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Abstract 
 
 
 
In 2024 the LHC will be shut down for an extended period to perform upgrades to the instrument and the detectors 

located on it. One such upgrade is the Front End ITk upgrade in ATLAS Pixel. New hardware is being developed for 

this upgrade, and a test chip called the RD53A has been created as a prototype version of that future hardware. 

Primarily because of restrictions associated with the RD53A chip, including its limited availability to researchers, its 

inability to generate realistic data without radiation present, and the speed at which changes to the physical chip can 

be made when issues are found, The Adaptive Computing Machines and Emulators (ACME) lab at the University of 

Washington built and maintains code to emulate the RD53A. The Emulator solves the problems posed by the physical 

chip: The code is downloadable from an online repository and runs on a commercially available FPGA and thereby is 

easily accessible to researchers; It generates realistic hit data without need for irradiation; and, when the Emulator 

needs to be altered to fix issues or target certain research applications, turnaround can be completed in hours, not 

weeks. The motivation for the Emulator, its current state of development, and my personal work on the architecture 

and logic are explained in this thesis. 
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Chapter 1: Introduction 

CERN 
The European Organization for Nuclear Research (CERN) is an international scientific collaboration and research 
center focusing on high energy physics. Though headquartered on the Swiss-French border, groups contribute to its 
goals from around the world. It has been fundamental in progressing many areas of science and technology, including 
discovering antimatter and the Higgs Boson, and creating the World Wide Web [CERN. About]. 

The Large Hadron Collider 
The Large Hadron Collider (LHC) is the largest, most powerful particle accelerator in the world, and is housed at 
CERN. The purpose of the instrument is to complete the Standard Model by discovering the Higgs Boson and look 
for physics beyond the standard model, often referred to as “new physics.” In 2012, it succeeded in its first stated task, 
confirming the existence of the Higgs Boson and finally completing the long-standing current model of physics 
[CERN, About].  
 
The Standard Model is the accepted model of particle physics. It was developed in the 1970s to concatenate disparate 
knowledge of particles into one internally consistent model. It describes all the particles we know of, the categories 
those particles inhabit, and how they interact. Alone, it provides explanation for most of the physical phenomena we 
have discovered. The Standard Model predicted the existence of multiple particles before they were found 
experimentally, including the Higgs Boson. As of now, all the particles predicted by the Standard Model have been 
found experimentally [CERN, Standard Model]. 
 
Not all observed phenomena are completely explained with the physics of the Standard Model, so we posit that more 
particles may exist. These particles would fall under “new physics” and are still being searched for with the LHC. So 
far, none have been found [Niewodniczanski Institute]. 
 
Physically, the LHC occupies a 27-kilometer tunnel crossing under the French and Swiss border outside of Geneva. 
During usual operation, hydrogen atoms are first ionized by an electric field, then passed through multiple smaller 
acceleration stages before finally being released into the LHC itself. Acceleration occurs via rippling electric fields 
applying force to the ionized hydrogen atoms (at this point referred to simply as protons), pushing them to higher and 
higher speeds in each stage [CERN, About]. You can see the acceleration chain in Figure 1. Protons are organized 
into clumps called “bunches,” which are evenly spaced around the collider. Each bunch contains an average of 1.15 * 
1011 protons. They are spaced 25 ns apart [RD53A]. 
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Once the protons reach their maximum speed of 99.9999990% the speed of light, they collide together with immense 
energy. Collisions occur at “collision points,” of which there are four spaced around the circumference of the detector. 
When a collision occurs, the energy contained in the two colliding protons converts into mass via Einstein’s mass-
energy relation. This mass can manifest as other, rarer particles, which stream outwards from the collision point. Each 
collision point has an associated experiment measuring and recording data from the collisions that occur there [CERN, 
About]. 

ATLAS 
One such experiment located at the LHC, and the experiment relevant to this research, is ATLAS. ATLAS is a 
backronym for A Toroidal LHC Apparatus. It is one of the two general purpose detectors on the LHC, the other being 
the Compact Muon Solenoid (CMS). ATLAS gathers data from a variety of different instruments that don’t necessarily 
have one singular goal in mind, but instead simply recording as much information as feasible for later analysis 
[ATLAS, Detector and technology]. 
 
ATLAS is made of concentric cylinders of detectors known as “layers,” all situated about the interaction point. Each 
layer provides a different means of interaction with the particles, since not all particles interact similarly. In this way, 
as many particles can be characterized as possible. As a rule, the closer the layer is to the collision point, the higher 

 
Figure 1. Protons bound for the LHC are released first at the LINAC2 before 
passing to the BOOSTER, the PS, the SPS, and finally the LHC. Though the 
LHC is the most important instrument used in the acceleration chain, you can 
also see examples of some other experiments at CERN here [CERN, About]. 
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the density of particles it experiences, and therefore the higher the resolution of the detection mechanism. ATLAS 
also generates an incredibly strong magnetic field, which the particles move through as they pass through the layers. 
This magnetic field deflects the particles that have electric charge and helps us isolate their signatures by measuring 
their momentum. The detector is 46 meters long and 25 meters in diameter, weighing 7000 tonnes. Figure 2 displays 
a cutaway diagram of the ATLAS layers [ATLAS, Detector and technology]. 
 
