
1
— el
L
1} —
— J
— L
— LS.
— L
— ]
o T A
{1

Figure 7.17: lllustration of a RaPiD Cell

methodology suffer from the problem associated wvd#termining the correct relative cost between
congestion and timing that inspired the modifiedstctormulation, it also suffers from the false link
criticality predictions that was addressed with #ssumed criticality approach. As for QuickRoute’s
term, as suggested by [2¥],= 1 was used. Armada also uded 1 and arbitrarily set AC = 10 for the

initial round of testing.

Before the quality of these routers could be ewvelliathey required the benchmark netlists to bequla
All nine netlists were placed using the placement built into PipeRoute [33]. This provided aditk
pipelining-aware placement as a starting pointafbthree algorithms. While conventional placemisais
always attempt to group interconnected blocks asety as possible, this is not necessarily faverainl
architectures that require pipelined routing sushRaPiD. This is because, as mentioned earligh hi
latency connections may need to take a circuitauger if there are not enough pipelining resources
between the logic blocks to acquire the approprieggstering. The PipeRoute placer attempts te thls
into account by explicitly placing both logic blacland registers during annealing. However, undike
conventional placement tool, the placement of ggisters in the system is not binding and new tegis

locations are determined during the routing pracess

Testing began with the original RaPiD architectugx independent PipeRoute placement and routing r
were performed, and the placement with the lowested critical path delay as found by PipeRoute was
passed on to evaluate the other routers. Theseemknts were routed using congestion-driven
QuickRoute, the Armada algorithm, and the Armadgom@hm with the original PathFinder cost

formulation substituted in.
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In Table 7.1 to Table 7.3, tHeest Track Countesults are the average normalized track requingsmne
circuit timing and router runtime when each todrebed separately for the minimum routable archirec
for each of the nine netlists. Notice that thissiigihtly different than the testing used to evéduthe
placement tools from the previous chapters, buviges good insight into the true quality of the ting
algorithms. Match PipeRoute Track Coumésults were obtained when each tool was givensdme
number of tracks that PipeRoute required for aminetlist. Match QuickRoute Track Courdsults were
obtained when each tool was given the maximum nurmobéracks required by any of the QuickRoute-
derivative tools (QuickRoute, Armada or Armada wRhathFinder's cost function) for a given netlist.
Match QuickRoute Track Courgsults do not include results for PipeRoute asatrelable codebase does
not allow the placement and routing steps to barsged. Given a different architecture, PipeRauite

also change the placement.

Although a precise relationship cannot be made tduéhe wide range of benchmark complexity, these
tables also include un-normalized average routetime to give a general sense of algorithm effoitl
results were gathered on 3.2GHz Intel Xeon machivigs 2GB of RAM. Unfortunately, runtime is only
reported for the three QuickRoute-derivative rositbecause differences in code execution prevented
meaningful comparisons to be made with the PipeRaodebase. This said, the original QuickRoute
algorithm is likely to perform as fast or fasteathPipeRoute since it does not perform multipleg@dse

searches.

As seen in Table 7.1, the first surprise is thatdhiginal congestion-driven QuickRoute algorithatually
achieves nearly the same critical path delay asitigroved timing-driven PipeRoute formulation.
QuickRoute produced a normalized critical path glelf1.64x while PipeRoute’s critical path delaysva
somewhat faster with a 1.56x critical path deladdthough based upon the tests performed in [23] one
would expect QuickRoute to provide marginally bettack counts than PipeRoute, the very similairgn
results indicate that the technique used to malgeRRiute timing-driven is largely ineffective. As
predicted, it is likely that inaccuracies withirettiming-driven formulation itself greatly limitstability for

optimization.

In contrast, though, Armada finds vastly superimirig results with slightly better routability. p&Route
produced 1.56x worse critical path with 1.09x wonsek count and QuickRoute produced 1.64x worse
critical path delay with 1.04x worse track coufthis improvement in track count is likely due te tfact
that the timing-driven cost formulation providesdamnal direction to the QuickRoute-like searches,
avoiding some occurrences of self-blocking. Howeas expected given theC = 10 factor, Armada runs

approximately 10x slower than QuickRoute. Furthemenit is also clear that the new timing-driverstco
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formulation functions as intended. When PathFisdeost function is substituted back into the Armad

algorithm, it produces 1.18x worse critical pattege

Of course, it may be unfair to compare the critipath delay of netlists mapped to architectured wit
different track counts. Thus, as seen in the botiowo sections of Table 7.1, testing was repeasatguthe
same architecture for all of the routing algorithnktowever, the results are largely the same — Aarsill
produces vastly superior critical path delay coregawith all of the other approaches, but requires

approximately 10x the runtime of QuickRoute.

Table 7.1. Normalized Results for Length-16 Long \Ive Architecture

Best Track Count Tracks Crit. Path Delay Runtime Awy. Runtime
PipeRoute-TD 1.09 1.56 - -
QuickRoute 1.04 1.64 0.10 133s
Armada 1.00 1.00 1.00 1721s
Armada, PathFinder Cost 1.03 1.18 7.65 7982 s
Match PipeRoute Track Count Tracks Crit. Path Delay Runtime Avg. Runtime
PipeRoute-TD 1.09 1.56 - -
QuickRoute 1.09 1.75 0.08 113 s
Armada 1.09 1.00 0.94 1752 s
Armada, PathFinder Cost 1.09 1.19 5.21 5329 s
Match QuickRoute Track Count Tracks Crit. Path Delay Runtime Avg. Runtime
QuickRoute 1.05 1.73 0.11 138 s
Armada 1.05 0.99 1.05 1826 s
Armada, PathFinder Cost 1.05 1.20 7.45 7705 s

All results normalized to the Armada results while smallest track count

Table 7.2. Normalized Results for Length-8 Long We Architecture

Best Track Count Tracks Crit. Path Delay Runtime Ay. Runtime
PipeRoute-TD 1.00 1.66 - -
QuickRoute 0.96 1.65 0.10 66 s
Armada 1.00 1.00 1.00 1357 s
Armada, PathFinder Cost 1.02 1.30 3.11 3068 s
Match QuickRoute Track Tracks Crit. Path Delay Runtime Avg. Runtime
QuickRoute 1.03 1.71 0.08 45s
Armada 1.03 1.00 0.88 841s
Armada, PathFinder Cost 1.03 131 3.12 3075s

All results normalized to the Armada results whie smallest track count

Table 7.3. Normalized Results for Length-4 Long We Architecture

Best Track Count Tracks Crit. Path Delay Runtime Aw. Runtime
PipeRoute-TD 1.01 1.59 - -
QuickRoute 1.02 1.54 0.11 76 s
Armada 1.00 1.00 1.00 2637 s
Armada, PathFinder Cost 1.05 1.21 2.75 2976 s
Match QuickRoute Track Tracks Crit. Path Delay Runtime Avg. Runtime
QuickRoute 1.05 1.55 0.10 41s
Armada 1.05 0.99 0.84 1593 s
Armada, PathFinder Cost 1.05 1.21 2.75 2976 s

All results normalized to the Armada results while smallest track count
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As seen in Table 7.2 and Table 7.3, this trendicoas when the netlists are mapped to architecthas
present a more difficult pipelined routing problerihe testing methodology used on the original RaPi
architecture was repeated on architectures withbldoand quadruple the number of pipelined switch
opportunities. On the length-8 architectures, Ripgte and QuickRoute produce 1.66x and 1.65x worse
critical path delay respectively. On the lengthséhitectures, PipeRoute and QuickRoute produc@xl1.5
and 1.54x worse critical path delay respectiveis a note, since the gap between the track counts o
PipeRoute and the QuickRoute-derivatives mostlgado theMatch PipeRoute Track Courgsults are no

longer shown.

Although this testing proved that Armada producgsicantly better pipelined routing results thas
predecessors, there are two other outstanding igonestegarding its effectiveness. First, as maweiib
earlier, the maximum visitation factor used in timgial testing was suggested by the original @Rioute
paper k=1). Even though the routing algorithm is stiflevating within the same architectural framework,
the timing-driven nature of the Armada approachhnigake more thorough explorations attractive. As
seen in Table 7.4, there is some correlation beti@ger values ok and higher quality results, but the
change is relatively minor. The small potentiapimovement in critical path delay (up to 0.95x) ack
count (up to 0.98x) is likely not worth the increas algorithm runtime. However, since larger eslwfk

primarily help combat self-blocking, this behaviasiprobably highly architecture-specific.

The second issue is that the number of assumechtitit searches that were performed in the inittalnd
of testing was completely arbitrarily chosekCE10). Since the assumed criticality entirely cotstrhow
paths weigh congestion versus delay for the mgjafta given route, it is likely that the quality the
critical path timing heavily depends upon the gtarity of the assumed criticality searches. Howeve
looking at Table 7.5, although there is a markedine improvement, dramatically decreasing the nermb
of assumed criticality searches does not necegsdfdct the overall quality of the routing. Ircfathere is
no real decline in quality even if the number adredes is reduced to merely two (only assume atitiies
of 0.5 and 0.99). WitlAC = 2, the critical path delay for the original lendt6 long wire architecture is
0.97x better with the same track count and a Os¥xter runtime, the critical path delay for thegth 8
long wire architecture is only 1.04x worse with g@me track count and a 0.29x shorter runtime,thad
critical path delay for the length 4 long wire dtebture is only 1.01x worse with a 1.04x worseckra

count and a 0.31x shorter runtime.

Although this may seem counter-intuitive, examinihg routed results found by Armada more closéiig, t
is likely an artifact of the RaPiD architecture’ssin philosophy. In almost all cases, the ciitpath
reaches some architectural limit — two to three dsnector-to-bus connector delays or less. Cenisig
that RaPiD was built to be an architecture for liggpipelined netlists, this should not be partany
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Table 7.4. Normalized Results for Armadak=1, 2, 4

Length-16 Architecture Tracks Crit. Path Delay Runtime Avg. Runtime
k=1 1.00 1.00 1.00 1721s
k=2 0.99 0.95 1.67 2454 s
k=4 0.98 1.02 3.24 5634 s

Length-8 Architecture Tracks Crit. Path Delay Runtime Avg. Runtime
k=1 1.00 1.00 1.00 1357 s
k=2 0.99 1.00 1.29 1757 s
k=4 0.98 1.00 6.48 21725 s

Length-4 Architecture Tracks Crit. Path Delay Runtime Avg. Runtime
k=1 1.00 1.00 1.00 2637 s
k=2 1.01 1.00 1.77 4414 s
k=4 1.00 0.98 3.93 9452 s

All results normalized to the Armada results wtile smallest track count

Table 7.5. Normalized Results for ArmadaAC=10, 8, 6, 4, 2

Length-16 Architecture Tracks Crit. Path Delay Runtime Avg. Runtime
AC=10 1.00 1.00 1.00 1721s
AC=38 0.98 1.04 0.96 1168 s
AC=6 1.00 0.97 0.67 785s
AC=4 0.99 1.02 0.52 573 s
AC=2 1.00 0.97 0.36 354 s
AC=1 1.11 1.20 0.35 300 s

Length-8 Architecture Tracks Crit. Path Delay Runtime Avg. Runtime
AC=10 1.00 1.00 1.00 1357 s
AC=38 0.98 1.01 0.79 910s
AC=6 0.98 1.01 0.43 576 s
AC=4 1.00 1.01 0.56 692 s
AC=2 1.00 1.04 0.29 307s
AC=1 1.08 1.37 0.32 217 s

Length-4 Architecture Tracks Crit. Path Delay Runtime Avg. Runtime
AC=10 1.00 1.00 1.00 2637 s
AC=8 1.01 0.99 0.75 1802 s
AC=6 0.99 1.00 1.05 1803 s
AC=4 0.99 0.98 0.60 1014 s
AC=2 1.04 1.01 0.31 342 s
AC=1 1.60 151 0.67 1080 s

All results normalized to AC=10 values

surprising. Because of this, Armada merely findsodly the types of routes that the original desigrhad
anticipated. When the router achieves such aremely low critical path delay, all signals actually
become either 50% or 100% critical, makitnG = 2 work exceedingly well. It is only when AC isduced

to 1 and all signals are considered critical thatrouter is not accurate. However, as with deténg k,

the AC behaviour is also likely highly architecture degent. The majority of FPGAs do not have the
extremely predictable routing characteristics & BaPiD architecture. Thus, more conventional FRGA

are likely more sensitive to the number of assuoréitality searches.

7.6: Conclusions and Future Research

This chapter delved into the details of a relativeew CAD problem: pipelined routing. FPGA
architectures that contain a large number of reggsbften limit the input and output connectivifynoany
of them due to area concerns. This architectunalkacteristic makes efficiently using these regsste

somewhat difficult since the placement tool canassign flip-flops in a netlist to these registarsthie
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traditional manner. This is because mapping afliip to a register with very limited connectiviglso
largely determines the routing needed to connastrégister to the rest of the circuit. This caake the
subsequent routing problem much more difficult, tiatarly if a netlist requires a large number of

registers.

One manner of dealing with this issue is to assiggister locations during the routing process fitsel
However, this fundamentally changes the naturehefrbuting problem because signals must find paths
that satisfy an additional constraint — valid patisst traverse a very specific number of registérhis
new routing problem is called tiDelay Routing problem. Although there have beea prior research
efforts to address thBl-Delay Routing problem, neither of these heuristies effectively implement
timing-driven routing. Primarily, the timing-drimeN-Delay Routing problem is difficult because, frohet
viewpoint of conventional CAD tools, it containspasts of both register placement and physical re-
synthesis that must be solved simultaneously witinnormal timing-driven routing problem. Atternmat

to apply conventional timing-driving methodologiean lead to poor solutions, largely because the

criticality of registered connections can changanthtically between different routing iterations.

This chapter suggested two new techniques thaieaddrome of the instabilities that can form duthmey
timing-driven pipelined routing process. Firstistobhapter presented an approach that allows titerdo
determine the criticality of a given connection vaitit any a priori knowledge. Second, this chapter
introduced a new timing-driven cost formulation ttlguides the router towards better pipelined paths.
These two techniques were combined with aspects fn@vious routers to form the Armada timing-driven
pipelined routing algorithm. On three differentlastectures this algorithm was shown to providegidy
0.6x better average critical path delay without poomising routability. While more computationally
intensive than previous pipelined routing algorithmrmada remains competitive, especially given the

large improvement in circuit timing.

Although these results are promising, looking itlte future there is still room for improvement. €On
concern is the quality obtained using the new éasttion. A large portion of Section 7.3.3 was adied

to analyzing the routing problem in Figure 7.13: this example, the traditional PathFinder costfiom
was shown to potentially favor paths that had tgly critical and highly congested links over lmmathat
had lower criticality and less congested connestioWwhich paths were selected largely depended tipon
relative cost of an architecture’s average basgestion and delay cost. The new cost function ssiggl

in this chapter was shown to remove this dependemdy favor more balanced paths. However, the
behavior of this new cost function can change déimgnupon the critical path delay of the systemnfdbu
during the last routing iteration. It turns ouaththe new cost function can prefer less balaneghspunder

certain conditions. Of specific interest is whaturs when the critical path delay of the last irout
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iteration was relatively low, because this providesme idea of what happens when the router encsunte

congestion and begins exploring slower paths.

