
©Copyright 2025

Donovan Clay

Benchmarking HLS4ML Designs with Batch Normalization

Donovan Clay

An honors thesis submitted in partial fulfillment of the
departmental honors requirements for the degree of

Bachelor of Science

University of Washington

2025

Reading Committee:

Scott Hauck

Program Authorized to Offer Degree:
Paul G. Allen School of Computer Science & Engineering

University of Washington

Abstract

Benchmarking HLS4ML Designs with Batch Normalization

Donovan Clay

This thesis explores the implementation and optimization of neural network models on Field-Programmable

Gate Arrays (FPGAs) using the HLS4ML library, addressing the increasing energy consumption and

inference time of complex deep learning models. The core objective is to benchmark HLS4ML’s per-

formance against handmade designs to identify and explore opportunities for optimization.

The methodology involved novel hardware implementations for key neural network layers. Specif-

ically, the Batch Normalization layer and Softmax operation. The benchmark model, a jet tagging

neural network designed for high-energy physics experiments at the Large Hadron Collider, includes

a Batch Normalization layer as a distinguishing feature from other benchmarks of HLS4ML. All

designs were evaluated on a Xilinx Alveo U250 board.

Results indicate that the HLS4ML-generated design generally has better resource utilization.

In terms of timing, the handmade design achieved a faster clock frequency but exhibited higher

total latency, although both designs achieved an Initiation Interval (II) of 1. A per-module anal-

ysis revealed that dense layers were the primary consumers of FFs and DSPs, while ReLU layers

significantly contributed to LUT utilization.

TABLE OF CONTENTS

Page

1 Introduction 1

2 Background 1

2.1 How Can Neural Networks Be Implemented on FPGAs? 1

2.2 The Benchmark Neural Network . 2

2.3 Metrics . 3

2.4 Benchmark FPGA Board . 4

3 Methods 5

3.1 BatchNormalization Implementation . 5

3.2 Softmax Implementation . 6

4 Results 7

5 Conclusion 10

i

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation under Grant No. OAC-2117997.

I acknowledge the Fast Machine Learning collective as an open community of multi-domain

experts and collaborators. This community and Scott Hauck, in particular, were important for the

development of this project.

ii

DEDICATION

iii

1

1 Introduction

The power of neural networks has been demonstrated across an increasingly diverse range of appli-

cations, revolutionizing fields from computer vision to natural language processing [Rostam et al.,

2024; Russakovsky et al., 2015]. As these neural network models continue to grow in complexity and

size, however, the associated computational demands lead to significant increases in energy consump-

tion and inference time. Implementing machine learning models directly in specialized hardware,

such as Field-Programmable Gate Arrays (FPGAs), offers a compelling solution to these challenges

by leveraging their inherent parallelism and energy efficiency. The HLS4ML library automates the

crucial, yet often complex, process of converting high-level machine learning Python code into op-

timized hardware designs (bitfiles) for FPGA programming, thereby simplifying a task that would

otherwise require extensive hardware design expertise [FastML Team, 2025; Duarte et al., 2018]. To

further unlock the potential of FPGA-accelerated machine learning, a comprehensive benchmarking

of HLS4ML’s performance is crucial for identifying bottlenecks and devising strategies to optimize

both the library and the generated hardware, ultimately pushing the boundaries of real-time machine

learning inference.

2 Background

2.1 How Can Neural Networks Be Implemented on FPGAs?

1 0 1 1 1 0 1 0 1

Fixed-Point Notation

0

32 16 8 14 2 1/81/2 1/4 1/6

32 8 4 2 1/2 1/8+ 0 + ++ ++ ++ +0 0 0

= 46.625

Fractional Bits
Integer BitsExample size: <10,4> / 10_4

Figure 1: Fixed-Point Notation

2

Fixed-point Notation Fixed-point notation is a method for representing real numbers using a

fixed number of digits after the radix point (decimal point). Unlike floating-point notation, where

the radix point can “float,” its position is predetermined and consistent. This makes fixed-point

arithmetic simpler and often more efficient to implement in hardware, such as FPGAs, as it avoids

the complex logic required for floating-point operations.