Incredible amounts of data are generated by ATLAS. If all data channels were fully collected, 60 terabytes per second 
of storage would be required to save the raw data. This is untenable, so ATLAS uses a complex series of data analysis 
procedures to throw data away. When data is flagged as interesting, a “trigger” is sent to the read-out electronics 

telling it to store the data. Three levels of triggers are used in ATLAS, paring down the data in a cascade and ultimately 
storing only 100 out of 1 billion events [ATLAS, Trigger-DAQ]. 
 
 
 
 

 
Figure 2. The dimensions and layers of the ATLAS experiment. The RD53A is 
built for the Pixel detector, closest to the beam [ATLAS]. 
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Inner Detector 

Different layers of the ATLAS detector are grouped by purpose. The innermost group, called the Inner Detector, is 
made up of three layers: The Transition Radiation Tracker (TRT), the Semiconductor Tracker (SCT), and the Pixel 
detector. As a group, their primary use is to measure the momentum of charged particles. The Pixel detector will be 
the focus of this paper. You can see a representation of the Inner Detector in Figure 3 [ATLAS, Detector and 
technology]. 

Pixel Detector 
Pixel is the detection layer closest to the beam, experiences the most luminosity (particle flux), and is by far the most 
sensor dense of all the layers. In an area of 1.7 square meters, it provides 80 million independent channels of data 
[ATLAS, The Inner Detector]. Each channel corresponds to a “pixel,” which is the individual detection mechanism 
of the Pixel Detector. When a charged particle moves through a pixel, charge is deposited and digitized. Pixels 
channels report a “time over threshold” value, which is how long the digitized charge has been above a configurable 
threshold value and is proportional to deposited charges [G. Aad et. al., 10]. The Pixel Detector has a resolution of 14 
micrometers by 115 micrometers [ATLAS, The Inner Detector]. 
 

 
Figure 3. An image of the ATLAS Inner Detector. [ATLAS]. 
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Reflecting the design of ATLAS in general, Pixel is made up of multiple overlapping detection layers. Originally just 
three, a fourth layer called the Insertable b-Layer (IBL) was added closest to the detector in 2014. Figure 4 is a 
rendering of the Pixel layers. These layers serve to track particles as they curve through the magnetic field present in 
ATLAS. Layers are overlapped to ensure all particles passing outwards can be captured by at least one sensor [G. Aad 
et. al., 5]. 
 
The chips containing the pixels themselves are called Front Ends (FEs) as they are the first device in the chain of 
devices that gather data from the interaction. Each front end contains a grid of 18 x 180 pixels of size 50 x 400 
micrometers each. When a pixel is struck by an incoming charged particle, the analog part of the pixel has some charge 
deposited on it, which then gets amplified by an accompanying circuit. If the amplified signal is larger than a threshold 
value, the address of that pixel and some associated hit data is transferred to the digital part of the FE chip. There, the 
FE calculates how long that pixel has been over the threshold, and reports that back up the chain [G. Aad et. al., 8-
10]. 
 
16 FE chips share a Module Control Chip (MCC) and make up a module. The MCC distributes control signals among 
its FEs and concatenates data coming from them to send up the chain. An Opto-Board (OB) takes the electronic data 
from the MCC and converts it to optical data to be sent by optical fiber to the off-detector readout systems, which do 
further processing on the data [G. Aad et. al., 8]. 

 
Figure 4. The layers of the Pixel Detector sans the IBL, which was installed later. 
All layers use the same Front End chips. The Detector is quite small compared 
to the whole of ATLAS and has by far the highest resolution density [G. Aad et. 
al.]. 
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RD53A 

HL-LHC 
The LHC has scheduled shutdowns in order to upgrade the detector. In 2013-2014, one such shutdown allowed the 
installation of the IBL in Pixel described above. In 2024, a “long shutdown” (LS3) is scheduled that will extend over 
multiple years, allowing for significant upgrade of the detector [LHC Schedule Update].  
 
After the end of the LS3, the LHC is scheduled to go to “high luminosity” (HL-LHC). Luminosity is a measure of the 
amount of collisions that occur per bunch crossing, and therefore the particle flux through the detector. This, in turn, 
will increase the amount of measured rare events so it can gather data on them more quickly, thereby delivering results 
sooner. Luminosity is scheduled to increase 10x from the original operating specifications after the upgrade. Figure 5 
shows the shutdowns from 2010 to 2035 and their target luminosities [LHC Schedule].  
 
Naturally, much of the hardware installed for the original detector luminosity will not be able to effectively process 
such a massive increase in information output. Some parts of the detector will need to be upgraded, including the 
entire inner detector [ITk Design Report, 5]. 

 
Figure 5. Planned and completed long shutdowns allowing for upgrades and 

maintenance, the peak luminosity at those dates, and the integrated luminosity 
at those dates [LHC Schedule]. 
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Inner Tracker Upgrade 
As part of the upgrades needed to process the amount of data generated in the HL-LHC, the entire Inner Detector is 
being upgraded. The number of independent layers in the Inner Tracker (ITk) will be lowered from three for the 
current Inner Detector to two: the ITk Strip and ITk Pixel Detectors. New readout chains are being constructed as 
well and are still under heavy development [ITk Design Report, 5].  