As shown in Table 7.6 and Table 7.7, the same lzlons as performed in Equations 7.4 and 7.5Her t
example in Figure 7.13 can be repeated for diffesystem critical path delays. The criticality afid
criticality) terms of the expanded equations onléfesides of 7.4 and 7.5 can be found in Tab&iii.the
CPD = 1@ row. Similarly, thed andc multiplier terms on the right side of Equationd @and 7.5 can be
found in Table 7.7 in the CPD = dGow.

While, as expected, the new cost function causesdiiter to always prefer the balanced bottom pdatn
the previous critical path delay was greater thdntiee router will always prefer the unbalanced payph
when the previous critical path delay was betweean@ 5 inclusively. Most troubling, this meansttha
when the previous critical path was 5, the rout#éi mot find the balanced path that maintains ttrigical

path delay during the next routing iteration. Ratht will find the unbalanced route that will mreakhe

Table 7.6: Capped Link Criticality of Connections n Figure 7.13

Unbalanced Top Path Balanced Bottom Path

Pre Register Post Register Pre Register Post Regist

CPD Crit 1-Crit Crit 1-Crit Crit 1-Crit Crit 1-Crit
1d 0.99 0.01 0.99 0.01 0.99 0.01 0.99 0.01
2d 0.50 0.50 0.99 0.01 0.99 0.01 0.99 0.01
3d 0.33 0.67 0.99 0.01 0.99 0.01 0.99 0.01
4d 0.25 0.75 0.99 0.01 0.99 0.01 0.99 0.01
5d 0.20 0.80 0.99 0.01 0.99 0.01 0.99 0.01
6d 0.17 0.83 0.99 0.01 0.83 0.17 0.83 0.17
7d 0.14 0.86 0.99 0.01 0.71 0.29 0.71 0.29
8d 0.13 0.88 0.99 0.01 0.63 0.38 0.63 0.38
9d 0.11 0.89 0.99 0.01 0.56 0.44 0.56 0.44
10d 0.10 0.90 0.90 0.10 0.50 0.50 0.50 0.50
11d 0.09 0.91 0.82 0.18 0.45 0.55 0.45 0.55
12d 0.08 0.92 0.75 0.25 0.42 0.58 0.42 0.58

CPD refers to the critical path delay of the systkming the last routing iteration.

Table 7.7: Effect of Critical Path Delay on Revisedost Function

Unbalanced Top Path Balanced Bottom Path
CPD Delay Term * d Congestion Term * ¢ Delay Term * d Congestion Term * ¢
1d 990.00 10.00 990.00 10.00
2d 892.00 10.00 990.00 10.00
3d 891.50 10.00 990.00 10.00
4d 891.33 10.00 990.00 10.00
5d 891.25 10.00 990.00 10.00
6d 891.20 10.00 50.00 10.00
7d 891.17 10.00 25.00 10.00
8d 891.14 10.00 16.67 10.00
9d 891.12 10.00 12.50 10.00
10d 81.11 10.00 10.00 10.00
11d 40.60 10.00 8.33 10.00
12 27.09 10.00 7.14 10.00

CPD refers to the critical path delay of the systkming the last routing iteration.



112

critical path delay 9. Although the current camtnfiulation seemed to function well enough in thetiitey
performed thus far, removing this vulnerability meprove Armada’s results. While solving this plerh
will require more extensive investigation, one afest may be worth looking into as a possible sotuts

re-evaluating the way the existing system satunagegriticality at 0.99.

An additional concern is that the Armada algorithas only been tested on RaPiD architectures.
Unfortunately, RaPiD’s routing structure is consalgly simpler than more conventional FPGAs. B t
overall number of wires and the interconnect fldiib of the system as a whole is much lower than a
traditional island-style FPGA. This leads to seveoncerns looking into the future, primarily réxiog

around the runtime of the algorithm.

Although the testing that has been performed scHiawed that the assumed criticality search tecieniq
was computationally efficient on the RaPiD arcHitiee, this was only because the simple routing
resources allowed the use of relatively few différassumed criticalities while still obtaining highality
results. The routability and achievable criticatlpdelay did not truly change even when using dwly
independent explorations. Although unproductivarskes are pruned when possible, the number of
independent searches launched has a nearly liaksionship with algorithm runtime. Furthermorace

the assumed criticality completely controls howhgatveigh congestion versus delay for the majoritg o
given route, it is likely that the quality of theuter on most FPGA architectures will heavily depepon
the granularity of the assumed criticality search€ksus, Armada may need to launch far more seartthe
get similar critical path timing improvement on architecture with a more sophisticated communicatio
structure. To avoid creating a computationallydotable problem, several alternatives can be exglto

lower the computational needs of the system asalewh

The first possibility is to launch fewer, but marglevant searches. The current algorithm divides t
spectrum of criticalities used for exploration i€ evenly spaced pieces. However, it is possibleitha
sufficient to merely split signals into groups hbse that are significant in terms of timing, ahdse that
are not. Thus, instead of launching twenty searatith criticalities evenly spaced from 0.05 to,litds
possible that four searches, perhaps at 1.0, @.85and 0.1 may be enough to capture the timing and

congestion needs of the system.

The second manner of reducing the router’s comioumalt needs is to avoid or reduce the size of the
pipelined routing problem whenever possible. Eweithout the assumed criticality methodology,
QuickRoute itself is already computationally demiagd Unlike Dijkstra’s algorithm, it can visit elac
node in the graph multiple timesktimes at each latency between 1 &ndThus, the computational needs
of the router can be considerably reduced if eitheruse of Armada is limited outright, or, at thery

least, the latency depth of the searches is madéesm
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The use of Amada can be eliminated on some netglgntWhile using conventional placement andrfixi
the location of some of the registers in the aedtitre can lead to potential routability problemmny
circuits may only have congestion problems in deriacal regions of the device. Rather than igmgrihe
placement of registers throughout the system, i ma possible to analyse the congestion profile of
placement and only use Armada for nets that neddat@rse potentially sensitive areas. The remgini
nets could be routed using PathFinder since theeplant of the registers outside of these regionsbea

fixed before routing begins.

Furthermore, the number of registers that neectbbnd on a given net can also be reduced. Adthau

is likely that the best results will be obtained lising Armada for a fullL latency path, high latency
connections could be broken into shorter, loweeray links. The runtime of most routers is highly
correlated with the distance between the sourcesarid This is because the searches expand inva-wa
like manner and the number of nodes within the deaadius for most architectures generally goes up
guadratically as the radius is increased. Thizaidicularly important for Armada because the nmetiof
the router is also affected by the target laterfcthe sink. Each node between the source andcsinke
visited separately by each latency between Olan#iowever, if high latency routes are split intaltiple
sections by fixing the placement of some of thastegs along the way, this would create “waypoirfts”
the router and considerably decrease the runtif@. example, for an 11 register path, the placeroént
registers 4 and 8 could be fixed. Rather thanifigd single, long 11-register path, Armada wouhtlyo

have to find three shorter 3-register paths.

Perhaps the most vital aspect that affects the ddmalaced on the router is the architecture itself
Pipelined routing can be required on architectihas limit the connectivity of the registers it pides.
However, as will be discussed in the next chater large number of highly connected registersladdoe
efficiently introduced into an FPGA, the need fdpglined routing can be eliminated or drastically

reduced.
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Chapter 8: Register-Enhanced Architectures

While the previous chapters focused on improvingsRRCAD tools, the target device itself ultimately
determines how fast applications will run and howcin silicon area they will require. Thus, although
pipelining, retiming and C-slowing can greatly irope the performance of an application, this can be

largely dependent upon how well the underlying FPSBAports netlists with a large number of registers

This chapter will focus on how future FPGAs canicihtly incorporate additional registers. This
discussion begins by examining how the area reménts and performance profile of a netlist chargi a

is pipelined or C-slowed. This chapter continugthvgome background on several previous research
efforts that attempted to increase the densityegfistering resources within FPGA architectures and
discussion of the potential drawbacks of theseesyst This will lead to an analysis of the undewyi
components of existing FPGAs and a discussion efpibitential benefits of adding registers to both th

interconnect network and the logic blocks.

8.1: Scaling of CLB Requirements and Performance

As seen in Figure 8.1 and Figure 8.2, the critath delay of a netlist roughly scales linearlyhaiihe
amount of pipelining or C-slowing performed on thecuit. The vertical axis of these two figuresosh
the post-routing critical path delay when a cirouds placed and routed onto the four 4-LUT, foip-fl
flop, length-4 wire architecture used in Chapter ®ae horizontal axis indicates the logical depthhe
netlist. Each of the 11 combinational and 11 satigk MCNC netlists were pipelined/C-slowed andrth
Leiserson/Saxe retimed such that the maximum lbglepth of the circuit ranged from the original iog
depth of the MCNC netlist to at least three regsstellowing each LUT. Thus, the rightmost poifittach
line represents the original MCNC netlist, and l#fémost point represents the depth = 0.33 naikgd in
Chapter 6. Although the slope of the line diffesigghtly for each netlist, the impact of additional

registering on the achievable critical path detaseiatively clear.

Although this performance gain is encouraging, Fég8.3 and Figure 8.4 show this does come at & .pric
Specifically, as more registers are introduced th various netlists, the number of required ClaBo
rises to accommodate the extra registers. AsiseBigure 8.3, the area overhead is relatively fowthe
majority of originally purely combinational circsitwhen the logic depth of the circuit is 1 or geeat
These netlists generally require less than 1.5xnimaber of CLBs required by the unpipelined circuit
These benchmarks can be efficiently handled bectestarget architecture has one optional flip-fmgy
LUT inside each logic block. As seen in Figurea8dhd Figure 8.5b, the registers in these modgratel
pipelined combinational circuits can largely pigggk on the flip-flops that are on the output ofteatT.

However, as seen in Figure 8.5c¢, this area overlbaadoecome very large when the logic depth of the
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circuit dips below 1. This is because althoughheaew register added beyond one per LUT allows the
system to better pipeline potential interconnedaylet also requires an additional BLE. Thus,eptth =

0.33 netlist will require approximately 3x the nuentof CLBs as a depth = 1 implementation.

However, pipelining or C-slowing more sophisticatéctuits to a depth of even one LUT can potentiall
require a large number of additional CLBs. As seeRigure 8.4, the area overhead is much highesnwh
adding registers to the sequential MCNC netligtsr these circuits, pipelining or C-slowing to gteof

one LUT generally requires 2-4x the number of ClaBghe original circuit. This is because, to pipebr
C-slow a circuit without changing the functionalgtl paths through the system must add the saméaum
of registers. However, as seen in Figure 8.5d Figdre 8.5e, if the original circuit has a non-onif
logical depth, some connections will accumulate enaggisters than others to match the latency of the

longest path. These additional registers requére BLES.

The CLB overhead associated with pipelining or @séhg these netlists matches the behavior reponted
previous research. The radio cross-correlator4if)] [indicated that the best circuit found by hand-

pipelining and hand-placing registers required H& tumber of CLBs as the unpipelined circuit. This
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means that at least % of the CLBs in the systene weimng used only for their flip-flops and not taeir
logical resources. Thus, while heavily registeringircuit can considerably boost performance, this
require a significantly larger FPGA. Furthermaadarge portion of the LUTSs in the underlying fabmay
sit idle as these netlists require a much largéo ref registers to logic than commercial architees

typically provide.

8.2: Previous Register-Rich FPGAs

Multiple research groups have noticed that conesmali FPGA architectures can have trouble
implementing heavily registered applications. Thesveral research efforts have attempted to asldres
these concerns by increasing the number of regigteesources inside the logic blocks and embedding
pipelining resources within the interconnect netwibself. Unfortunately, all of the systems suggdsso

far restrict the types of circuits mapped to thdseices or have significant overheads inappropfiate

many applications.

Although they differ in several key ways, HSRA [48hd SFRA [42] both provide vast pipelining
resources in each logic block. Each input of thelk in these architectures has a large bank oboati
flip-flops. In addition, some fraction of the pragnmable switchpoints inside their routing switcke®
have optional registers. Although these resousdksv for very fast, fixed-frequency operation, ske
devices provide so many registers that they alsfersa 2-4x area penalty compared with conventional

FPGAs. This kind of overhead is unacceptable fgiieations that cannot make use of these resources

Furthermore, these architectures also require meiyehigh levels of C-slowing or pipelining. Thethors

of [40] and [42] needed to pipelined or C-slowedittapplications somewhere between five to 67 times
order for them to be suitable amenable to theskitantures. However, as mentioned in Chapter 8nev
applications that could potentially be sped up bgns pipelining or C-slowing typically cannot be ttha
deeply registered due to their input and outputquals. Thus, while an architecture such as HSRA o
SFRA can be useful for some very specific applaregj the area overhead and registering requireraeats

likely far too large for a mass-market FPGA.

Alternatively, some systems have been developet] Widle not insisting that their mappings be héavi
registered, provide support for such computationadiding registers to the interconnect. Agairhalgh
they differ in several key ways, RaPiD [9] and CHER7] both offer optional registers in their
switchboxes. Even though computations do not riedge pipelined to be efficiently implemented, the
opportunity exists if application developers desitinfortunately, both of these systems are aldoroped

to very specific types of computation. The undedylogic and interconnect resources that they ipiev

can make implementing more generic computation déficult.
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All of these architectures significantly compromibeir general-purpose use. This largely goesnsgai
one of the guiding philosophy of FPGAs themsely#svide a versatile and cheap alternative to ASICs.
The limited widespread appeal of existing registmtric systems hampers their ability to leverage

economies of scale and Moore’s Law, ultimatelyriesihg their quality and availability.

8.3: New Potentials for Increasing Register Capabilities

Looking into the future, one question is how to e the performance of FPGAs for heavily regisiere
applications while not seriously affecting the aega performance characteristics of the devicarfore
classical applications. No matter what the advgegaare for specialized deeply pipelined and C-astbw
netlists, it is difficult to justify changes thaamr significantly degrade the area or timing profilean
architecture for netlists that cannot use theseuregs. Thus, rather than drastically changingvik8-
established characteristics of current FPGAs byptetaly revamping their organization, it may betéet
to make minimally invasive architectural changeatthwhile offering significant benefit to suitable

register-rich circuits, will disrupt the generalfpase use of the device as little as possible.

The following sections will investigate the potehtiadvantages and disadvantages of introducing
additional register resources into modern islagtesFPGAs. This will begin with an analysis of
architectures with registers in the interconnetivoek and will continue with a discussion of thadaility

of adding registers into the logic blocks.