As illustrated in Figure 1, a fixed-point number is typically represented by a total number of

bits, which are divided into two parts: integer bits (to the left of the implied radix point) and

fractional bits (to the right). The integer bits represent the whole number part, while the fractional

bits represent the precision or the decimal part of the number. For this paper, a <T, F> or T F

notation signifies T total bits and F fractional bits. This fixed structure provides a predictable

range and precision, which is crucial for resource-constrained environments like FPGAs where exact

control over bit-width and computational complexity is desired for optimal performance and resource

utilization in applications like neural networks.

2.2 The Benchmark Neural Network

In
pu

t

D
en

se
 L

ay
er

 1

Ba
tc

hN
or

m
al

iz
at

io
n

R
eL

U
 L

ay
er

 1

D
en

se
 L

ay
er

 2

Ba
tc

hN
or

m
al

iz
at

io
n

R
eL

U
 L

ay
er

 2

D
en

se
 L

ay
er

 3

Ba
tc

hN
or

m
al

iz
at

io
n

R
eL

U
 L

ay
er

 3

So
ftm

ax

D
en

se
La

ye
r 4

64

32 32

5
64

O
ut

pu
t

5

Figure 2: Jet Tagging Benchmark Neural Network

One benchmark neural network model is used for this thesis to evaluate the effectiveness of

HLS4ML. This model is designed for classifying jets of particles during high-energy physics ex-

periments at the Large Hadron Collider [Ngadiuba et al., 2020]. The project specifically utilizes

the hls4ml lhc jets hlf dataset, which comprises high-level features extracted from simulated jet

events. Such models used designed for real-time scientific experiments are a common choice for

3

benchmarking HLS4ML applications due to the stringent demands for ultra-low latency and high

throughput inherent in experimental data processing.

The architecture of the benchmark model, as depicted in Figure 2, consists of a series of dense

layers interspersed with activation functions. Previous works by Johnson [2023] and Khan [2024] have

explored various neural network architectures for similar benchmarking purposes, demonstrating the

adaptability of HLS4ML to different model complexities.

A key distinguishing feature of the benchmark model used in this thesis, compared to some earlier

HLS4ML benchmarks, is the inclusion of a Batch Normalization (BN) layer. Batch Normalization

layers, typically applied during training to stabilize and accelerate the learning process, present

unique challenges and opportunities for hardware implementation via HLS. The exploration of this

specific architecture allows for a more comprehensive evaluation of HLS4ML’s capability to handle

contemporary neural network design patterns that incorporate such layers.

2.3 Metrics

In this thesis, I will compare HLS4ML’s performance against the performance of “handmade” Verilog

designs. Metrics are crucial for comparing the efficiency and effectiveness of different design choices,

particularly concerning resource utilization and timing performance.

2.3.1 Resource Utilization

Field-Programmable Gate Arrays (FPGAs) are reconfigurable integrated circuits that offer a flexible

platform for implementing custom digital logic. To achieve this flexibility, FPGAs are populated

with various types of programmable resources, each serving a specific function. Understanding these

resources is crucial for optimizing designs, especially when deploying complex algorithms like those

found in machine learning.

Flip-Flops Flip-flops (FFs) are a basic building block of digital circuits in FPGAs. They are

used to store a single bit of data and update their state synchronously with a clock signal. FFs are

essential for implementing state machines, registers, and any circuit requiring memory elements.

Look-Up Tables Look-Up tables (LUTs) are another fundamental building block in FPGAs.

LUTs are used to implement combinational logic, mapping input combinations to output values.

LUTs are a resource implemented in the combinational logic blocks (CLBs) [AMD, 2025] which are

useful for creating a variety of Boolean functions.