ITk Pixel Upgrade 
During the ITk Pixel Upgrade, all parts of the Pixel readout chain will be affected, and many will be replaced. One 
such device being replaced is the front end readout system of the Pixel Detector. The functionality of the FE and MCC 
chips in the prior generation will be combined into a single Front End chip. Each chip will have an array of 50 x 48 
pixel cores, each containing an 8 x 8 array of pixels. Each pixel core is surrounded by digital logic to read out and 
control that specific core. This architecture is referred in the documentation to as “analog island in a digital sea.” At 
the bottom of each chip will be a dedicated “Chip Bottom” containing both analog and digital control signals, as well 
as digital readout. At the very bottom edge of the chip will be I/O. The new front end will be the first ATLAS chip 
made with a 65 nm technology node [ATLAS-TDR-030, 156]. 

The RD53A 
The RD53A, or Research and Development Chip 53-A is a test chip fabricated to test out the technologies intended to 
be used by the HL-HLC FEs. There are a few main points of interest. 
 

 The FE will be the first on-detector, ATLAS-made chip in 65 nm CMOS technology. Different technology 
nodes have different performance characteristics when exposed to the radiation present in the detector. It’s 
important to ensure that the 65 nm node can perform at expectations while being irradiated. Not only must it 
be tolerant of damage due to irradiation, but it also must maintain stable low threshold operation and 
specification-satisfying trigger and hit rates, which both may be compromised by the energetic particles 
[RD53A, 3]. 

 

 The chip is a test bed for different analog pixel architectures. Three unique architectures have been built into 
the detection area of the chip. In this way, their merits can be compared through physical testing [RD53A, 
3]. 

 

 Much of the design of the RD53A reflects what will be eventually be built into the FE, so the RD53A helps 
ensure those designs are effective and bug-free before the FE design is completed [RD53A, 3]. 
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 The RD53A architecture is similar to that of the future FE with some slight rearrangements. The pixel matrix 
uses the “analog island in a digital sea” architecture for the pixel matrix and includes a digital chip bottom 
for readout and control, as well. Some of the device placement is slightly rearranged [RD53A, 5].  

 
 

The RD53A design was finalized October 8, 2017. You can see the final layout of the chip in Figure 6. The wafers 
returned from the manufacturer on November 27, 2017. They were diced at and distributed from CERN to the 
collaboration. 

Chapter 2: RD53A Emulator 
The RD53A Emulator (Emulator) is a project developed by ACME Lab at the University of Washington to mimic 
functionality of the RD53A test chip. Specifications for the RD53A chip were provided by the CERN collaboration 
[RD53A]. It targets a Kintex 7 FPGA installed on a KC705 breakout board [KC705]. 
 
The Emulator is a team project with contributions from many students over the years of its development. Although I 
did not personally contribute to all the components discussed below, it is valuable to record the workings of the entire 
system for future reference. It also helps to understand the system architecture before discussing developments in 
depth. My contributions will be specifically noted later in the document. 

 
Figure 6. The final layout the of RD53A chip. Pixels are arranged as a grid on 
the top end of the chip [RD53A, 0]. 
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Motivation 
The motivation for the continued development of this project has evolved over its lifetime. At first, the primary goal 
of the Emulator was to provide a RD53A-like device to help test various data acquisition (DAQ) systems in concurrent 
development with the chip, before the chip itself arrived from fabrication. These DAQ systems are intended to read 
out data from the RD53A chip. DAQs already exist in Pixel, but they must be upgraded both to keep up with the 
increase in data bandwidth in the HL-LHC and to conform to the specifications of the new Front End chips. These 
new data acquisition systems must be tested and debugged, which was made more difficult without the test chip to 
interface with. The Emulator solved this issue by providing a stripped-down facsimile of the chip. Additionally, the 
simplicity of the Emulator’s design supported this goal by allowing for quick changes to the Emulator to fit the user’s 
goals or fix small issues. 
 
Later, as the RD53A chips began returning from fabrication, the need for the Emulator as a stand-in for the chip 
lessened. Some groups in the Collaboration would not be able to receive the chip for some time afterward, during 
which the Emulator provided an equivalent platform, but, ultimately, most interested groups received a chip after a 
waiting period. The purpose of the Emulator then evolved into its current purpose, which can be summarized in four 
points: Hit data emulation, comparison against the physical chip to isolate hardware issues, modifiability, and 
availability. 
 
Arguably, the greatest motivation for continued development of the Emulator is its ability to emulate hit data. The 
RD53A must receive stimulus in the form of high energy particles to return interesting data. Although CERN houses 
an accelerator, and some labs working with the chip do as well, high energy particles are often not available to 
researchers on demand. A researcher might be able to interface correctly with the chip via their DAQ, but not all 
functionality of the DAQ systems can be tested without incoming hit data to process. The Emulator solves this problem 
by generating faux hit data when instructed by the user. Since the Emulator will never actually be used to gather data 
from the accelerator, we can generate it ourselves as a service for the end user. The data is intended to reasonably 
reflect the types of data patterns one would expect from the RD53A if it were irradiated by high energy particles. 
 
The Emulator can also be used as a point of comparison when debugging issues interfacing with the RD53A chip. It 
is often the case that an engineer will be faced with an issue at the interface between two systems without any clear 
indication of which system is causing the problem. A tactic to solving this problem is replacing one of the systems 
with an equivalent and surveying if they issue disappears, thus isolating the problematic system. If an engineer has a 
problem interfacing with the RD53A chip, that engineer can substitute the Emulator for the chip to help solve that 
problem. 
 