8.3.1:Potential of Registered Switchboxes

Research efforts such as the registered-track gi®@A in [38] and RaPiD [9] have suggested embeagldin
registers with limited connectivity within intercoect switchboxes. These registers are attractcalse
they can be introduced with relatively little adalital area and can pipeline long wires without agdhe
delay associated with entering and exiting a CLIBowever, as described in Chapter 7, the CAD tools
necessary to efficiently map flip-flops to thesejiséers may not be entirely straightforward. More
importantly, as will be shown in this section, tphetential critical path delay advantages for heavil

registered applications on these types of architestmay be relatively small.

Ignoring signals that are associated with the 1l pf a device, the critical path in any FPGA daswill
either begin at a flip-flop and end at another-flgp, or begin at a flip-flop, pass though onemore LUTs
and end at another flip-flop. Since this diss@tats primarily concerned with heavily registeractuits,
for simplicity, signals that perform computationlivassume to be pipelined or C-slowed such thay the

only pass though a single LUT.
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In a conventional FPGA, flip-flops are only avaiklinside logic blocks. This means that the aaitigath

of a circuit will begin at one CLB, go through somember of interconnect wires and switchboxes amt e
at another CLB. The delay required by such a sigaa be broken up into multiple pieces. Althoubé
precise area and performance numbers of commear@litectures are not publicly available, the
architecture files provided by the VPR [3] toolfloand the toolflow itself can be mined for some
reasonable information regarding a modern 0.65n@AWith four 4-LUT BLEs per CLB and length-4
wires. As seen in Figure 8.6, there are seven eusnihat are particularly significant: the clockaistput
delay of a flip-flop, the delay required to exiCAB and enter a wiring channel, the delay througingle

wire segment, the switching delay between wire sags) the delay required to enter a CLB through the
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Figure 8.6: Significant Delay Numbers for an IslandStyle FPGA

Information taken from 65nm four 4-LUT, length-4reviFPGA architecture
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input multiplexers, the propagation delay of a L&XTd the setup time for a flip-flop. These delaynbers
can be used to perform some rough calculationseatichate the anticipated critical path delay ofapped

circuit.

The delay for a signal on a conventional architecthat goes between one flip-flop and another aith
passing though a LUT is shown in Equation 8.1. e{d¢he signal will exit a flip-flop, exit the CLB,
traverseN wire segments andN(- 1) switchboxes, enter a CLB and finish at anoftiprflop. Similarly,
the delay of a signal on a conventional architectinat goes from one flip-flop to another througte o
LUT is shown in Equation 8.2. In this case, thgnai will exit a flip-flop, exit the CLB, traversd wire
segments and\(- 1) switchboxes, enter a CLB, pass through a Lbd fnish at another flip-flop.

CPD=A+B+(N*C)+[(N-1)*D]+E+G 8.1)

CPD=A+B+(N*C)+[(N-D)*D]+E+F +G (8.2)

Since the only difference between these two equstie theF term, when traveling through an equal
number of wires, a signal that uses a LUT will bghtly slower. Of course, for the applicationdotually
perform computation, some signal in the circuit tuse a LUT. Thus, Equation 8.2 will likely be the
critical path.

As shown in Figure 8.7, an architecture with intemoect registers has flip-flops in both the logiodiks
and the switchboxes. The hope is that these additiregisters can make the system faster by rergovi
the time to exit/enter a CLB (del@/andE in Figure 8.6) and reduce the number of wires betwegisters
(the N terms in the previous equations). There are giglssible scenarios for the critical path on these

kinds of devices.

The first two possibilities are identical to théusition in an architecture without switchbox regiist that a
signal begins at a flip-flop inside a CLB, eithereg through or does not go though a LUT and ends at
another flip-flop inside a CLB. Thus, the delaytbese signals will be the same as described imfitms

8.1 and 8.2.

The second two possibilities are that a signalimegt a flip-flop inside a switchbox, either golesotgh or
does not go though a LUT, and ends at a flip-flegide a CLB. Assuming that the delay associateéd wi
the output demultiplexer on a register embeddeidéna switchbox is the same as the delay of théchwi

between two wire segments, the delay of a sigretl blegins at a switchbox register and ends at a CLB
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Figure 8.7: Significant Delay Numbers for an IslandStyle FPGA with Registered Switchboxes

register without passing though as LUT is showiEguation 8.3. The delay of a similar signal tha¢s
through a LUT is shown in Equation 8.4.

CPD=A+D+(N*C)+[(N-1)*D]+E+G (8.3)
CPD=A+D+(N*C)+[(N-1)*D]+E+F +G (8.4)

The third two possibilities on an architecture widlyistered switchboxes are that a signal begimsftp-

flop inside a CLB, either goes through or does gotthough a LUT, and ends at a flip-flop inside a
switchbox. Assuming that the delay associated thiehinput multiplexer on a register embedded msid
switchbox is the same as the delay of the switdiwden two wire segments, the delay of a signal that
begins at a CLB and ends at a switchbox registdrownt passing though as LUT is shown in Equatic@n 8.
The delay of a similar signal that goes though & litJ/shown in Equation 8.6. Notice that Equatiof i8
optimistic in that assumes that a flip-flop in dBEE can directly feed a LUT in another BLE withinet
same logic block. Since most LUTs will require tiplé inputs, it may not be possible to registéioathe

incoming signals within the same CLB as the actoahputation.
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CPD=A+B+(N*C)+[(N-1)*D]+D +G 8.5)

CPD=A+F+B+(N*C)+[(N-1)*D]+D+G (8.6)

The last two possibilities for this device are tlaasignal both begins and ends at a flip-flop ies&d
switchbox, either going through or not going thowhUT. Using the same conventions as before, the
delay of a signal that does not go through a LU$hiswn in Equation 8.7. The delay of a similamsig
that goes though LUT is shown in Equation 8.8.

CPD=A+D+(N*C)+[(N-D)*D]+D +G (8.7)

CPD=A+D+(N*C)+[(N-1)*D]+E+F +B+D+G 8.8)

Looking at these eight possible situations, manyth&fm can be eliminated from consideration. For
example, while a signal that begins and ends astezg inside a CLB could indeed be the criticahpat a
circuit mapped to an architecture that has intemegtregisters, this does not use the primary feaifithe
system. Erring on the optimistic side, the hopthd the tools will be able to use the intercotmegisters
available and these situations will not be thdaaitpath of a mapped application. By the samenokhe
delay of a signal shown in Equation 8.8 that begina switchbox register, passes though a LUT auid e
at another switchbox register is slower than alaimength signal on an architecture that doeshaste
switchbox registers. Largely, this is because suphth still enters and exits a CLB, but also ncosttend
with the input and output multiplexing on switchbmegisters. This leaves five possible scenarin®get
paths that do not pass though a LUT (Equations&853,and 8.7) and two paths that do (EquationsaBdt
8.6). Between these different possibilities, Egqret 8.4 and 8.6 have the largest likelihood ohgein the

critical path since they perform computation.

These three equations (Equations 8.2, 8.4, andca8répe used to compare the potential critical pathy

of netlists mapped to both FPGASs that only havésters inside CLBs and architectures that havesters
inside both CLBs and switchboxes. Table 8.1 apple delays shown in Figure 8.6 to Equation 8r2 fo
values ofN between 1 and 4 wire segments. This shows thieadrpath delay and resulting maximum
clock frequency for an application mapped to a dewiith only CLB registers. Similarly, Table 8[2osvs
the results of Equations 8.4 and 8.6 on an FPGA initerconnect registers when the critical pathegit
goes from a register inside a switchbox to a regisiside a CLB (left side) or from a register desia CLB

to a register inside a switchbox (right side).



124

Table 8.1: Estimated Critical Path Delay of Converibnal FPGA

# Wire Segments on Critical Path Critical Path Delg MHz
1 2.128E-9 470.02
2 3.585E-9 278.91
3 5.043E-9 198.29
4 6.501E-9 153.82

Table 8.2: Estimated Critical Path Delay of IslandStyle FPGA with Registered Switchboxes

Switchbox Reg to CLB Reg CLB Reg to Switchbox
# Wire Segments on | Critical Path Delay MHz Norm. Critical Path Delay MHz Norm.
Critical Path Speed Speed
1 2.128E-9 470.02 1.000 1.945E-9 514.02 0.914
2 3.585E-9 278.91 1.000 3.403E-9 293.84 0.949
3 5.043E-9 198.29 1.000 4.861E-9 205.72 0.964
4 6.501E-9 153.82 1.000 6.319E-9 158.26 0.97p

Comparing these results, when the critical pattsdoEm a register inside a switchbox to a registside a
CLB, for any given value o wire segments, an application mapped to an athite with interconnect
registers is no faster than on an architecture ouithinterconnect registers. This is because, compa
Equations 8.2 and 8.4, the only difference betwibere two arrangements is tiais traded foD. Stated
another way, the delay through a CLB demultiplasereplaced by the delay through a switchbox regist
demultiplexer. However, sind2 equalsB in the VPR model, the architecture with intercastrregisters is
no faster. Even if delay though a switchbox registemultiplexer were reduced to zef» € 0), this
would only remove 6.562E-11 seconds of delay froendritical path. In the best case, where themnes
wire segment on the critical path, this would make architecture with interconnect registers only
([2.128E-9 - 6.562E-11] / 2.128E-9 = 0.969x) faster

Furthermore, when the critical path goes from asteginside a CLB to a register inside a switchbfox
any given value oN wire segments, an application mapped to an aathite with interconnect registers is
only marginally faster than on an architecture withinterconnect registers. Comparing Equatio8sa8d
8.6, the only difference is th& is traded forD, or that the delay through a CLB input multiplexer
replaced by the delay though a switchbox registeuti multiplexer. However, this only represents a
saving of (2.478E-10 - 6.562E-11 = 1.8218E-10) sdso As shown on the right side of Table 8.2,est b
this results in an architecture with interconnegisters being 0.914x faster. Unfortunately, thasy not
be a large enough performance benefit to justifydifiyong the architecture and opening the door for
problems with the CAD tools. For perspective, adow to Xilinx’s datasheets [45], the performance
difference between only one device speed gradpgsoaimately 0.91x. On top of this, the advantatg
quickly decreases as the number of wire segmemwtsgathe critical path is increased. At two wire
segments, the registered switchbox architectuoalig 0.949x faster. This is particularly concemiince
two wire segments are often required even in thetheavily registered circuits to allow the systenturn

a corner and connect logic blocks or switchboxedifferent rows or columns.
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Figure 8.8: Delay Contribution of Best-Case Scenavs (1 Wire Segment) for Registered Switchboxes

Looking at Figure 8.8, it is clear why architectireith registered switchboxes have such a small
performance advantage over more conventional devi€egardless of the architecture, there is vétg |
that can be done about four components of thecatipath delay: the clock to Q delay of a flip-flape
setup time of a flip-flop, the delay through a $gire segment and the delay of a LUT. Theseiqast
alone comprise over 85% of the critical path deken in the best case of a single wire segmemtewset
the source and sink registers. Thus, even ifotterhead associated with getting in or out of dsteg
inside a switchbox were reduced to zero, such ahitaecture is limited to an approximately 15%
performance improvement. However, it should beddbat the largest portion of this “unavoidabletay

is caused by the delay through the wire segmeeimgklves. If an FPGA were to use very high stiengt
drivers or some other technique to drastically oedine delay of the wires, the potential advantfgbese
kinds of architectures might go up. That saids #xpected that the delay through wires will opcome

a larger portion of overall delay in future procgsserations.

Of course, though, this analysis makes one criisalmption: that the number of wire segments atbag
critical path of a netlist mapped to the two aretitires is the same. In practice, this may nadhbecase
since registered switchboxes increase the ratregibters to logic in the architecture. A heavégistered

netlist mapped to a register-enhanced architeatiltdikely be more densely arranged than when nebp
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to a conventional device. This is because the @amphtation mapped to a classical FPGA will probably
need to spread out over more CLBs for all of tiymals to accumulate the necessary flip-flops. hatvyery
least, this could mean that the average wirelemdtthe nets in the circuit will be longer, if ndtet

wirelength along the critical path.

To get any notable speedup, architectures that hegistered switchboxes must rely on the fact that
additional registers in the system can generaliyice the number of wire segments along the cripedth.
Without this feature, these architectures are eally intrinsically faster. However, as mentiorestlier,
these architectures also contain registers witly Viemited input and output connectivity, changirtget
fundamental problem presented to placement andngtols. As will be explored in the next secti@n
may be better to find a way to adding inexpensivehighly connected registers to the system. Tloase
be incorporated into the CLBs. This would allowachitecture to obtain short wires without cregtin

problem for the CAD tools.

8.3.2:Enhancing Logic Blocks with Additional Registers

Although incorporating registers into the interceannetwork of an island-style FPGA may not provide
large performance benefit, additional registersdrieebe placed somewhere in the architecture toakg
the support for heavily registered applications &e&p the number of wires along the critical path
relatively low. Although increasing the registapecity of the logic blocks is the obvious alteivetthis
must be done relatively carefully to avoid seriguaffecting the area or performance of netlistd tra
lightly registered. This problem is made even nuiffcult since it is highly preferable that angditional

registers have the same high connectivity as exgjsggisters to prevent issues with CAD tools.

From a practical standpoint, there are two diffeissues regarding how heavily registered nethisép to
conventional architectures. Although these proklame somewhat intertwined, the nature of theseesss
can be largely separated and addressed independdiik first issue is that a large portion of #ikkcon
resources in a conventional FPGA architecture cafeo used when mapping a heavily registered
application. While heavily registered circuits uge a large number of additional BLEs, the LUT4ghe
majority of these blocks are entirely ignored amtlydhe flip-flops are used. These unused LUTsiaby
contain a large amount of registering resources ¢hald be made available with some relatively mino
architectural modifications. The second issuda the register density of conventional architextumay
not be high enough to efficiently map heavily régied circuits. Pipelining or C-slowing a circe#n
cause a netlist to spread out so that the necessgisters can be accumulated. However, this tsm a
cause the circuit to slow down because the averégdength of each net may go up. Thus, for thetey

to increase the operational frequency of an apidicabeyond a certain point, it is likely necesstmy

increase the number of available registers in cdatfmnally dense regions. While enhancements to
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improve one of these issues can improve the other side effect, the nature of the architecturahges

that will be suggested are distinct.

8.3.2.1:Using LUTSs as Shift Registers

Not being able to use the majority of the LUTs mmRPGA is wasteful in two ways. First, CLBs devate
significant amount of area to multiplexing the itgpand outputs of their LUTs. Second, as discugsed
Chapter 2, LUTs are actually built from small merasr Putting these two characteristics togethache
BLE actually has the basic building blocks to pdtitaly register multiple signals if the LUT is noeeded
for a logic function. However, conventional arelstiures only provide the capability to register sigmal

using the flip-flop.