4

Digital Signal Processors Digital Signal Processors (DSPs) are specialized modules that are

optimized for high-performance arithmetic. In this project’s context, they are primarily used for

multiplication operations.

RAM Block RAM (BRAM) refers to blocks of synchronous static random-access memory (SRAM)

integrated into FPGAs. These memory blocks provide high-bandwidth, on-chip storage for data.

2.3.2 Timing Constraints

Timing constraints are fundamental specifications that define the acceptable temporal behavior

of a digital circuit on an FPGA. For any digital circuit, meeting these constraints is critical for

the circuit to run as expected. For neural network implementations, meeting these constraints is

crucial for achieving real-time inference and high throughput. Key timing metrics include the clock

frequency/period, which sets the fundamental speed at which the circuit operates. Beyond this,

two critical performance indicators are latency and Initiation Interval (II).

Latency refers to the total number of clock cycles (or the absolute time) it takes for a single input

to propagate through the entire circuit and produce its corresponding valid output. It represents the

“start-to-finish” time for a single inference, making it critical for applications requiring immediate

responses.

The Initiation Interval (II), conversely, defines the number of clock cycles that must pass before

a new input can be accepted by the circuit. A smaller II (ideally 1) signifies higher throughput,

allowing for the continuous processing of data streams.

2.4 Benchmark FPGA Board

The benchmark neural network model is evaluated on the Xilinx Alveo U250 board. The Alveo

U250 is a high-performance, reconfigurable accelerator card designed for data center and cloud

deployments, making it well-suited for machine learning inference tasks. It features a large Xilinx

Virtex UltraScale+ FPGA, with an abundance of logic resources (LUTs, FFs), numerous Digital

Signal Processing (DSP) blocks for high-throughput arithmetic operations, and substantial on-chip

Block RAM (BRAM) for data storage. The selection of the Alveo U250 for this thesis provides a

robust platform to demonstrate the performance and resource efficiency capabilities of HLS4ML in

a realistic, high-end hardware environment.

Table 1 shows the resources available on the Alveo U250 board.

5

FFs LUTs DSPs BRAMs

3,456,000 1,728,000 12,288 2,688

Table 1: Total Resources Available on Alveo U250

3 Methods

Implementing this benchmark model required new implementations of two neural network layers,

namely BatchNormalization and Softmax, for efficient resource utilization on FPGAs. BatchNor-

malization, in particular, has been widely adopted in deep learning models due to its proven ability

to improve training stability and accelerate convergence [Ioffe and Szegedy, 2015], leading to better

overall model performance. This section details the methodologies developed to adapt these layers

for hardware synthesis, highlighting the optimizations made for efficient FPGA implementation.

3.1 BatchNormalization Implementation

The BatchNormalization layer is initialized with parameters ϵ and learns parameters µ, σ, γ, β. Once

a model is trained, these parameters don’t change. For a trained model, the BatchNormalization

layer performs this operation to an input vector x:

BatchNormalization(x) = γ ⊙ (x− µ)√
σ2 + ϵ

+ β

Here, ⊙, division, and the square root operate element-wise. This transformation can be shown

to be a linear transformation of x in terms of a scale factor w and an offset factor b such that

BatchNormalization(x) = wx+ b

where

w =
γ√

σ2 + ϵ

b = β − γ√
σ2 + ϵ

· µ

Combining Dense and BatchNormalization layers During Inference

The Dense layer computes

y = Wdensex+ bdense

6

where x is the input vector, Wdense is the weight matrix, and bdense is the bias vector.