The Emulator provides an alternative to the RD53A chip that is easier to modify. Integrated circuits like the RD53A 
cannot easily be modified after delivery. If an issue arises with the chip, sometimes the only solution is to make a new 
version, which can take months [China Water Risk]. On the other hand, because the Emulator targets an FPGA, 
changes can be made magnitudes more quickly, requiring only edits to the source code and a recompile. Thus, users 
can leverage the Emulator as a framework to test specific parts of their systems by targeting the code to do so. It also 
means bugs and other issues can be solved in a matter of hours, rather than months. 
 
Finally, since the Emulator targets a commercial FPGA, it is much easier to acquire than an RD53A chip. The KC705 
board must be purchased and the code downloaded from the online repository, but nothing more. If extra RD53A 
chips are required, they must be requested through collaboration channels and may not be available altogether if 
supplies run out. 
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Current State of Development 

Architecture 
The current overall system architecture is shown in Figure 7. 
 
Trigger and control data enter the Emulator from the DAQ system via the Trigger and Timing Control (TTC) line. 
Triggers tell the system to generate hit data and control words alter the state of the system. The data rate and encoding 
scheme are described more fully in the following sections.  
 
A synchronization pattern is sent along with the TTC data every N words, where N is defined by the DAQ. The 
synchronization pattern is chosen to be DC balanced and only valid in one rotational orientation; that is, there is no 
repeated pattern in the sync command. The pattern is used in the Shift Register (SR) Channel Alignment block to align 
the data so words are correctly bit rotated. The block has 16 different 16-bit registers, each of which shift in the 
incoming data rotated by one bit. Eventually, one of the 16 registers will see the expected sync pattern. Once it does, 
the block locks to the data in that channel and passes it to the next module. Sync patterns must be sent from the DAQ 
often for the channel to remain locked. Though it is not expected to occur, if the data slips such that the originally-
correct channel is no longer correct, a new channel will be chosen based on whichever channel continues to see valid 
sync patterns. Most of the work described in this paragraph was done by Joseph Mayer, a Master Student in the ACME 
lab from 2014-2016 [FPGA DAQ Thesis]. 
 
Although the official word size for TTC data is 16 bits, it was decided early on to process it in 8 bit chunks in the 
Emulator. The data resulting from alignment falls into the “Word FIFO”, which splits it into two separate 8-bit words 
and helps it cross from a 160 MHz clock region to an 80 MHz clock region. There, triggers and control words are 
separated and processed in the “Hit Data Generator” and “Command Finite State Machine (FSM)” respectively. Each 
of these modules have their own dedicated explanations below. 
 
The various types of data generated by the Hit Data Generator and Command FSM pass into FIFOs, which then get 
interleaved by the “Command Out” module, which serves as a frame formatter for outgoing data. This, too, has its 
own dedicated section below. One important note not covered in the dedicated Command Out section is the module 
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also generates Channel Bonding frames, which are a special type of frame used by our data protocol (also explained 
below). 
 

Once frames have been formatted, they transition to the “Frame Buffer”, a module that aligns four frames to be sent 
out in parallel by the transmission (Tx) block. As part of the data transmission protocol, data frames must be aligned 
in a specific way to ensure accurate data transfer. The Frame Buffer accomplishes that by storing four incoming serial 
frames, then raising a flag to let the Tx block know data is ready to be read out in parallel from the Buffer. After 
frames are buffered, they exit the system via the Tx block. See the Data Transmission section for more information. 

 
Figure 7. High level architecture for the RD53A Emulator. 
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Hit Data Generation 
It could be argued that the most valuable use case of the Emulator after the official release of the RD53A chip is as a 
means to generate pseudo hit data. The RD53A chip being intended for irradiation requires some kind of particle 
stimulation to provide any data of interest--it does not have a means to generate data on command. This, of course, 
would be entirely unnecessary once the chip is present in the detector, since it generally will be under constant 
irradiation anyway. However, the chip is still going through testing, as well as the DAQ systems that read out from it. 
It is not always easy to provide radiation to stimulate a chip like the RD53A; sometimes, testing is more feasible 
outside a high energy environment. 
 
The Emulator solves this problem by not requiring radiation to generate hit data. We want to recreate the RD53A chip 
in black box style, but it need not use the same mechanisms internally. To that end, we have implemented hit data 
generation on the Emulator. It recreates particle stimulus one might see when the RD53A chip is placed in the detector 
without needing to move it from your desk. Such a hit generator can be used to test the DAQ systems that read data 
out of the RD53A. 
 
To determine the best way to recreate lifelike data, we both consulted with ITk experts including Timon Heim of 
Lawrence Berkeley National Lab and analyzed software simulated hit data. We were given “frame” snapshots of 
simulated pixel arrays at various positions around the collision point. Quickly, it was noticed that a single particle 
“hit” could stimulate multiple adjacent pixels, which we went on to call a “bunch”. We then did analysis on the 
probability of how many bunches would appear in a single frame and what those bunches would look like. It was 
determined that two major shapes would appear. One, a circular blob of pixels over threshold we took to mean a 
particle flying through the chip. Two, a collection of pixels aligned linearly that would extend many pixels in length, 
which we took to be an interaction occurring in the chip ejecting a particle perpendicularly to the direction of source 
particle travel. Our ITk experts agreed these two shapes would likely make up most expected interactions and 
confirmed for us the rate at which they would occur. The top 11 cluster shapes and their appearance probabilities can 
be seen in Figure 8. 
 