Some commercial FPGAs already unlock a portiorhisf potential. As shown on the left of Figure &9,
conventional 4-LUT consists of 16 individual memarsils. The content of these cells is programmed
when a circuit is downloaded to the device. Dunmggmal operation, the values held in these cells a
selected through a multiplexer to implement a Idgitction. However, modern Xilinx devices expoke t
underlying memory cells within half of their LUTs &llow them to be used either as a conventional LU
or as a 1 to 16-bit shift register. Although th@& mechanism Xilinx uses to provide this funcélity is

not publicly known, the illustration on the right Bigure 8.9 shows one possibility. This shift ister
capability can be provided by adding a small numifeadditional components to each BLE: twenty 2:1
multiplexers and four memory cells. 16 of the Pnlltiplexers are added to the input of each of the
original memory cells to control whether the valugtten into the cell comes from the programmingito

or, when forming a shift register, from the prexsomemory cell. The remaining four multiplexers are
added to the address lines of the 16:1 multipleéaesontrol whether the address comes from the aeitsi
world, to implement a logic function, or from atsteaaddress that is defined when the BLE is prognaich

as a shift register.

This modification adds a huge raw number of regisiato the architecture because every previously
unused LUT in the device can implement up to sixtemgisters. For example, if a purely combinationa
circuit requiresN LUTSs, this can be mapped fBLEs. A deeply pipelined version of this circoiy add

AN registers. On an architecture that offers one ldd@ one flip-flop in each BLE, this will requir®l ¢

3N = 4N) BLEs. The firstN registers can be packed into a BLE with a LUT, tat other 8l registers
must be assigned to their own BLEs. The sameitiotuan architecture that offers one flip-flop ame
LUT that can be turned into a 1 to 16-bit shiftistgr in each BLE could theoretically only requfi¢ +
3/17N=1.18N) BLEs. This is because every BLE beyond the nabN does not use the LUT for logic.
This makes it available for use as a 16-bit skeifister. Combined with the flip-flop, this allowach BLE

with an unused LUT to implement 17 registers.
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Figure 8.9: Conventional BLE (left) and LUT/16-bit Shift-Register BLE (right)

“M” denotes a memory cell

However, the number of truly useful registers lely considerable lower. This is because although
heavily registered netlists require a large nundigripelining resources, the distribution of thelsmands

is relatively even throughout the circuit. For exde, in the heavily pipelined and C-slowed benctksia

in [40], 99% of signals require eight or fewer stgrs while 95% require four or fewer. Thus, thegarity

of nets simply cannot use deep, monolithic regibtarks. For that matter, even if a net requirésrge
number of registers between the source and sink, unlikely that it is a good idea to group all tbie
registers in a single location from a performaneadpoint. This is because one of the primary athges

of adding registers into a netlist is the capapild break very long paths into smaller parts. & hshift
registers will only be used for one or two registeather than the full 16. If the system is ablenap an
average of 1.5 registers to each shift registerntimber of required BLEs would b ¢ 3/2.5N = 2.2N).
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The large number of low latency signals in typicatlists indicates that it is likely more usefuladd the
capability to register multiple different signalg b smaller amount rather than a single signal targe

amount. As shown in Figure 8.10 and Figure 8.1dingle large shift register can be split into terdour
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smaller shift registers. Assuming that the 16:1ltiplexer in Figure 8.9 can be broken into smaller

multiplexers with little to no overhead, splittireg 16-bit shift register into two 8-bit shift regiss will
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likely require two additional 2:1 multiplexers aadditional two memory cells. Similarly, splittirgl16-bit
shift register into four 4-bit shift registers wiktquire four additional 2:1 multiplexers and faatditional

memory cells.

That said, there is another cost associated wilittisg a LUT into smaller shift registers. Addirthe
capability of turning a LUT into a single 1 to 18-bhift register likely incurs relatively littlev@rhead.
This is because although additional multiplexersl amemory cells are needed, the input and output
connectivity of the larger CLB does not require aianges — the input and output of the shift regist
simply borrow the connections already needed tathise.UT for logic. However, splitting a shift rister

into two or four smaller shift registers requiresear three additional outputs, respectively. Rfiog full
connectivity for these new outputs to the extectannel wires could significantly affect the ardate

CLB and associated connection blocks.

8.3.2.2:Adding Independent Flip-Flops

The fact that registers are generally evenly diated throughout circuits also contributes to theosid
issue that this section would like to address -t tha achievable clock frequency of a circuit may b
limited by the number of registers within specdieas of the device. This phenomenon can be rasgye
seen in Figure 8.1 and Figure 8.2 for circuits vetlogical depth below one LUT. While the critigedth
delay of most of the circuits goes down as morésters are added, the critical path delay for soifrthe
circuits stays constant or even goes up. Thidylikecurs because these very heavily registeremicsr
require a higher density of registers than the itecture provides in order to improve the critigedlth

delay.

Taking a step back for a moment, consider a diffesgenario. When a purely combinational circsit i
mapped to an FPGA, each of the individual logicchfo must fight with the others to be as close as
possible to the other logic blocks to which theg eonnected. Assuming that routing congestiorotsan
issue, the operational frequency of the resultinglementation is largely determined by how closeséh
logic blocks are able to get. Thus, it is expedieat a larger combinational circuit will have ayltéer
critical path delay, even if the logical depth lie tsame as the smaller circuit. This is because togic
blocks will interfere with each other in the largarcuit and prevent them from getting as closéhologic
blocks to which they are connected. However, ¢his be mitigated by increasing the logical densitthe
architecture. For example, if this netlist is magpo an FPGA that has twice as many LUTs in eddB, C
each LUT will be able to be “near” twice as manhest LUTs. Ignoring for a moment the effect this
architectural change might have on the speed ofrifteeconnect wires, this will allow the circuit tan

faster.
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A similar situation occurs for the registers inetlist. Beginning with a purely combination cirgugach
LUT will try to be as close as possible to the oth&Ts to which it is connected. As registers are
gradually added to the circuit, they are able tdkenthe system faster because the logical depttmeof t
circuit is reduced. Furthermore, these registegs@latively easy to find. Assuming that the isethas a
uniform logic depth across all paths, until the imaxm logic depth of the circuit dips below one, gbe
registers can simply be placed in the same BLEeis source LUT. Thus, the placement of the LUTS i
the system is still very dense and the criticahgidlay is improved dramatically. However, once libgic
depth of the circuit dips below one LUT, additiomegisters require additional BLEs. Since the stegs
are relatively evenly distributed throughout thecgit, the LUTs in the system must spread out tdkema
room for the required registers. This can nuléifyy potential advantage of adding the registethérfirst

place.

This phenomenon is shown in the example in Figut2.8As shown in Figure 8.12a, there are two paths
the circuit that must cross each other. The fivgerter takes an input from the left of the devérel sends
the output to the right. The second inverter tak@mput from the right of the device and sendsdbtput
to the left. For simplicity, this circuit is iniétily mapped to an architecture with one LUT and fhipeflop
per CLB and unit-length interconnect wires. As whoin Figure 8.12b, pipelining this circuit once
improves the critical path delay. Rather thandraing one wire segment, propagate through a Lud@, a
traversing three more wire segments, the new atipath delay is the time required to traverseeiwée
segments. However, as seen in Figure 8.12c, fupipelining does not improve the critical pathalel
because the entire netlist must be spread out ke mmom for these additional registers. The ondy o
reduce the critical path delay to one wire segnetd increase the number of registers in each CIAB.
shown in Figure 8.12d, this can be accomplishedrapping the circuit to an architecture with two

independently accessible flip-flops per CLB. Feg8r13 shows the BLE of such an architecture.

Notice that adding additional independent flip-Bop each BLE affects the system differently than
allowing LUTs to be used as shift registers. WHileth modifications increase the total number of
potentially available registers in the architectasea whole, since shift registers are built fronused
LUTs, inserting them into a computationally denseaastill requires the placement tool to spreadtloeit
LUTs in a netlist to provide whitespace. On thieesthand, introducing additional flip-flops intoctaCLB
increases the number of registers in computatipriEdhse regions without any need to change theitgens
of mapped LUTs. Thus, while shift registers cateptally provide denser register resources, aoiai

independent flip-flops are more likely to improwgical path delay.
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That said, adding flip-flops to a CLB also requimere inputs and outputs. The shift register aechire
suggested in Figure 8.9 added up to 16 registeitsout requiring any additional inputs or outpufBhe

split shift registers in Figure 8.10 and Figure18dlso added up to 16 registers and require 1 and 3
additional CLB outputs, respectively. However,teadditional independently accessible flip-flop eddo

a CLB requires its own input and output. This nee#mt although independently accessible flip-flops

might be more flexible, they are also potentiallgrsmexpensive.
The difference between independently accessileflips and shift registers can also be seen in thay

provide registers to applications. The number QEB that a netlist requires can be estimated using

Equation 8.9.

If (L > R
IndFF

This equation assumes that each BLE consists ofLalie that may or may not have the capability to

—_ *
j, #of requiredBLEs= L, otherwise= L+{R (IndFF L)—‘(s.g)

ULReg

implement one or more shift registers (if it is no¢eded for logic), along with some number of
independently accessible flip-flop4. is the number of LUTSs in the netlif,is the number of registers in

the netlistIndFF is the average number of independently accesgiptéiops available in each BLE in the
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target architecture andLRegis the average number of registers that can beethfp each BLE with an
unused LUT.

Since each BLE contains a single LUT dndFF number of independently accessible flip-flopsthié
number of registers in a netlist is relatively lotie number of LUTs defines the minimum number of
BLEs needed to implement the circuit. Howeveth& number of registers in the circuit is large wgtg

the registers will determine the number of requiBddEs. Since each LUT will require its own BLEgth
first (L*IndFF) flip-flops in the netlist can use the registensBLEs occupied by a LUT. However,
registers beyond this number will require additiodBREs. Each of these extra BLEs with an unoccdpie
LUT will be able to implementULRegregisters. As shown in Equation 8.10, the avenagmber of
registers that can be mapped to a BLE with an wygied LUT equals the average number of independent
flip-flops in each BLE plus the average numberadisters can be implemented using the LUT as one or
more shift registers. The average number of registan be implemented using an unoccupied LUT is
ANSR the average number of shift registers per BLEltiplied by RegPerSRthe average number of

registers that can be mapped to each shift register

ULReg=IndFF + (ANSR RegPerSR (8.10)

8.4: Evaluation and Results

These equations can be used to gain some basghinsgarding how efficiently heavily registered
applications can be mapped to different registéraened architectures. As shown in Table 8.3, rh&l
round of testing investigated how effectively shdgister reduce the number of required BLEs coeygbar
to independently accessible flip-flops. This tegtincluded fifteen architectures. The first skfiee all
contain one independently accessible flip-flop pef. Architecturel-0A is the basic four 4-LUT, four
flip-flop architecture described in previous chapteSince each BLE in this architecture contains tip-
flop, IndFF = 1. Since the LUTSs in this architecture cannetused as shift registetANSR= 0. This
makesULReg= 1, since all the BLEs in the systems can prowde register, regardless as to whether or

not the LUT is occupied.

Architecturel-OB adds the capability for one of the four 4-LUTseimch CLB to be used as a 1 to 16-bit
shift register (abbreviated as SR-16). Since @ldh in this architecture still contains one indegently
accessible flip-floplndFF = 1. Since one in four of the LUTs in the systean be used as a shift register,
ANSR= 0.25. At this point, the average number of seggs that can be mapped to a shift register begome
important. While each shift register can be useiiniplement at least one register, the hope isahfdast
some of the shift registers will be able to beefillwith more registers. Although this is largebtlist
dependent, 1, 1.5 and 2 seem to be reasonableagssiiorRegPerSR These values fdRegPerSResult
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in three values folJLReg 1.25, 1.375, and 1.5 respectivelfjRegPerSR= 1 results inULReg= 1.25
because each BLE with an unused LUT has one indepelly accessible flip-flop and 0.25 shift register
that can be used to implement one register on geeRegPerSR= 1.5 results inJLReg= 1.375 because
each BLE with an unused LUT has one independemttgssible flip-flop and 0.25 shift registers thahc
be used to implement 1.5 registers on average.hitéaturesl-0C throughl-OE add more hardware to
allow two through all four of the 4-LUTs in each Blto be used as SR-16s. As mentioned earlier, mode
Xilinx devices provide one independent flip-floprg@LE and allow half of the LUTs in the system te b

used as SR-16s. This is similar to the resouro@gged by architecture0C.

Table 8.3: Architectures Used in Testing Phase | —
Adding Independent Flip-Flops and 1 to 16-bit ShiftRegisters

Arch Description — Contents of Each CLB
1-0A 4x normal LUTs, 4x FFs (default architecture)
1-0B 3x normal LUTs, 1x LUT with SR-16 mode, 4x FFs (dnéT in each CLB can be used as a 1 t016-bit shiftster)
1-0C 2x normal LUTs, 2x LUTs with SR-16 mode, 4x FFsdtllJTs in each CLB can be used as a 1 to 16-bit s#gister)
1-0D 1x normal LUT, 3x LUTs with SR-16 mode, 4x FFs éhil_UTs in each CLB can be used as a 1 to 16-litrslgister)
I-0E 4x LUTs with SR-16 mode, 4x FFs (all four LUTs iach CLB can be used as a 1 to 16-bit shift register
1-2A 4x normal LUTs, 5x FFs (adds 1 additional independé per CLB)
1-2B ' 3x normal LUTs, 1x LUT Wit_h SR716 mode, 5x FFs N
(one LUT in each CLB can be used as a 1 to 16Hifit egister and adds 1 additional FF per CLB)
1-2C _ 2x normal LUTs, 2x LUTs wit_h SR-_16 mode, 5x FFs N
(two LUTs in each CLB can be used as a 1 to 18Hift register and adds 1 additional FF per CLB)
12D _ 1x normal LUT, 3x LUTs with SR-1.6 mode, 5x FFs N
(three LUTs in each CLB can be used as a 1 to tL6hift register and adds 1 additional FF per CLB)
1-2E _ 4x LUTs with SR-:'LG mpde, 5x FFs B
(all four LUTs in each CLB can be used as a 1 tdit&hift register and adds 1 additional FF peBEL
I-4A 4x normal LUTSs, 6x FF (adds 2 additional independéhper CLB)
1-4B _ 3x normal LUTs, 1x LUT Wi_th SR_—16 mode, 6x FFs B
(one LUT in each CLB can be used as a 1 to 16Hifit iegister and adds 2 additional FFs per CLB)
l-aC 2x normal LUTSs, 2x LUTs with SR-16 mode, 6x FFs
(two LUTs in each CLB can be used as a 1 to 16¥ift register and adds 2 additional FFs per CLB)
1-4D 1x normal LUT, 3x LUTs with SR-16 mode, 6x FFs
(three LUTs in each CLB can be used as a 1 to tL§hift register and adds 2 additional FFs per CLB)
l-4E _ 4x LUTs with SR-_:LG rr_]ode, _6x FFs 3
(all four LUTs in each CLB can be used as a 1 tdit8hift register and adds 2 additional FFs peBC
Arch Normal LUTs SR-16 FF/CLB IndFF ANSR RegPerSR ULReg Additional
/CLB LUTs/CLB 10 Pins
I-0A 4 0 0 - 1
I-0B 3 1 0.25 115,2 1.25,1.375, 1.5
1-0C 2 2 4 1 0.5 1,15,2 15,1.75,2 0
1-0D 1 3 0.75 1,15,2 1.75,2.125,2.p
I-0E 0 4 1 1,152 2,25,3
I1-2A 4 0 0 - 1.25
1-2B 3 1 0.25 1,15,2 15,1.625,1.7p
1-2C 2 2 5 1.25 0.5 1,15,2 1.75, 2, 2.25 2
1-2D 1 3 0.75 1,15,2 2,2.375, 2.75
I-2E 0 4 1 1,152 2.25, 2.75, 3.25
I-4A 4 0 0 - 1.5
1-4B 3 1 0.25 1,15,2 1.75, 1.875, 2
1-4C 2 2 6 15 0.5 1,15,2 2,2.25,25 4
1-4D 1 3 0.75 1,15,2 2.25,2.625, 3
I-4E 0 4 1 1,152 25,3,35
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Architecturel-2A returns to the basic four 4-LUT architecture batis.one additional flip-flop per CLB,
bringing the total to five independently accessitlile-flops. This requires 2 additional /0O ping gach
CLB. Since each BLE in this architecture contdir®5 flip-flops,IndFF = 1.25. Since the LUTs in this
architecture cannot be used as shift registel$SR= 0. This makedJLReg= 1.25. As with thd-0B
throughl-OE architectures, architecture€B throughl-2E add the capability for some of the LUTs in each
CLB to be used as an SR-16. In a similar manmehijt@cturel-4A adds two additional flip-flops per CLB
to the basic architecture and architecturd8 throughl-4E allow some of the LUTs in the device to be
used as SR-16s.