Both the Dense layer and the BatchNormalization layers behave as linear transformations during

inference. Therefore, we can eliminate the BatchNormalization layer by adjusting the Dense layer’s

weights to incorporate the linear operation. A combined Dense-BatchNormalization layer would

compute:

z = γ ⊙ (Wdensex+ bdense)− µ√
σ2 + ϵ

+ β

= γ ⊙ Wdensex√
σ2 + ϵ

+
(Wdensebdense)− µ√

σ2 + ϵ
+ β

Therefore, we can define the new weight matrix Wnew and bias vector bnew as

Wnew = γ ⊙ Wdense√
σ2 + ϵ

bnew =
(Wdensebdense)− µ√

σ2 + ϵ
+ β

and replace the Dense-BatchNormalization sequence with a single Dense layer defined by Wnew

and bnew:

z = Wnewx+ bnew

These parameters can be precomputed and used during the synthesis of the model. This opti-

mization improves both resource utilization and timing constraints metrics without any cost.

3.2 Softmax Implementation

The Softmax operation computes the following operation σ(x) for an input vector x ∈ Rd:

σ(x)i =
exi∑d
j=1 e

xj

The exponential and division operations are approximated using look-up tables, which are indexed

by the fixed-point representation of the input operand.

Figure 3 illustrates the accuracy of the hardware-implemented exponential function at 16 10

bitwidth, approximated via a look-up table, against the true exponential function. This comparison

highlights how well the fixed-point, LUT-based approach mimics the ideal mathematical function,

demonstrating the trade-off between hardware resource efficiency and numerical precision.

7

Figure 3: Comparison of Exponential Functions

Figure 4: Comparison of Inverse Functions

Figure 4 presents a similar comparison for the inverse operation, a crucial component in the

softmax division. It visualizes the behavior of the inverse function as implemented in hardware

using a look-up table versus its ideal mathematical counterpart, showcasing the fidelity of the fixed-

point approximation for division.

4 Results

The benchmark neural network model was implemented and evaluated using a fixed-point represen-

tation with a <16,10> bitwidth, signifying 16 total bits with 10 fractional bits. Prior work showed

significant resource and performance optimizations could be achieved by carefully selecting the depth

of a shift-add module [Johnson, 2023], which approximates multiplication operations. Building upon

8

this, the handmade implementation presented in this thesis utilized a Shift-Add depth of 4, which I

found to be the most effective for maximizing efficiency.

Figure 5: Benchmark Model Resource Utilization Comparison

Resource Utilization Metrics Figure 5 provides a side-by-side comparison of the resource uti-

lization percentage for the benchmark neural network model when implemented using a handmade

design versus an HLS4ML-generated design. The handmade implementation generally consumes

more LUTs and FFs, while the HLS4ML design utilizes a larger percentage of DSPs and a small

amount of BRAM.

Figure 6: Percent of Total Resource Utilization (per module)

9

2:1 Mux

0

8

ReLU Block
(for one 8 bit number)

Output

Input

2:1 Mux

0

2:1 Mux

0

2:1 Mux

0

2:1 Mux

0

2:1 Mux

0

2:1 Mux

0

Input[0]

Input[7] (sign bit)

Input[1] Input[2] Input[3] Input[4] Input[5] Input[6]

01

Output[0:7]

8

1 0

1 0

1 0

1 0

1 0

1 0

Figure 7: ReLU Implementation

Figure 6 shows the resource usage by individual modules within the handmade design. For each

layer (e.g., denselayer1, relulayer1, softmax), it shows the percentage contribution of LUTs, FFs,

DSPs, and BRAMs to the total resources consumed by the entire design. The dense-layer modules

are the primary consumers of FFs and DSPs, while relulayer modules contribute significantly to

LUT utilization, providing insight into the resource bottleneck within the architecture.

I was surprised to find the LUT usage of ReLU so high. ReLU is a simple operation that

only uses LUTs to compute max(0, x). Looking at the synthesized HLS4ML modules, HLS4ML

only instantiates one ReLU module. This might contribute to the discrepancy between resource

utilization. Figure 7 shows the expected implementation of the ReLU operation for an 8 bit number.