Our next step was then to implement that hit generation. At the time of writing this thesis, a simple version has been 
constructed that generates the above blobs, which we refer to as “Tetris pieces”. Triggers are decoded in the “Decode 
FSM”, then passed into the hit data generator and fall into a Trigger Table, which stores them and their associated 
metadata until they resolve. When a trigger resolves, the module generates a few Tetris pieces, which are read two hit 
regions (group of four pixels) at a time by an accompanying FSM. However, sometimes the FSM will throw that data 
out entirely and output an empty frame representing the absence of a hit. The likelihood of a blank frame being 
generated is proportional to the value stored in Global Register 134, SKIP_TRG_CNT. The FSM then loads a hit data 
FIFO with the resulting hit data. 
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Data Transmission 
Data is transmitted bidirectionally to and from the Emulator on dedicated transmission lines with line-specific data 
rates and topologies. Control data is sent to the Emulator via the TTC line and produced hit data is read out via 4x1.28 
Gbps SerDes. 
 
The TTC line is read via a single differentially-terminated Input SerDes (ISERDES) running at 160 MHz. It is 
generated in the DAQ. Unlike the Chip itself, the Emulator does not include clock recovery on the TTC line, instead 
receiving a forwarded clock from the interfacing DAQ. Attempts at recovering the clock from the TTC line were 
made, but eventually abandoned due to design limitations of the FPGA. The TTC data is sent as 16-bit blocks 
(therefore, blocks are received at 10 MHz). The TTC data is encoded according to the specifications of the RD53A 
documentation and is outlined in Table 1. 
 
Each block sent is DC balanced. A DC balanced signal spends an equal amount of time in the high and low voltage 
states over the length of the signal. DC unbalanced signals can tend to bias the logic receiving them towards whatever 
voltage level is dominant in the signal, and in extreme cases can cause data transmission failures. Naturally, this is 
something we want to avoid. 
 
Triggers are sent in sets of 4 describing which of the proceeding 4 bunch crossings should collect data. Triggers are 
encoded in 8 bits of data. Since each data block is exactly 16 bits, half of the block is devoted to which bunch crossings 
the triggers occur on, and half the block is a data identifier for that set of triggers. 
 
When triggers are not being sent, the TTC line is used to control the state of the Emulator. Commands are initiated 
with 8 bit encoded words, repeated twice, except for the sync command, which is 16 bits by default. Some commands, 

 
Figure 8. The eleven most common cluster shapes (orientation-independent) 

and their appearance likelihoods. 
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such as global register read and write, will have extra data fields appended to the transmission. To ensure DC balance, 
these fields need to be encoded as well, and are done so with an 8 bit → 5 bit mapping described in Table 2.  
 
Unlike TTC data, chip readout data follows a standardized protocol and implementation. The protocol used by chip 
readout is called 64b/66b and is used in various communications standards including 10G/100G Ethernet [Ethernet, 
5], InfiniBand [InfiniBand, 92], and Thunderbolt [Thunderbolt]. The coding standard is described in Xilinx’s Aurora 
IP Protocol Specification [Aurora] but is complicated and lies outside the scope of this report. More relevantly, the 
protocol delivers on a few requirements: Run length, DC balance, Hamming distance, and limited overhead. 
 
It is necessary to have regular voltage transitions to clock recover on an incoming data line. The 64b/66b protocol 
guarantees a transition occurs at least once every 66 bits; that is to say, the run length of the 64b/66b protocol is at 
most 66. It does this by prepending a “sync header” to the front of the 66 bit data frame, thus the name 64b/66b. The 
sync header is always either a “10” or a “01”, with “11” and “00” failure modes [Aurora, 41]. 

 

 
Table 2. Data encoding scheme to fill the applicable data fields of non-trigger 
commands [RD53A, 48]. 
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As described above, a DC unbalanced signal can cause biasing at the receiving data pin. Though 64b/66b does not 
guarantee DC balance, it greatly improves it, especially in the case of sequential data runs. 
 
The 64b/66b protocol also guarantees at least a 4 bit Hamming distance between valid data frames. In simple terms, 
this means at least 4 bits must be flipped in transit for the protocol to not be able to detect a failure. 
 
Finally, the 64b/66b protocol is concerned with minimizing protocol overhead. Similar protocols like the 8b/10b 
protocol have overheads of 25%, whereas 64b/66b only has 3.125%, thereby using many less “extra” bits to convey 
the same amount of information. 
 
Xilinx provides IP in the form of the Aurora 64/66b IP to implement this protocol and instantiate it on the device. 
However, as part of our project developing the Emulator, our team also developed a “soft” version of the Aurora 
64b/66b protocol that doesn’t use the “hard” Xilinx IP. The Xilinx IP requires using a specialized part of the FPGA 
called a GTX Transceiver, which is a “hardened” piece of logic devoted to sending data at high speeds. Unfortunately, 
there are only a few such GTXs on most FPGAs, and some Xilinx FPGAs have none whatsoever. Using them, 
therefore, implies allocating very limited resources to the task at hand, often sacrificing other important utilities. Our 
team solved this by recreating the protocol as described in the documentation, using ubiquitous SerDes pins instead 
of the limited GTX pins. To that end, the Emulator can be used in more varied environments. 
 