The architectures used in this testing stop atadditional flip-flops per CLB because this requifear
additional CLB /O pins. All of the architectureiscussed in this chapter add four or fewer aduttio
CLB inputs or outputs because the basic architectaquires 28 CLB inputs and outputs (16 inputs/4
outputs for the four 4-LUTs and 4 inputs/4 outpiasthe four flip-flops). An additional four CLB/O
pins result in 14% more signals for the connechitmtks to deal with. Since the fundamental phipdso
this chapter began with tries to limit the impattay architectural modifications, limiting the nber of

additional CLB inputs and outputs to 14% will ligedover all of the architectures that are of indére

The efficiency of these fifteen architectures inpmiag heavily registered netlists was tested bylyapgp
Equations 8.9 and 8.10 to the 22 depth = 1 netlistd 22 depth = 0.33 netlists used in the previous
chapters. Figure 8.14 and Figure 8.15 show thengéiic mean number of BLEs that these netlistsirequ
when mapped to each of the various architectursls.of these values are normalized to the number of

BLEs required by the depth = N netlists.

Although all of these architectures reduce the remdf BLEs that these netlists require, adding the
capability of using some of the LUTs in the devige SR-16s has a much larger effect than adding
additional flip-flops. As shown in Figure 8.15,dktly SR-16 capabilities to all four LUTs in each L
(architecturd-OE) halves the number of BLEs that are required leyliasic system for the depth = 0.33
netlists (3.133x versus 6.172x the number of BL&guired by the original netlists represents a 508
improvement, assuming that an average of 1.5 ergisan be mapped to each shift register). Thasfésmt
that even adding 2 additional flip-flops per CLBdaitecturel-4A) cannot achieve. THed4A architecture
only reaches a 0.667x improvement over the b&€)ié& architecture. Furthermore, adding SR-16
capabilities does not require adding any additioid@l pins. Largely, this behavior occurs because
although thd-OE architecture has a smallerdFF value than thé-4A architecture (1 versus 1.5), it has a
largerULRegvalue (between 2 and 3 versus 1.5). Since théhdep.33 netlists have so many BLEs with

an unoccupied LUT, thBLRegvalue has a much larger impact on the number &SBthat is required.
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This phenomenon can also be seen elsewhere ineFgj6. For the depth = 0.33 netlists, adding the
capability for one of the LUTs in each CLB to beedsas a SR-16 (architectuteOB) produces
approximately the same results as adding one additflip-flop (architecturd-2A). Again assuming that
an average of 1.5 registers can be mapped to &éthegjister, thd-0B architecture requires an average of
4.795x the number of BLEs in the original netlisthile the I-2A architecture requires an average of
4.938x. Furthermore, adding the capability for tafothe LUTs in each CLB to be used as SR-16s
(architecture I-0C) produces approximately the same results as addwvm additional flip-flops
(architecturd-4A). Thel-0C architecture requires an average of 4.006x thebeurof BLES in the original
netlists while thd-4A architecture requires an average of 4.115x. Tdkes sense because for the BLEs
in the system with an unoccupied LUT, having onel8Rs essentially the same as having one exjpa fli
flop, even assuming the worse case wheegPerSR= 1. Both architectures hawdlLReg = 1.25.
Similarly, having two SR-16s in each CLBs is eswsdigtthe same as having two extra flip-flops. Aga

even assuming the worse case, both architectuked HaReg= 1.5.

However, this characteristic only applies to BLEatthave an unoccupied LUT. The depth = 1 netlists
shown in Figure 8.14 require far fewer additionhEH8. Thus, these netlists have a much smallev tHti
BLEs with unoccupied LUTs. This affects the result~or these netlists, to produce approximatedy th
same results as adding one additional flip-flogiiagecturel-2A), two of the LUTs in each CLB need SR-
16 capabilities (architectudleOC). Assuming that an average of 1.5 registers eamapped to each shift
register, thd-0C architecture requires an average of 1.590x thebeurof BLEs in the original netlists
while thel-2A architecture requires an average of 1.585x. &rigil to produce approximately the same
results as adding two additional flip-flops (arelturel-4A), all four of the LUTs in each CLB need SR-16
capabilities (architecturelE). Thel-OE architecture requires an average of 1.432x thebeurof BLES in

the original netlists while the4A architecture requires an average of 1.436x. MERel6s are required to
match the results produced by adding additionpHftips because the number of BLEs with unoccupied
LUTs in the depth = 1 netlists no longer dwarfs thenber of BLEs with an occupied LUT. This makes
the ULRegvalue less important and thedFF value more significant. That said, the benefiatddwing
LUTs to be used as SR-16s is still impressive,i@agrly because this does not increase the nuraber
CLB 1/O pins.

Adding independent flip-flops or allowing LUTs teelused as SR-16s are not the only ways of adding
additional register resources. Although it regaiiegldition CLB output pins, it is also possiblealtow
each LUT to be used as two 1 to 8-bit shift regsstSR-8s) or four 1 to 4-bit shift registers (S&-4Thus,
the next phases of testing investigated the effiyieof architectures that had these types of ressur This
testing was divided into 3 separate parts. Therme@hase of testing assumed that each CLB could

support converting one LUT in each CLB into one BRtwo SR-8s or four SR-4s. The third and fourth
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phases assumed that each CLB could support comgettvo or four of the LUTs in each CLB,
respectively, into shift registers. Again, eachitefse LUTs could be used as one SR-16, two SR-8aip
SR-4s. The testing was divided in this manner beeadding the basic components required to coavert
LUT into any kind of shift register might be costlirhis may be the reason that Xilinx devices ailgw
half of their LUTs to be used as SR-16s. As mewtibearlier, adding the capability to turn a 4-Lldio
even a SR-16 could require twenty additional 2:1ltiplexers and four additional memory cells.
Depending upon the structure used for the basic BUd the necessary transistor sizing that is reduir
this may be significant. Thus, each of the subsatiiphases of testing explored what could be
accomplished by adding shift registers and addafidlip-flops to the system while limiting the nuebof
modified LUTSs.

As shown in Table 8.4, the second phase of testingpared the mapping efficiency of seven architestu
Four of the architectures are from the first phafsiesting:1-0A, 1-0B, I-2B, I-4B. Listed first is the default
architecture]-OA. Next comes all of the architectures that camlaele that do not require any additional
I/0 pins and have exactly one modified LUT per CLBne architecture can be made that has one LUT in
each CLB that can be used as a SR-16, architeiBdrom the first round of testing. Next comes 4dll o
the architectures that can be made that requireaddéional 1/0O pin and have exactly one modifieddTL

per CLB. Only one architecture can be md#id A, an architecture that allows one of the LUTs inhea

CLB to be used as two SR-8s. This process cordifarewo, three and four additional 1/O pins pésBC

As seen in Figure 8.16 and Figure 8.17, for archites in which one unoccupied LUT can be converted
into one or more shift registers, increasing thenber of I/O pins in each CLB is relatively compegi
While adding the capability of converting one LU@rpCLB into a SR-16 provides some benefit (0.884x
improvement over the default architecture for tlepth = 1 netlists and 0.777x improvement over the
default architecture for the depth = 0.33 netlistslarger improvement comes from mapping the @sdo
architectures that have CLBs with additional I/Oni(up to a 0.699x improvement over the default
architecture for the depth = 1 netlists and up @5)8x improvement over the default architecturetfie
depth = 0.33 netlists). However, for the depth netlists, the benefits of creating more sophigtida
architectures largely drops off at architectli¥8A, a device with one additional flip-flop and one Tlthat
can be converted into two SR-8s per CLB. Archiiextl-3B, a system with one LUT that can that be
converted into four SR-4s per CLB is less compgllinVhile architecturel-3A improved the number of
BLEs required by 0.718x compared to the defaulhigecture (1.403x versus 1.954x, again assuming tha
an average of 1.5 registers can be mapped to é#ftiregister), thel-3B architecture only improve the
number of BLEs by 0.733x (1.432x versus 1.954khis is largely because the depth = 1 netlistsalo n
require a huge number of BLEs with unoccupied LUTEhus, having a largdndFF is preferable to a
largerULReg (whenRegPerSR= 1, IndFF = 1.25 andJLReg= 1.75 versusndFF = 1 andULReg= 2)
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However, for the depth = 0.33 netlists, architeetli3B provides better performance than architectlire
3A. Architecturell-3B improved the number of required BLEs by 0.508x levf@rchitecturdl-3A only
improved the number of required BLEs by 0.568x.isTik because the depth = 0.33 netlists requireemor
registers, creating a larger fraction of BLEs withoccupied LUTs. That said, architecti«4B can be
essentially disregarded. This is because whiteqtires more additional 1/0 pins than eithieBA or II-

3B, it does not produce dramatically better resuitntll-3A for the depth = 1 netlists (1.366x versus
1.403x) and produces worse results tHhe@B for the depth = 0.33 netlists (3.517x versus 3x].33

As shown in Table 8.5, the third phase of testingygared the mapping efficiency of ten architectures
Again, four of the architectures are from the fipblase of testing-0A, 1-0C, I-2C, I-4C. The remaining

six were generated using the same methodology tieinecond testing phase: all of the architectilnats

Table 8.4: Architectures Used in Testing Phase Il —
Adding Independent Flip-Flops and Shift Registers] Modified LUT/CLB
Arch Description — Contents of Each CLB
I-0A* 4x normal LUTs, 4x FFs (default architecture)
1-0B* 3x normal LUTs, 1x LUT with SR-16 mode, 4x FFs (dréT in each CLB can be used as a 1 to 16-bit sédtster)
3x normal LUTs, 1x LUT with 2x SR-8 mode, 4x FFs

II-1A (one LUT in each CLB can be used as two 1 to &tiit registers)
1-2B* _ 3x normal LUTs, 1x LUT with SR-16 mode, 5x FFs _
(one LUT in each CLB can be used as a 1 to 16Hifit iegister and 1 additional FF per CLB is added)
I1-3A _ 3x normal LUTs, 1x LUT Wi_th 2X _SR-8 mode, 5x FFs _
(one LUT in each CLB can be used as two 1 to &iit registers and 1 additional FF per CLB is atjde
I-3B 3x n_ormal LUTSs, 1x LUT with 4x SR-4 mode,_ 4x FFs
(one LUT in each CLB can be used as four 1 to 4fiit registers)
l-4B* 3x normal LUTs, 1x LUT with SR-16 mode, 6x FFs

(one LUT in each CLB can be used as a 1 to 16Hifit egister and 2 additional FFs per CLB are atjde

Arch Normal SR-16 2x SR-8 4x SR-4 FF IndFF | ANSR | RegPerSR| ULReg Extra
LUTs LUTs LUTs LUTs /ICLB 10 Pins
/CLB /CLB /CLB /CLB
I-0A* 4 0 0 0 4 1 0 - 1
1 1.25 0
I-0B* 3 1 0 0 4 1 0.25 1.5 1.375
2 1.5
1 1.5
I-1A 3 0 1 0 4 1 0.5 15 1.75 1
2 2
1 1.5
I-2B* 3 1 0 0 5 1.25 0.25 1.5 1.625 2
2 1.75
1 1.75
11-3A 3 0 1 0 5 1.25 0.5 1.5 2
2 2.25 3
1 2
11-3B 3 0 0 1 4 1 1 15 25
2 3
1 1.75
I-4B* 3 1 0 0 6 15 0.25 1.5 1.875 4
2 2

* Denotes architecture from Phase | testing
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require one through four additional 1/0O pins thatvé exactly two modified LUTs per CLB were

investigated.

As seen in Figure 8.18 and Figure 8.19, for archites in which two unoccupied LUTs can be conwkrte
into two or more shift registers, increasing thember of 1/0 pins in each CLB is still relatively
compelling. Although adding the capability of ceming two of the LUTs in each CLB into SR-16s
provides the largest benefit (by itself a 0.814xiavement for the depth = 1 netlists and a 0.649x
improvement for the depth = 0.33 netlists), mapgim@rchitectures that have CLBs with addition&@ I/
pins also produces a relatively significant impmnoest (up to 0.670x improvement for the depth = 0.33
netlists and up to 0.431x improvement for the depth33 netlists). That said, as with the architezs in

the previous round of testing, the benefits of tngamore sophisticated architectures largely droffsat
three additional 1/0 pins. All three architectureish two modified LUTs and four additional I/O iper
CLB can likely be eliminated from considerationcgnthey do not provide enough benefit to justifg th

additional I/O pins required.

The architectures that worked best in this testigp showed the same netlist dependence as in the
previous round of testing. While the depth = llisist preferred architecturé2C andlll-3A for devices

with 2 and 3 additional I/O pins respectively, ttepth = 0.33 netlists preferred architectute2A andlll-

3B. Thel-2C andIlI-3A architectures provided a 0.718x and 0.691x imprev&, respectively, for the
depth = 1 netlists and th#-2A and IlI-3B architectures provided a 0.508x and 0.464x impmad,
respectively, for the depth = 0.33 netlists. Agalnis is because the depth = 1 netlists prefersit@ctures

that trade a slightly higheindFF for a slightly lower ULReg while the depth = 0.33 netlists prefer
architectures that trade a slightly high#rRegfor a slightly lowerindFF.

As shown in Table 8.6, the last phase of testingpared the mapping efficiency of twelve architeesur
that had four modified LUTs per CLB. As seen iglie 8.20 and Figure 8.21, these architectures ethow
the most improvement by simply allowing all four thie LUTs in each CLB to be used as SR-16s. By
itself, this represented a 0.733x improvement dalierdefault architecture for the depth = 1 netlésts a
0.508x improvement for the for the depth = 0.33istst However, as with the previous two testshlibe
depth = 1 and depth = 0.33 netlists showed markggdvement for architectures that added up to three
additional I/O pins. Again, architectures with fanodified LUTs and four additional 1/O pins per BL
can likely be eliminated from consideration sindeeyt do not provide a sizeable benefit over the
architectures that require three additional I/Cspifrurthermore, also like the previous round sfitg, the
architectures that showed the best performancéh@®depth = 1 netlists had a slightly higledFF and

the architectures that showed the best performdmcehe depth = 0.33 netlists had a slightly higher
ULReg
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Table 8.5: Architectures Used in Testing Phase IH-
Adding Independent Flip-Flops and Shift Registers2 Modified LUTs/CLB

Arch Description — Contents of Each CLB
1-0A* 4x normal LUTs, 4x FFs (default architecture)
1-0C* 2x normal LUTs, 2x LUTs with SR-16 mode, 4x FFs
(two LUTs in each CLB can each be used as a 1 {uitlhift register)
2x normal LUTSs, 1x LUT with SR-16 mode, 1x LUT willx SR-8 mode, 4x FFs
-1A (one LUT in each CLB can be used as a 1 to 16Hifit iegister and
one LUT in each CLB can be used as two 1 to 8Hift segisters)
l-2C* 2x normal LUTs, 2x LUTs with SR-16 mode, 5x FFs
(two LUTs in each CLB can each be used as a 1 4oitl$ift register and 1 additional FF per CLBatded)
I-2A 2x normal LUTs, 2x LUTs with 2x SR-8 mode, 4x FFs
(two LUTs in each CLB can each be used as two8thii shift registers)
2x normal LUTs, 1x LUT with SR-16 mode, 1x LUT wix SR-8 mode, 5x FFs
I11-3A (one LUT in each CLB can be used as a 1 to 16Kt iegister,
one LUT in each CLB can be used as two 1 to 8Hift segisters, and 1 additional FF per CLB is atjde
2x normal LUTs, 1x LUT with SR-16 mode, 1x LUT widix SR-4 mode, 4x FFs
111-3B (one LUT in each CLB can be used as a 1 to 16Hifit iegister
and one LUT in each CLB can be used as four 1hi dhift registers)
l-aC* 2x normal LUTs, 2x LUTs with SR-16 mode, 6x FFs
(two LUTs in each CLB can each be used as a 1 4oitl€hift register and 2 additional FFs per CLB added)
I-4A 2x normal LUTs, 2x LUTs with 2x SR-8 mode, 5x FFs
(two LUTs in each CLB can each be used as two8thi shift registers and 1 additional FF per ClsBadded)
2x normal LUTs, 1x LUT with 2x SR-8 mode, 1x LUTti4x SR-4 mode, 4x FFs
111-4B (one LUT in each CLB can be used as two 1 to &fiit registers
and one LUT in each CLB can be used as four 1Hi dhift registers)
Arch Normal SR-16 2x SR-8 4x SR-4 FF IndFF | ANSR | RegPerSR| ULReg Extra
LUTs LUTs LUTs LUTs /CLB 10 Pins
/CLB /CLB /CLB /CLB
I-0A* 4 0 0 0 4 1 0 - 1
1 15 0
I-0C* 2 2 0 0 4 1 0.5 15 1.75
2 2
1 1.75
I-1A 2 1 1 0 4 1 0.75 15 2.125 1
2 2.5
1 1.75
I-2C* 2 2 0 0 5 1.25 0.5 15 2
2 2.25 2
1 2
11-2A 2 0 2 0 4 1 1 15 25
2 3
1 2
11-3A 2 1 1 0 5 1.25 0.75 15 2.375
2 2.75 3
1 2.25
111-3B 2 1 0 1 4 1 1.25 15 2.875
2 3.5
1 2
I-4C* 2 2 0 0 6 15 0.5 15 2.25
2 25
1 2.25
1-4A 2 0 2 0 5 1.25 1 15 2.75 4
2 3.25
1 25
111-4B 2 0 1 1 4 1 15 15 3.25
2 4.0

* Denotes architecture from Phase | testing
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Table 8.6: Architectures Used in Testing Phase IV —
Adding Independent Flip-Flops and Shift Registers4 Modified LUTs/CLB

Arch Description — Contents of Each CLB

1-0A* 4x normal LUTSs, 4x FFs (default architecture)

I-OE* 4x LUTs with SR-16 mode, 4x FFs (all four LUTs iach CLB can be used as a 1 to 16-bit shift register
3x LUTs with SR-16 mode, 1x LUT with 2x SR-8 modea, FFs

IV-1A (three LUTs in each CLB can be used as a 1 to tL§Hifi register

and one LUT in each CLB can be used as two 1 tib §hlft registers)

4x LUTs with SR-16 mode, 5x FFs

_ *
I-2E (all four LUTs in each CLB can be used as a 1 tbit8hift register and 1 additional FF per CLBaided)

2x LUTs with SR-16 mode, 2x LUTs with 2x SR-8 mod&,FFs
IV-2A (two LUTs in each CLB can be used as a 1 to16Hiit eegister and
two LUTs in each CLB can be used as two 1 to &fhiit registers)

3x LUTs with SR-16 mode, 1x LUT with 2x SR-8 mo&e, FFs
IV-3A (three LUTs in each CLB can be used as a 1 to tL§Hift register,
one LUT in each CLB can be used as two 1 to 8Hiit eegisters, and 1 additional FF per CLB is atjde

3x LUTs with SR-16 mode, 1x LUT with 4x SR-4 modea, FFs
IV-3B (three LUTs in each CLB can be used as a 1 to tL§Hift register
and one LUT in each CLB can be used as four 1k ghift registers)

1x LUTs with SR-16 mode, 3x LUT with 2x SR-8 mode, FFs
IV-3C (one LUT in each CLB can be used as a 1 to 16Hifit egister
and three LUTs in each CLB can be used as two8thib shift registers)

4x LUTs with SR-16 mode, 6x FFs

- *
-4E (all four LUTs in each CLB can be used as a 1 tbit8hift register and 2 additional FFs per CLB added)

2x LUTs with SR-16 mode, 2x LUTs with 2x SR-8 mo8&,FFs
IV-4A (two LUTSs in each CLB can be used as a 1 to16Hiit eegister, two LUTs in each CLB can each beduas two 1 to 8-bit shift
registers and 1 additional FF per CLB is added)

2x LUTs with SR-16 mode, 1x LUT with 2x SR-8 mode, LUT with 4x SR-4 mode, 4x FFs
IV-4B (two LUTs in each CLB can be used as a 1 tol16Hiit eegister, one LUT in each CLB can be used as
two 1 to 8-bit shift registers and one LUT in e&@itB can be used as four 1 to 4-bit shift registers)

4x LUTs with 2x SR-8 mode, 4x FFs

IV-4C (all four LUTs in each CLB can be used as two 8-tuit shift registers)

Arch Normal SR-16 2x SR-8 4x SR-4 FF IndFF | ANSR | RegPerSR| ULReg Extra
LUTs LUTs LUTs LUTs /CLB 10 Pins
/CLB /CLB /CLB /CLB
I-0A* 4 0 0 0 4 1 0 - 1
1 2 0
I-OE* 0 4 0 0 4 1 1 1.5 25
2 3
1 2.25
IV-1A 0 3 1 0 4 1 1.25 15 2.875 1
2 35
1 2.25
I-2E* 0 4 0 0 5 1.25 1 1.5 2.75
2 3.25 2
1 25
IV-2A 0 2 2 0 4 1 15 1.5 3.25
2 4.0
1 2.5
IV-3A 0 3 1 0 5 1.25 1.25 15 3.125
2 3.75
1 2.75
IV-3B 0 3 0 1 4 1 1.75 15 3.625 3
2 4.5
1 2.75
IV-3C 0 1 3 0 4 1 1.75 1.5 3.625
2 45
1 2.5
I-4E* 0 4 0 0 6 15 1 15 3
2 35
1 2.75
IV-4A 0 2 2 0 5 1.25 15 15 35
2 4.20 4
1 3
IV-4B 0 2 1 1 4 1 2 1.5 4
2 5
1 3
IV-4C 0 0 4 0 4 1 2 1.5 4
2 5

* Denotes architecture from Phase | testing
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8.5: Conclusions and Future Research
This chapter examined the potential benefits ofdasing the number of registers that FPGAs provide.
Heavy pipelining and C-slowing can add a huge nundferegisters into a netlist. Although this can
improve the critical path delay significantly, ttdtso considerably increases the number of BLEsata
required. Since conventional architectures offeEB with one LUT and one flip-flop, circuits thaave a
uniform logic depth can be pipelined or C-slowedatdogic depth of one LUT and not require a large
number of additional logic blocks. This is becatlse registers in these circuits can be put ineogame
BLEs as the logic. However, many circuits have sgmaths that go though several layers of logic evhil
the rest of the circuit goes through relatively fe@ince the number of registers added to all pathst be
the same to maintain the functionality of the cirrcdeeply pipelining or C-slowing these non-unifor
netlists may tremendously increase the number dEBthat are needed. This is because many registers
will have to be added to the short paths in ordefutly pipeline the long paths. For that matteRGA
application developers often purposefully add rpldtiregisters to signals in their circuits. Thigdbne to

allow the delay through long wires to be brokeragpss multiple clock cycles.

There have been multiple previous research eftbes have investigated potential ways of increasimgy
number of registers that FPGAs provide. Unfortahatthese systems typically impose strict limaas

on the types of circuits they can implement or haxmeunacceptably large area overhead when mapping
more conventional, lightly-registered applicationSince these architectures are not practical lier t
majority of users, they are not commercially viabl€his chapter addresses the problem of introducin
additional registers into an FPGA in a fundamentdifferent way. Rather than making drastic change
that alter the basic usability of entire systenis itkely more reasonable to add small modificasithat are

beneficial to heavily registered applications, lugely invisible to more conventional circuits.

There are two basic areas of an FPGA that additimggsters can be incorporated: the routing nekveosrd
the logic blocks. While some previous architecduteave added registers into the interconnect by
embedding registers inside switchboxes, this regityoduces more problems than it solves. Adding
registers that are connected to all of the wired #mter and exit a switchbox is not practical tuarea
concerns. However, introducing registers into gpistem that have more limited input and outputarysi
changes the fundamental nature of the placementr@umihg problems. As discussed in the previous

chapter, this kind of architecture can require iygeaware routing algorithms.

From a performance standpoint, embedding registethe interconnect switchboxes does not make the
system considerably faster compared to using mgighat might be found in more conventional logic
block locations. Although signals that use regssie the interconnect do not incur the delay aiséed

with entering and exiting a CLB, they cannot esctiygelargest component of delay in modern FPGAs: th
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delay though the wires themselves. Furthermois,likely that wire delay will become a larger paf the
overall delay in the system in future process tetdgies. Using the values provided by VPR for @185
FPGAs, devices with registers embedded in thedoterect not only require more complicated CAD tpols

they are likely less than 0.92x faster than moreveational architectures.

However, this is not to say that embedding regsstathin the routing fabric cannot help the perfanoe

of any FPGA, only that it does not make sense ¢orporate these kinds of resources in architectiiats
only have conventional island-style routing wireBor example, in an architecture with dedicatedalloc
connections, embedding registers along these vdoedd be quite helpful. If each CLB has a direct
connection to each of its 8 or 24 nearest neighlamiding a register to split the delay through whes
could make these connections much faster. Altesmelgt this could allow the system to use smallevets

for these connections and still have them keep it other faster routing resources in the architext
Furthermore, adding registers to these dedicatademions does not create a problem for the routéis

is because the endpoints of these connectiondraseds fixed. Thus, these wires are not shareduregs
that can run into congestion resolution problemgeifisters are assigned to these locations during

placement.

That said, focusing FPGA architects on incorpoptidditional registers into the logic blocks thelvse

is probably a better idea. However, there areipialivays that this could be accomplished. Onéoopis

to simply add more independently accessible flgpél to each CLB. Another way is to harness the
memory cells that already exist within the LUTsrtiselves. With a few minor modifications, any LUT
that is not needed to implement the logic of thhewt can be converted into one 1 to 16-bit stefjister,

two 1 to 8-bit shift registers or four 1 to 4-biif registers.

However, there are several practical concerns Hiaiuld be kept in mind when evaluating any
modifications to the system. First, there is thenber of input and output pins that each of theméous
enhancements add to the CLB in which they are gladeach additional flip-flop that is added to aRCL
also adds one additional input pin and one additiamutput pin. Furthermore, while any LUT that is
converted into an SR-16 can utilize the existing3Ghputs and outputs, LUTs that are converted into

SR-8s or four SR-4s require one or three additiongbut pins, respectively.

The next issue is the basic usability of shift ségis. Although deeply pipelined and C-slowed wisc
contain a large total number of registers, theygaeerally evenly distributed throughout the citcurhe
majority of signals in even the most heavily regiistl netlists require less than four registersr that
matter, for performance reasons these registersrgiynmust be mapped to multiple locations betwien

source and sink. Thus, each shift register widlbably only be used to implement one or two reggste
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For this reason, while splitting a LUT into mulépshift registers requires more resources, thihinbe a

good idea since this gives the LUT the capabititptovide registers to multiple different signals.

The last issue concerns the difference in locailabvidity between individual flip-flops and shifegisters.
The ratio of logic to register resources withintagr parts of the device likely limits the perfomca
benefits of heavily pipelining or C-slowing a nstli This is because beyond a certain criticalsthotd of
pipelining or C-slowing, the circuit must spreadt do accumulate all of the necessary registershén t
netlist. This can counteract the benefits of penfag pipelining or C-slowing in the first placélthough
shift registers provide very dense register ressjrthey can only be implemented in LUTs that at n
used for logic. Thus, for these to be inserted tightly knit computational kernels, the LUTs hetcircuit
must be spread out to provide empty LUT locatiodraundamentally, while shift registers are good at
raising the average number of registers in the ekig whole, they have a hard time increasingdbal |
density of register resources where they might bedad. On the other hand, adding independently
accessible flip-flops to CLBs inherently evenlyses the ratio of register resources to logic. Thésans

that although each register might be more expentiiey may be more useful.

These concerns regarding how different types afuees within potential target architectures intergith
each other and the characteristics of incomingistetiwere captured using a few equations. These
equations considered basic attributes, like the barmof LUTs and registers required by a circuignal
with more subtle issues such as the average nuafilvegisters that an incoming netlist could mashdt
registers that might be in the architecture. Thegaations were used to evaluate how 32 different
architectures handled two different sets of heavdgistered circuits, the 11 combinational and 11

sequential MCNC netlists pipelined, C-slowed artahred to logic depth = 1 and logic depth = 0.33.