Readout data is formatted as described in Figure 9. Data frames are prepended with the sync header “01”, and all other 
frames are prepended with “10”. Register frames hold information from the global register reads, and are sent every 
N frames, where N is programmable via a parameter in the Emulator code. Specialty frames of note are idle frames 
((c) in Figure 8) where no data is available and therefore none is sent, and channel bonding frames, which help align 
data on the receiving end of the Aurora protocol. Channel bonding frames are sent every M bundles of 4 frames, where 
M is programmable via a parameter in the Emulator code. 
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The vast majority of the work on the soft Aurora protocol was done by Lev Kurilenko, a Master Student at ACME lab 
from 2016-2018 [FPGA High Speed I/O Thesis]. 

Personal Contribution 
These are the major developments I have personally spearheaded in the Emulator as a Master Student. 

Architecture 
Near the beginning of my work on the Emulator, the system architecture looked akin to Figure 10. For reference, the 
current state of the architecture is seen in Figure 7. The system was significantly more complicated than it is today. 
More clocks were used in the architecture, generated from more independent circuits. Unnecessary blocks were added 
that served purposes not required by the specification. Now, the Emulator architecture is streamlined, partially due to 
some deviations from the specification. It now also has more configurability for the user. 
 
The largest rearchitecting step I undertook was removing clock recovery on the TTC line and all associated logic and 
clock paths. In the RD53A chip itself, the clock is recovered on the TTC line, and the recovered clock serves as the 
clock reference for the entire system. This is functionality the Emulator originally attempted to reproduce. However, 
the decision was made to recover the clock in an all-digital “Clock Recovery” module (see Figure 9), which ultimately 
proved to be too imperfect a clock recovery scheme to effectively lock data channels via the Soft Aurora data interface. 
When it came time to sync up the Emulator with a testing DAQ, the data Tx was unable to lock with the Rx on the 
DAQ side. The decision was therefore made to forward the clock from the DAQ to the Emulator to ensure the clocks 

 
Figure 9. Formatting of outgoing readout frames in the Emulator. (a) is a double 
data frame, (b) is a single data frame, (c) is an idle frame, (d) specialized Aurora 
frame usually used for Channel Bonding, and (e) is a register frame. Data frame 
formatting is still under development [Aurora, 54]. 
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are synchronized. Extra pins were available on the interface between the Emulator and the DAQ, pins which could be 
requisitioned for forwarding the clock. 
 
It then became my task to go about editing the architecture to make use of a forwarded clock. The System PLL (sys 
PLL in Figure 10) was removed entirely. The Clock Recovery block and Recovered Clock PLL (PLL) were removed 

as well. I also simplified the clocking scheme by removing the SerDes PLL, as it was found that the output SerDes 
could run at 1.28 Gbps, even though they are only rated to 1.25 Gbps. 
 
Using multiple clocks in a system presents the issue of synchronizing the points where data crosses from one clock 
domain to another. If the clocks are generated at separate sources, you cannot guarantee that they run at exactly the 
same frequency or maintain the same phase, which means you cannot deterministically pass data from one such clock 
domain to another. To solve this, we originally implemented a plethora of FIFO blocks. These FIFO blocks can be 
run in two separate clock domains at once, and guarantee data is preserved when passing from one to the other. 
However, after lowering the number of clock sourcing PLLs from 3 to 1, I could then deterministically calculate when 
data would be handed off from one domain to another, therefore allowing me to remove some of the domain-crossing 

 
Figure 10.  The state of the Emulator system architecture in June 2017. 
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FIFOs. In the end, the design was greatly simplified by forwarding the clock, and, more importantly, solved the 
synchronization problem in the Soft Aurora cores. 
 
Another, smaller change I made to the Emulator architecture was the removal of the “Trigger Out” unit also present 
in Figure 10. This was originally developed to help with debugging the Emulator’s trigger-recognizing functionality. 
It eventually became incorporated into the permanent architecture, despite not being part of the specification or 
providing any real use. I removed it, as well. 
 
The final change I made to the system architecture, and indeed one of the last changes I personally made to the 
Emulator altogether, was to modularize the Emulator as an entire unit and allow instantiation of multiple Emulator 
copies at the same time. This was done at the top level of the design. The entire Emulator was bundled into a single 
module, its pins connected through parameterized ports in a higher, top-level module where the copies are instantiated. 
I implemented a parameterized generate statement to allow the user to specify how many Emulator instantiations 
should be made. All the user need do is change one parameter. Each Emulator alone takes about 3% of the Kintex 7’s 
resources, so multiple of them can fit on a single chip. Helpfully, even though they generate entirely separate output 
data streams and therefore need dedicated output pins for each, they all may share a single forwarded clock from the 
interfacing DAQ, which amortizes the extra pins required in implementing the clock forwarding across all the 
Emulator instances. 

Command Processor 
My development on the command processor was the first significant project I undertook as a member of the Emulator 
team. In short, it takes in encoded TTC data that has already been filtered for triggers, then decodes and responds to 
it. Since my time developing the module, a lot of further functionality has been implemented; I will touch on it here 
when relevant, but the focus of this section is to explore my contributions, not the contributions of others. 
 
The Global Registers are instantiated in the command processing module. When I first developed it, it simply 
instantiated an empty memory which could be written to and read from via the relevant commands. Since then, the 
Global Registers have seen further development. Each register now has a specified reset value, which is defined in the 
command processor module. At startup, all registers are set to their initial values.  
 