This testing showed that the largest gains coulddbgeved by giving as many LUTSs as possible thiab
to be used as a 1 to 16-bit shift register. Ferdbpth = 1 netlists, allowing half of the LUTskte used as
SR-16s, like modern Xilinx devices, improved themer of BLES required by 0.814x over the default
architecture that did not contain shift registé&kowing all of the LUTs to be used as SR-16s reztlithe
number of BLEs by 0.733x. Similarly, for the deptt®.33 netlists, allowing half of the LUTs to bsed

as SR-16s improved the number of BLEs required .6y@ and allowing all of the LUTs to be used as
SR-16s reduced the number of BLEs by an enormd&88.

Although adding additional flip-flops to the CLBs splitting these shift registers into smaller bsckuld
potentially further improve the mapping efficienofan architecture, the achievable improvementswer
comparatively much smaller. Furthermore, thesekiaf modifications increase the number of 1/0O pins

that each CLB needs, requiring more extensive ababg the system. Even adding four I/O pins tdeac
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CLB could only improve the results obtained by wailog all four LUTs in each CLB to be used as an SR-
16 by 0.872x for the depth = 1 netlists and 0.7txhe depth = 0.33 netlists. Thus, from the dfaint

of layout and architectural design, the most imguareispect to consider during the development gsoce

an FPGA is how to make the necessary modificatimesled to use LUTs as SR-16s as cheap as possible.

This is far more important than designing the syste make additional CLB 1/O pins inexpensive.

That said, the mapping efficiency of an architegtaould possibly be justifiably improved if one tero
additional 1/0 pins could be added to each CLB.isMmwould allow the architecture to split one or tab
the SR-16s into two SR-8s or add one additionpifbp per CLB. For the depth = 1 netlists, addoge
additional I/O pin could improve the results by 429 over only having four SR-16s and adding two
additional I/O pins could improve results by 0.882kor the depth = 0.33 netlists, adding one aoiaki
I/O pin could improve the results by 0.915x ovelyomaving four SR-16s and adding two additional I/O
pins could improve results by 0.849x. Each add&ld/O pin represents a 3.5% increase in the nurobe

inputs and outputs needed by a CLB with four 4-Lldnd four independently accessible flip-flops.

This testing also confirmed that how to best ugditemhal 1/0O pins depends upon the characterigiiche
intended applications. Since shift registers caly be implemented in empty LUT locations, as tagor
of registers to LUTs in a netlist goes down, itdmmes more attractive to add independently accestipt
flops rather than split shift registers. This é&huse the number of empty LUT locations in thesksts is
naturally smaller, allowing fewer of the shift retgirs to actually be used. For architectures thighsame
number of I/O pins, allocating the internal res@srclifferently could result in a 1.119x differerioethe
number of required BLEs. A corollary to this i thbservation that adding or splitting shift regiistin an
architecture can never allow a heavily registengalieation to map to exactly the same number of BaE
an unregistered version. This is because addItiBh&s are always necessary in order to provide tgmp

LUT locations that can be used to implement skiffisters.

While this insight is a good start, there are stiiny open questions regarding how different aechiires
affect the mapping of applications. The most pgressssue is that the number of BLEs required by a
netlist was the only metric used to evaluate défiférarchitectures. However, this information Iselt is

not enough to constitute a rigorous architecturglagation. Specifically, more precise area ancagel

values are necessary. That said, getting thisnmddon requires a large amount of additional work.

Although the number of BLEs that a netlist requist®ngly affects its silicon footprint and thisagter
provided some basic analysis of the relative cbsidding or splitting shift registers and addinig-flops,
exact area numbers for the architectures were rgiven. Largely, this is because accurately edtiga

the area of a device requires additional informrmatiegarding the transistor and wire-level realitiéghe
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various architectural options. Although it is iraptical to expect entire FPGAs to be laid out e/isilill at
the architectural exploration phase, the basicqsiesf candidate systems must be implemented in some
way to build a meaningful area model. At the virgst, transistor schematics must be made forfall o
components in an FPGA: LUTSs, flip-flops, memorylgemultiplexers, etc. These schematics could be
used to build a very rudimentary transistor coustaamodel. However, to be truly useful such a rhode
must account for differences in transistor sizintfhile the transistors within a memory cell carelikbe
close to minimum size, the transistors that drimegl interconnect wires will probably need to be muc
larger. Even better, while entire FPGAs cannolale out, specific pieces of the system could e ¢aut

to create a relatively accurate area model.

However, applying this area model in a meaningfalyvalso requires netlists to actually be placed and
routed on these architectures. This is becauseuh®er of logic blocks in an architecture is onhe

component of the area requirement of the systena aghole. The interconnect network represent
somewhere between 50-90% of the area in modern BPG®ince changing some of the fundamental
characteristics of the underlying architecture valbo likely change the channel width that mapped

applications require, this can have a large effecthe overall area of the device.

For that matter, placement and routing is also edet determine the achievable clock frequency of
mapped circuits. Architectural modifications cédmarge the critical path delay of applications ire¢h
ways. First, the physical length of each inter@rwire will change because the logic blocks wat
bigger or smaller as the contents is varied andsthiech boxes will get bigger or smaller as theroiel
width of the system goes up and down. Since lomgess are naturally slower than shorter wiress gan
affect the delay of the entire FPGA. Second, thesdy of mapped circuits will change. Any increas
the amount of register resources in the systemalgt allow circuits to be mapped to a smaller neindsf
logic blocks. Since the circuits can fit into aaler region, this may speed up the achievablekcloc
frequency. Third, as touched on earlier, the Sjpetyipes of register resources provided by thdigecture
will alter the logic density that netlists can aohé. For example, it is likely that an architeetwith more
independent flip-flops will allow logic-constrainatktlists to run faster than an architecture witifts
registers because additional flip-flops allow thdTls in computational kernels to be placed moreetios

together.

Unfortunately, altering the architecture itself c@so change the demands on the placement anchgouti
tools. Since an architecture can only perform ai as the CAD tools allow, addressing any issinras t
arise is crucial to getting an accurate idea ofatieantages or disadvantages of an architectuoeme Sf
these problems are relatively straightforward torads, but potentially difficult to actually solvefFor

example, different architectures may need diffeqglactement or routing tuning parameters to produce
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good results. While the techniques needed todiferent parameters are obvious, the tests therasel
may require a huge amount of computational reseutcesvaluate multiple architectures across maitipl

sets of benchmarks.

Other problems present more fundamental issues.eXample, it is not obvious how to fairly evaluéte
required size of an application when mapped to rhitecture that contains shift registers. Heavily
registered circuits, such as the depth = 0.33gtetlmay have many signals with multiple registéFaese
netlists could be mapped to a very small architectuall of the registers on each signal are mdpjoea
single shift register. However, this severely tenihe capability of the system to distribute deddgng
long wires because all of the registers in theistedlre packed into dense register resources.plHoement
tool cannot break these registers out into sepdomtations because there are so few empty registers
available in the device. Thus, while such an impatation is small, it may be very slow. Converstie
netlist could be mapped to a very large architectfionly one register is initially mapped to easttift
register. This gives the placement tool plentpptions to improve critical path delay, but alstfiarally
increases the size of the required device. Ofsuhe best mixture of size and speed of the egipdin
probably lies between these two extremes, butrigndiis implementation is not obvious. For thattera

it is unclear which of these implementations an BR{Echitect should use to compare this architectore

others.
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Chapter 9: Conclusions and Future Research

This dissertation provided a detailed look at treteptial advantages and disadvantages of heavily
pipelining, C-slowing and retiming FPGA-based apgiions. Heavily registered circuits are important
the future of FPGAs because they can address otteedérgest drawbacks that typically plagues té&slay
reconfigurable devices: a relatively low operatfrequency. However, these circuits also preseetisp
challenges to FPGA CAD tools and put uniqgue demandse architectures themselves. Finding solstion
to these issues is critical because they can dieetigt affect the achievable clock rate and area
requirements of mapped netlists. Towards this,gibéd dissertation focused on four primary prokdem
how to make timing-driven placement more effectihe, implications of packing and retiming registers
placement, how registers can affect routing and twefficiently incorporate more register resouroes

existing FPGA architectures.

Chapter 5 provided an in-depth look at timing-dnvePGA placement. The well-established and often-
cited technique used by VPR was shown to have réfisignt shortcoming in the fundamental way that it
tracks the timing information of a netlist duringet annealing process. Simply put, performing ctati
timing analysis once every thousand or hundredghnd moves is simply not enough to insure that the
timing information remains relevant. It was dentosigd that this can lead to disappointing results,
particularly for heavily registered netlists sintteey are inherently more sensitive to changes & th
placement. Although forcing the annealer to singeyform static timing analysis more often can ioyar

the results, this comes with some risks. Not aldgs this dramatically increase placement runtitnegn

potentially cause the annealer to fail entirely.

Chapter 5 solved this problem by introducing a rieevemental criticality update technique that akwolv
the annealer to efficiently estimate changes incnigicality between every single annealing movEhis
approach was paired with a new cost function thabed the system to take advantage of more ugt®-d
timing information. For conventional combinationahd lightly registered sequential netlists, this
technique produced 0.888x faster post-routingcetipath delay without affecting wire cost. Faakily

registered benchmarks, it generated placementsvirat 0.581x faster with 0.951x better wire cost.

While this performance benefit is impressive, ppehanore importantly, the timing-driven placement
approach suggested in Chapter 5 only requires affeall changes to the basic placement algorithimusT
it can likely easily be incorporated into existipacement tools and provide immediate benefitaniany

different applications across many different FPGéhéectures.

Speaking more broadly, this new timing-driven ptaeat technique is interesting because it showsithat

is possible to make dramatic improvements to VL@IDCtools, even in areas that are thought to be
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essentially mature, solved problems. Since chantfie smallest detail can have a huge effect on the
performance of an algorithm, hopefully this workilvinspire future research to more closely examine
classical FPGA CAD tools and techniques. For tmatter, this approach also showed that merely
estimating the timing of nets during placementriswegh to improve post-routing critical path delayhis
lends credence to the possibility for much fast&DQools in the future. Rather than performing tbps
exact calculations, good estimates may be suffidc@maintain the quality of results and might eVesd

to significant improvements if applied carefully.

Chapter 6 began by investigating the difficultiespacking heavily registered applications. Packing
netlist that has a large number of registers wasvahto be problematic because conventional algosth
such as T-VPack, assume that a register will alweamst to be in the same BLE as its source LUT.sThi
limits the options available to the placement tawluse registers to distribute delay along longewir
Furthermore, conventional packing tools simply hawe idea what to do when a signal has multiple
registers on it and they will likely combine untelad portions of the circuit together, making thageiment

problem unnecessarily difficult.

To address these problems, Chapter 6 introduceavehgbrid CLB and flip-flop level placement apprbac
that added the capability to efficiently re-assigmisters to new CLBs during the placement process.
When targeting a four 4-LUT, four flip-flop architeire, this technique improved critical path delay
0.870x and wire cost by 0.865x for benchmarks thate pipelined/C-slowed and retimed to have a
minimum of one register on the output of each LUhis approach improved critical path delay by 8%8
and wire cost by 0.682x for benchmarks that wepelped/C-slowed and retimed to have a minimum of

three registers after each LUT.

Since packing is such an ingrained part of theiticathl CAD toolflow, like the issue surroundingeth
accuracy of timing information in conventional ptacent algorithms discussed in Chapter 5, simply
making the observation that packing can be inhbrdlatwed is somewhat of a revelation. Also likeet
approach in Chapter 5, this technique is partitplaaluable because it can easily be incorporated i
existing toolflows. Heavily registered applicatsomill likely cause similar packing problems on any
FPGA that has multiple BLEs in each CLB. Lookimgpi the future, this problem will probably get wers

since the trend in commercial FPGAs is to buildidey with larger and larger CLBs.

Although traditional packing was shown to work gaebly for lightly registered applications, andist
probably a necessary part of the toolflow sincggnificantly reduces the placement problem size iope
is that this work will encourage FPGA CAD develap&s examine their general approach more carefully.

For example, rather than packing the entire nedlisd forcing the placement tool to either accept th
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potential limitations or, as with the new technigliscussed in this dissertation, discover for ftadiere
the problems are, it may be better to only packltbds and flip-flops in the netlists that have sigo
relationships. Although packing the entire netlisght be necessary to simply get an initial plaeaimthe
packer can forward information to the placer regaydwhich components have a known reasonable
packing versus those that were combined arbitrarifythis is done, the placement tool will havenach
better idea of which registers should be moved peddently and which are better to move as an entire
CLB. Although this approach requires altering éxésting toolflow more extensively, it may achiessen

better results than the technique suggested here.

Chapter 6 also looked at how retiming can be inom@fed into the netlist compilation process. Retgn

can be difficult to apply because when it is perfed before placement, the system does not have any
information regarding the delay accumulated in thierconnect. On the other hand, since retiming
restructures the netlist, applying it after placatmean be disruptive and lead to problems with rigni

closure.

Chapter 6 borrowed concepts from multiple previmesearch efforts to develop a technique to mofg ful
incorporate retiming into the placement procesiis Tetiming approach gradually introduces newstegs
into the system and leverages the power of simillateealing optimization to integrate them into an
existing placement. Unfortunately, the resultshef testing performed in this chapter seem to atdithat
retiming is not essential for circuits mapped torensophisticated architectures. In the presen@egufod
placement tool, retiming only improved critical patelay by a few percent on architectures withtehesl

CLBs and long interconnect wires. This result Veaigely confirmed by the work in [36].

Basically, sophisticated integrated placement aioming techniques do not provide a large bendiit o
these architectures because retiming a netlistrbgitacement is actually very effective. The néad
retiming after placement is only partially a CADoptem. It is also a symptom of a larger architeadtu
problem. Specifically, retiming is necessary wldack of resources in an architecture makes theey a
potentially sensitive nets unpredictable. If thevide does not have sufficient fast connectivityween
different logic blocks in timing-sensitive regionsa netlist, the placement tool has no choicetbuhake
some of the wires it knows to be timing criticah¢p This creates a mismatch in the system betwetn
that the placer could optimize versus those thabutid not. However, more sophisticated modern KPG
architectures put quite a bit of effort into prowigl dense logic blocks and fast interconnect resasur This

eases the pressure put on the placement tool dodes the need for retiming.

However, this is not to say that retiming duringafter placement, when more accurate timing infdiona

is available, is entirely irrelevant. The MCNC lists available for testing in this dissertatiore ajuite
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small by today’s standards and applications willyaget larger in the future. Since larger appias
naturally have a more complex structure, they cqldete higher demands on the target architectlites

may make retiming more important. Furthermores théneral trend also places the burden on FPGA
architects. They must insure that the interconnesources provided by their FPGAs stays aheatieof t
needs of application developers. While FPGA aedt# already consider the effect that interconnect
resources have on routing congestion, the naturéh@fproblem presented by retiming is somewhat
different. Rather than routing channel capacitg toncern is the number of logic blocks that can b
reached with a certain delay. Of course, thereplgesical limitations that prevent every logic tdcom
having a fast connection to every other logic blackthe device, so the problem of retiming may be

unavoidable when devices and applications scalerzkg certain critical threshold.