Most Global Registers are not relevant to our Emulator, as they serve functions in the analog domain such as setting 
voltage biases. In this case, they reset to their default value as expected, and can be read and written as expected. 
However, they serve no other purpose as they do not control any logic. All registers are read/write; there are no read-
only registers.  
 
Regarding the data decoding microarchitecture, see Figure 11 for a visual representation. The microarchitecture is not 
terribly complicated, but it is worthwhile to briefly consider it. 
 
Encoded data from the TTC alignment and recovery block is passed first to the “Decode FSM”. The Decode FSM is 
a small FSM that demultiplexes trigger and command data, which then gets passed on to the interpreting module. If 
the data is a trigger, the trigger is decoded and passed to the hit generator. If it is command data, it is left encoded and 
passed to the command process module. Though the Decode FSM was originally developed before me, the trigger 
encoding scheme was altered in RD53A, and I implemented the updates. 
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Once triggers have been filtered out of the TTC data, the Decode FSM passes the data to the command process module, 
which can be seen as two separate blocks: First, a Command FSM interprets commands, interfaces with the Global 
Registers, sets flags, and generally responds to the sequential nature of multiword commands. Second, a Decode 
Dataword block decodes incoming data as ID/Address/Data 5-bit Fields, rather than command initialization words, 
which then get fed back to the Command FSM. 
 

 
Figure 11. A brief microarchitectural description of the command processing 
system. Once triggers have been filtered out of the TTC data, the Decode FSM 
passes the data to the command process module, which simultaneously interprets 
it as a command and a dataword, eventually discarding the incorrect 
interpretation. 

 
Table 3. Non-trigger commands receivable and their data fields, if applicable 

[RD53A, 46]. 
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There are 9 possible commands as described in Table 3. By default, when a command is seen, a flag is set for one 80 
MHz clock cycle corresponding to the seen command. These flags are available as ports of the command processor 
for users to interface with but are currently unused.  
 
Other than the flag behavior, not all the commands are implemented in the module. Specifically, ECR, the Event 
Counter Reset, and BCR, the Bunch Counter Reset, do not change the system state in any way other than raising their 
respective flags for one cycle. In that way, they respond very similarly to a Sync or a Noop command--raising their 
flag, but otherwise doing nothing (the Sync command is used in other design modules). 
 
The Global Pulse command sets a value in a dedicated register equal to the value of the datawords following the 
command word. This register is not a Global Register and is not accessible externally. At the same time as the register 
is set, the Global Pulse flag is raised. The register decrements every cycle until it reaches zero, at which time the 
Global Pulse flag is lowered. 
 
The CAL command is used in the RD53A chip to calibrate its analog front ends. As we do not have an analog front 
end, we interpreted this calibration step as transitioning the hit generator from producing incorrect data to correct data. 
So, the cal command must be sent from the DAQ before hit data can be generated. Internal registers track the data 
provided by the Cal command as described in Table 3. In order to replicate the bunch crossing rate, 40 MHz, I double 
the incoming values and count them down with the available 80 MHz clock. CAL_edge goes high after “cal edge 
delay” number of cycles, as long as “cal pulse” is not set. CAL_aux goes high after “cal aux delay” number of cycles, 
as long as “cal aux active” is set. “Cal edge count” does nothing at this time. Once CAL_edge and CAL_aux are set, 
they remain set until the global reset line is raised. You can see some of the functionality of the Cal command in 
Figure 12, though no delay “fine tuning” is possible in our design. 
 
The read and write functionality is as expected from the manual, except there is no support for the alternative extended 
write command. If the extended write command bit is set and the Emulator is being simulated, an error statement will 
be printed, but otherwise the system will continue assuming the normal length write command. All the Global 
Registers can be read and written via this command, independent of whether they are supposed to be read-only in the 
specification or not. 

Frame Formatter 
Though the frame formatter, “Command Out”, has evolved some since my time working on it, in many respects it is 
the same. Relative to the command processor, it is very simple. The frame formatter time multiplexes hit data with 

 
Figure 12. Diagram of the basic functionality of the Cal command. Fine delay 

is not implemented [RD53A, 48]. 
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register data to be read out through the Aurora module. Frames are produced at 80 MHz. Since each frame is 64 bits, 
that makes for 5.12 Gbps generated data, which is the amount supported by the output SerDes. The formatter is fed 
by three FIFOs: the “Hit FIFO”, the “Register Data FIFO”, and the “Register Address FIFO”. Those FIFOs are fed 
data by the hit generator and the command processor respectively. 
 
A parameter in the Command Out code controls how often a register frame is released. By default, it is set to 49; that 
is, 48 frames of data with one following register frame. To prepare a data frame, it requests data from the Hit FIFO. 
If data is available, it sends out that data on the next cycle. If data is not available, it sends out an IDLE frame as 
defined in Figure 8.  
 
When a register frame is about to be sent, the frame formatter prepares by requesting data from the Register Data and 
Register Address FIFOs early. Since each FIFO provides one word at a time and register frames can hold up to two 
register reads, the FIFOs are each requested twice, with the result of the first request stored in temporary local registers. 
If data is not available, the frame formatter will send an IDLE frame. If one register read is available, the data will be 
sent padded with zeros as per Figure 8. If two or more register reads are available, two register reads will be sent. 

Chapter 3: Conclusion and Future Work 
This thesis describes the RD53A chip Emulator, with emphasis on the design contributions by Dustin Werran. The 
Emulator is an FPGA-targeted hardware design that recreates the black-box functionality of the RD53A test chip. 
Multiple factors may make the use of the RD53A chip itself difficult, including the availability of the chip, the limited 
development speeds imposed by physical hardware design, and the inability for the chip to self-generate realistic 
particle hit data. These issues are all solved by the Emulator. 
 
I personally saw to the rearchitecting of the Emulator to simplify its design. A forwarded clock is expected from the 
DAQ system it interfaces with, which is then split into various clocks across the Emulator to drive all the components 
of the system. I also modularized the Emulator so that multiple copies of the design could be implemented in parallel 
on a single FPGA, allowing a DAQ system to interface with more than one Emulator at the same time. 
 
I also implemented most of the command processing logic in the Emulator. The command processing logic takes 
control information from the connected DAQ and changes the state of the Emulator based on that control data. The 
most common command types are Global Register reads and writes, which are specialized registers that control certain 
functions of the RD53A chip. Though most of the equivalent registers in the Emulator do not have equivalent 
functions, they can still be accessed by the commands as expected. The command processing logic is implemented as 
a finite state machine. 
 
A smaller task I undertook is the development of the Frame Formatter, which formats data frames going out of the 
Emulator to the DAQ. Multiple types of frames can be sent from the Emulator to the connected DAQ, including data 
frames, which read out generated hit data, and register frames, which read out information from the registers when 
requested. 
 
The Emulator code is wholly contained in a repository hosted on CERN’s Gitlab. The repository address is linked in 
Appendix A. The repository also contains other code specific to some of the various DAQs currently in development 
for ITk. 
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Future Work 
Work on the Emulator is ongoing. At the time of writing, most of the work being done is focused on improving the 
hit data generation functionality of the Emulator. Currently, the Emulator only generates a single type of hit we call a 
“Tetris” hit. In the short term, more types of hits will be implemented, including “Lines”. The generator will also be 
made more robust to increase the number of hits possible at the same time. 
 
In the long term, the Emulator will likely be repurposed to emulate the RD53B chip, which is the successor to the 
RD53A, and is currently in development. There are some significant changes to the data protocols used in the RD53B 
that will need to be implemented in the future Emulator to do so. The use case for the RD53B Emulator will likely be 
very similar to the RD53A Emulator. Because a lot of the code in the RD53A Emulator could be reused for these 
updates, the RD53B Emulator could be finished in less development time, possibly releasing before the chip itself. If 
so, the Emulator could be provided as an alternative to the chip as an early platform for testing ITk DAQs. 
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Appendices 

Appendix A: Emulator 
Emulator code repository: 
https://gitlab.cern.ch/dgsmith/rd53a_hardware_emulator/tree/master 
 
Previous related theses: 
Joseph Mayer: http://cds.cern.ch/record/2198312 
Lev Kurilenko: http://cds.cern.ch/record/2631488 

Appendix B: Linux development for the Pixel ROD 
During my time at CERN, I worked on a project entirely separate from my work on the Emulator. There, I focused 
my development on a distribution of Linux targeting an embedded PowerPC on one of the FPGAs on the Pixel Readout 
Driver (ROD). It was developed as a replacement for the aging and insecure Xilinx-proprietary kernel currently used 
on that PowerPC. The Xilinx kernel has had support dropped for it since 2011, and at such time updates were frozen. 
Additionally, being proprietary, the Xilinx kernel is not supported by many standard utilities like SSH. Transitioning 
to a Linux-based distribution provides for consistent security updates and easier use of third party programs, as well 
as easier changes to the distribution binary via boot over TFTP. 
 
Though it has not yet been deployed, there has been renewed interest in using it in the near future, before the ITk 
update. Currently, changes and updates are being done to bring the image up to specification. 
 
Here is a presentation I gave at the end of my term of developing the distribution: 
https://drive.google.com/file/d/1XGFsye1QHRjVPHoLbG-qUooFXGSaN4D6/view?usp=sharing 
 
Here is the working instruction document for building and using the distribution. It is rather technical: 
https://docs.google.com/document/d/1jCM5ktD55jnqg9_5HWCcUBOseEYINWrsTpLrVP5MzBE/edit?usp=sharing 
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Appendix C: FPGA-accelerated machine learning inference as a service 
for particle physics computing 
Since November 2018, my work has focused on leveraging the Azure ML Brainwave service for accelerated machine 
learning inference targeting a Top tagging dataset. Though Top tagging is a contrived example, deep learning has seen 
huge interest in the area of offline tagging and in high energy physics generally as an alternative to conventional 
algorithms. However, a problem with deep neural networks is they require a lot of processing time to generate a result.  
 
In response, specialized hardware has been developed focused on accelerating Deep Neural Networks (DNNs) to 
inference times that are acceptable for latency-bound operations like Top Tagging. One such technology being 
developed by Microsoft is called Brainwave and applies FPGAs to the task of machine learning acceleration. 
 
Over the past few months, I have been working with a team at Fermi National Accelerator Laboratory (FNAL) to 
leverage the Brainwave service as described. Results so far have been positive, with round trip latency times of about 
30 miliseconds and labeling accuracy up to 90%, though they are expected to improve with some simple changes to 
the training methodology. 
 
A paper will be publicly released in the short term titled the same as this appendix section. Further details will be 
available there. 