Chapter 7 dealt with the difficulties of pipelineduting. As discussed in [32], this problem occars
FPGA architectures that contain registers with Jenjted input and output connectivity. Assignifigp-
flops in a netlist to register locations on thegeet of architectures during placement can alsceftiese
signals to use specific routing wires. This camosesly affect the routability of circuits that dam a large
number of registers. Thus, registers must be fodwdng the routing process on these architectures.
Chapter 7 analyzed the only two known algorithmat thddress the pipelined routing problem and
discussed why pipelined routers cannot use thetiegistiming-driven formulation suggested by
PathFinder. Largely, the issue is that PathFirfdevards net criticality information from one rouogj
iteration to the next. This subtly relies on tlaetfthat the criticality of a net cannot drastigathange
between routing iterations. However, this assuompis not true for pipelined routing since the kimas of
registers in the system are not fixed by the plaa#m Much like the problems encountered in Chapter
forwarding criticality information from one routingeration to the next can cause a pipelined rotder

favor degenerate solutions.

To solve this problem, Chapter 7 introduced assumrditality searching. This technique performs
multiple simultaneous waves of exploration thatheassume that a net has a slightly different elitiz.

This approach removes the need for any a priorikedge and discovers better possible routes urder t
prevailing conditions by allowing the system to ma@accurately balance delay and congestion. When
combined with QuickRoute to form the Armada aldurt compared to the congestion-only original
QuickRoute technique, this approach improved @iitgath delay by approximately 0.6x without affagti

the number of required routing tracks.

However, while this result is significant, partiatly because it provides greater insight into a/ wvexw and
relatively poorly explored CAD problem, the resdtisnd in Chapter 8 seem to indicate that timiniyety

pipelined routing may not be necessary on futur&A&® As mentioned earlier, the pipelined routing
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problem is caused by registers in an architectaehave limited input and output connectivity. véwver,
the results in Chapter 8 suggest that these typesgisters may not provide a compelling benefit fo
island-style FPGAs. Since commercial FPGAs gehefallow a basic island-style structure, this may

limit the applicability of pipelined routing algahims.

That said, while commercial architectures may gjuire pipelined routing, they may benefit from mor
extensive use of assumed criticality searching. dd&o architectures generally contain a wide range o
interconnect resources, ranging from unit-lengthewito wires that span the entire length of theicgev
These extremely diverse routing resources makessiple for the delay of a net to significantly sba
from one routing iteration to the next, even in doaventional routing problem, by simply movingignsi

to a different type of wire resource. This varidpicould cause timing-driven routers to generpter
solutions on existing architectures. Since theiaesl criticality technique evaluates the critigabf a net

for each individual path largely independently,can likely handle heterogeneous wires much more

gracefully.

As alluded to earlier, Chapter 8 investigated défe ways of increasing the amount of registerueses in
island-style FPGAs. This was shown to be a conmgetjuestion because while increasing the amount of
pipelining and C-slowing performed on an applicatiearly linearly improved critical path delayaiso
drastically increased the number of registers értbtlist. These circuits could have between 3120xe
registers than LUTs. Since conventional FPGAs aolytain one register per LUT, these circuits regjai
huge number of additional BLEs. Although multipieevious research efforts have looked into soltimig
problem, the systems that they have suggested laagely been very specialized devices with limited
commercial feasibility. Thus, Chapter 8 attemptedddress the issue with a different basic phpbgo
how can existing FPGAs be modified to benefit hiyakegistered applications while not disturbing the

characteristics of the device for lightly registtepplications?

The first part of Chapter 8 evaluated the beneditsadding registers with limited connectivity toeth
switchboxes in the interconnect. Although this giloility has been suggested in prior research as an
efficient way of incorporating additional registergao an FPGA, using delay estimates from a 0.65nm
device, it was shown that this could only reducéiced path delay by 0.914x over an architecturat th
restricted registers to the CLBs. Thus, due to@#d implications this introduces for placement and

routing, it is unlikely that it is worth incorporag registers into the interconnect.

A better alternative was explored in the second @a€Chapter 8. This section looked at the pofisés of
adding inexpensive register resources to the CLBgecifically, Chapter 8 investigated the impact of

allowing unused LUTSs to be turned into one or nehit registers and adding independent flip-flogshe
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potential usability of these resources was captimea few equations. These equations were apptied
roughly estimate the potential mapping efficiendy different architectures. This testing found that
because allowing a 4-LUT to be used as a 1 to iL6Hiit register does not require adding any adddl
inputs or outputs to the system, this is likely kired of modification that will provide the largeiseénefit to
heavily registered applications, with the lowespaut to lightly registered netlists. Allowing #fle LUTs

in an FPGA to be used as SR-16s could reduce timbauof required BLEs by up to 0.508x compared to
architectures without any shift register capaleititi Allowing all the LUTs in an FPGA to be usedS&-
16s could improve the mapping efficiency over Xilistyle devices that allow half of the LUTs to bsed

as SR-16s by up to 0.783x.

Although the necessary schematics and layouts detedgetermine the implications of adding 1/0O pias
each CLB were not available, this testing did shthat more extensive CLB modifications could further
improve mapping efficiency. That said, it alsowkd that netlists with a lower amount of pipeliniagd
C-slowing preferred architectures with extra indegent flip-flops, while netlists with a higher anmof
pipelining and C-slowing preferred systems withftskegisters that were split into smaller indepeamde
banks. Largely, this is because although shifistegs provide more register locations, they caly be

implemented in BLEs with unoccupied LUTSs.

Taken as a whole, this dissertation provides apggirinto the future of FPGAs. As FPGAs are exjktie
implement more complex applications at a higherckloate, pipelining and C-slowing will become a
necessary part of the application development pcdhis has been shown to have serious implitatio
for packing, placement and routing tools, alonghvitie efficiency of the underlying architecture.heT
large number of registers in heavily pipelined a@eslowed circuits changes many of the basic
characteristics of the netlists and creates differkinds of CAD problems compared to purely
combinational or lightly registered applicationd:ailing to recognize these intrinsic shifts canilgas
increase the critical path delay and area of ardiegijpn by a factor of two. That said, based upoa
analysis and experiments in this dissertation, mafnhese issues can be dealt with by making redbti

minor changes to existing CAD tools and FPGA agtttitres.

Looking into the future, the need for registeregdlegations must be more fully acknowledged by CAlIt
developers. Along these lines, tools must be d@eal that can assist programmers in determining the
bottlenecks in their applications. Currently, pip@g and C-slowing must be applied manually. ekft
placement and routing, application developers neasefully inspect their circuits to determine which
signals fail to meet timing specifications. At thmoint, they must edit their HDL code to insergisters,
hopefully avoiding making mistakes that change fhectionality of their circuit. This process is

unnecessarily difficult and haphazard. Visualizatitools could help developers better understand



159
problematic areas of their circuits, and automaijeelining and C-slowing could prevent unnecessary

errors.

Simply highlighting the critical and near critigadths in the circuit and indicating which linestte HDL
code generated these portions of the netlist wpuddide extremely useful feedback. Since HDL cide
sent through logic synthesis and technology mappdngines largely hidden from the user, it can ofe
difficult to determine the relationship betweerustures in a mapped FPGA implementation and theceou

code.

Furthermore, once the developer has decided tdipgper C-slow a section of their circuit, regigerould

be added automatically. While it can be time comsg to add registers to HDL code manually, it is
relatively straightforward for a CAD tool to pipeé or C-slow specific sections of a circuit at théT
level. The HDL code can then be automatically epdao reflect these changes. Although extensive
testing would be necessary to determine the realdwsability of such a tool, this might make deyghg

high-speed circuits considerably faster and easier.

In addition, while registered applications cleathange the problems presented to the CAD toolstlzad
FPGAs themselves, the netlists and architecturpiorsd here were relatively simplistic. More dkgdi
testing must be done using larger benchmarks mapipedbore sophisticated FPGAs. For example, the
largest circuits in this testing only require abdu20 the logic provided by a medium to large Xilin
device. Since larger circuits are naturally masenplex, they also present different problems toGiA®

tools.

For that matter, the flagship FPGAs of both Xiliard Altera contain much more sophisticated logic
resources. While they include specialized resausteh as fast carry-chains and dedicated multplie
they have also migrated from 4-LUTs to 5 and 6-LUTEhese type of resources change the way that
netlists are mapped to FPGAs and affect the reslif the physical layouts. For example, whilé &asry
chains provide low delay, direct connections betw€éBs, these connections currently do not havessc

to registers. Thus, using these resources hascregsons on the pipelining or C-slowing capalgitiof

the circuit. Furthermore, implementing logic uslagger LUTs changes the ratio of logic to registerthe
device. While this certainly has an effect on howeuits are mapped to the system, this also clatige

area implications for using LUTs as shift registeradding 1/0 pins.

Future fabrication technologies also present sortexasting issues for FPGA architectures. For gtem
3-D semiconductor structures might make it muchieeat® provide fast interconnect wires between

different logic blocks. While this can make FPGgimply run faster, as discussed earlier, this aBe
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ramifications on the effectiveness of retiming. r Fbat matter, this can also dramatically incretse
amount of available transistor area. This may meakencements such as including additional register
each CLB significantly less expensive. Looking e¥erther into the future, silicon nano-wire andhxmn
nano-tube devices have fundamentally differenti¢altion implications. Although some research hasrb
done into reliability and testing issues of FPGKelistructures built from these technologies, sofmihe
possible manufacturing techniques also have iniegesvays of building extremely small state-holding

components. This can have an interesting effe¢herost of introducing more registers into thetem.
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Appendix A
Conventional MCNC Netlists

Combinational Input Output LUTs | FFs Required Logical Pipeline C-slow

Circuits Pins Pins BLEs Depth Amt Amt
e64 65 65 273 0 273 4 0 1
ex5p 8 63 1064 0 1064 7 0 1
apex4 9 19 1261 0 1261 6 0 1
misex3 14 14 1397 0 1397 7 0 1
alu4 14 8 1522 0 1522 7 0 1
des 256 245 1591 0 1591 6 0 1
seq 41 35 1750 0 1750 7 0 1
apex2 38 3 1878 0 1878 8 0 1
spla 16 46 3690 0 3690 8 0 1
pdc 16 40 4575 0 4575 9 0 1
ex1010 10 10 4598 0 4598 8 0 1
Sequential Input Output LUTs | FFs Required Logical Pipeline C-slow

Circuits Pins Pins BLEs Depth Amt Amt
51423 18 5 220 74 220 14 0 1
tseng 52 122 1046 384 1046 8 0 1
dsip 229 197 1362| 224 1362 3 0 1
diffeq 64 39 1494 377 1494 10 0 1
bigkey 229 197 1699 224 1699 3 0 1
s298 4 6 1930 8 1930 15 0 1
frisc 20 116 3539| 886 3539 8 0 1
elliptic 131 114 3602| 1127 3602 8 0 1
s38584.1 38 304 6154 1240 6156 9 0 1
s38417 29 106 5974 1463 5974 11 0 1
clma 62 82 8364 33 8364 16 0 1

Depth = 1 MCNC Netlists

Combinational Input Output LUTs FFs Required Logical Pipeline C-slow
Circuits Pins Pins BLEs Depth Amt Amt
e64 65 64 273 409 409 1 3 1
ex5p 8 63 1064| 1472 1472 1 6 1
apex4 9 18 1261 1348 1348 1 5 1
misex3 14 14 1397 1714 1714 1 6 1
alu4 14 8 1522 1867 1867 1 6 1
des 256 245 1591 2834 2838 1 5 1
seq 41 35 1750, 223§ 2235 1 6 1
apex2 38 3 1878] 2413 2413 1 7 1
spla 16 46 3690| 4596 4596 1 7 1
pdc 16 40 4575| 5767 5767 1 8 1
ex1010 10 10 4598 5796 5796 1 7 1
Sequential Input Output LUTs | FFs Required Logical Pipeline C-slow
Circuits Pins Pins BLEs Depth Amt Amt
51423 17 4 220 1486 1486 1 13 14
tseng 51 122 1046 4207 4202 1 0 8
dsip 228 189 1362 1544 1544 1 2 2
diffeq 63 39 1494| 6304 6304 1 0 10
bigkey 228 190 1699 2114 2114 1 2 3
$298 3 6 1930 4555 4555 1 3 15
frisc 19 116 3539| 1360 13600 1 7 8
elliptic 130 114 3602| 12877 12877 1 0 8
$38584.1 31 189 6156 17928 17928 1 8 9
s38417 28 52 5974 23589 23589 1 4 11
clma 61 66 8364| 18158 18158 1 4 16
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Combinational Input Output LUTs FFs Required Logical Pipeline | C-slow Post -
Circuits Pins Pins BLEs Depth Amt Amt Retiming
C-slow
e64 65 64 273 1614 1614 0.33 4 1 3
ex5p 8 63 1064| 4629 4629 0.33 7 1 3
apex4 9 18 1261 412§ 4125 0.33 6 1 3
misex3 14 14 1397 5226 5226 0.33 7 1 3
alu4 14 8 1522| 5667 5667 0.33 7 1 3
des 256 245 1591 10017 10017 0.33 6 1 3
seq 41 35 1750/ 6933 6933 0.33 7 1 3
apex2 38 3 1878 7367 7362 0.33 8 1 3
spla 16 46 3690 13974 13974 0.33 8 1 3
pdc 16 40 4575| 17469 17469 0.33 9 1 3
ex1010 10 10 4598 17448 17448 0.33 8 1 3
Sequential Input Output LUTs | FFs Required Logical Pipeline | C-slow Post -
Circuits Pins Pins BLEs Depth Amt Amt Retiming
C-slow
s1423 17 4 220| 4521 4521 0.33 14 14 3
tseng 51 122 10460 12858 12858 0.33 1 8 3
dsip 228 189 1362 5913 5913 0.33 3 2 3
diffeq 63 39 1494 | 19107 19107 0.33 1 10 3
bigkey 228 190 1699 7596 7596 0.33 3 3 3
5298 3 6 1930| 13688 13683 0.33 4 15 3
frisc 19 116 3539| 41502 41502 0.33 8 8 3
elliptic 130 114 3602| 39411 39411 0.33 1 8 3
$38584.1 31 189 6156 54071 54021 0.33 9 9 3
s38417 28 52 5974 70908 70908 0.33 5 11 3
clma 61 66 8364| 54855 54855 0.33 5 16| 3
RaPiD Benchmarks
Netlist # of Required RaPiD Cells Min # of Registes Max Latency of Any Sink
firtm 16 20 16
fft16 12 40 3
sobel 18 49 5
matmult4 16 129 31
cascade 16 226 21
firsymeven 16 377 31
imagerapid 14 149 11
sort_g 11 159 32
sort_rb 11 159 31
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Teaching Experience
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6/2001 — 12/2002
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Design Automation Conferenc2008, 34-7.

» K. Eguro, “Supporting Heavily Pipelined Reconfigola Computing on Commodity Devices”,
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Reconfigurable Logic"University of Washingtgept. of EE Technical Repp2006.

« K. Eguro and S. Hauck, "Issues of Wirelength Cosidils in Routing-Constrained FPGAS",
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