As the figure demonstrates, n−1 MUXes are required to implement an n-bit number. A basic design

would use one LUT for the implementation of a 2-to-1 MUX. The model for the first ReLU layer

has 64 16-bit inputs, which means it should be possible for the first ReLU layer to be implemented

10

with 64 · (16− 1) = 960 LUTs. Comparing against the LUT usage for ReLU Layer 1 in Table 6, the

real design’s usage is 37380, whereas the expected usage is 960.

Design Max Clock Frequency Latency Initiation Interval

Handmade 206.23 MHz 368.5ns 1

HLS4ML 164.50 Mhz 79.03ns 1

Table 2: Comparison of Timing Metrics

Timing Metrics Table 2 shows the timing results of both designs. Compared to HLS4ML, the

handmade design can run at a faster clock frequency, but has higher total latency. Both designs

have an II of 1.

5 Conclusion

Building upon the insights gained from this thesis, several promising avenues for future research

emerge, particularly concerning the optimization of neural network layers on FPGAs.

One key area for future investigation is the optimal utilization of Look-Up Tables (LUTs) for

ReLU activation functions. As said in section 4, HLS4ML only instantiates one ReLU module.

Investigation into how HLS4ML computes ReLU for 3 activation layers might prove insightful for

learning about optimizations HLS4ML and HLS are doing.

This thesis shows that another critical area for optimization is still the dense layer. The resource-

intense multiplication and summation still uses more resources in the handmade designs compared

to HLS4ML.

Furthermore, given the rapid advancements in deep learning research, exploring the hardware

implementation of additional and emerging activation layers presents a significant area for future

work. The landscape of neural network activation functions is constantly evolving, with new layers

introduced in research papers frequently to address specific challenges or improve model perfor-

mance. Investigating how these diverse activation functions (e.g., ELU, SELU, Swish, GeLU) can

be efficiently mapped onto FPGA resources, what approximation techniques are most suitable, and

how HLS4ML can be extended to support them, would be valuable. This research would contribute

to broadening the applicability and efficiency of FPGA-accelerated neural networks to a wider range

of contemporary deep learning architectures.

11

BIBLIOGRAPHY

AMD. UltraScale Architecture Configurable Logic Block User Guide AMD Technical Informa-

tion Portal. https://docs.amd.com/r/en-US/ug574-ultrascale-clb/CLB-Resources, 2025. URL

https://docs.amd.com/r/en-US/ug574-ultrascale-clb/CLB-Resources.

Javier Duarte et al. Fast inference of deep neural networks in FPGAs for particle physics. JINST,

13(07):P07027, 2018. doi: 10.1088/1748-0221/13/07/P07027.

FastML Team. fastmachinelearning/hls4ml, 2025. URL https://github.com/fastmachinelearning/hls4ml.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by

reducing internal covariate shift, 2015. URL https://arxiv.org/abs/1502.03167.

Caroline Johnson. Evaluating the Quality of HLS4ML’s Basic Neural Network Implementations on

FPGAs. 2023.

Waiz Khan. Quantifying the Performance and Resource Usage of HLS4ML’s Implementation of the

Batch Normalization Layer on FPGAs. 2024.

Jennifer Ngadiuba, Vladimir Loncar, Maurizio Pierini, Sioni Summers, Giuseppe Di Guglielmo,

Javier Duarte, Philip Harris, Dylan Rankin, Sergo Jindariani, Mia Liu, Kevin Pedro, Nhan Tran,

Edward Kreinar, Sheila Sagear, Zhenbin Wu, and Duc Hoang. Compressing deep neural networks

on fpgas to binary and ternary precision with ¡tt¿hls4ml¡/tt¿. Machine Learning: Science and

Technology, 2(1):015001, December 2020. ISSN 2632-2153. doi: 10.1088/2632-2153/aba042. URL

http://dx.doi.org/10.1088/2632-2153/aba042.

Zhyar Rzgar K. Rostam, Sándor Szénási, and Gábor Kertész. Achieving peak performance for large

language models: A systematic review. IEEE Access, 12:96017–96050, 2024. ISSN 2169-3536. doi:

10.1109/access.2024.3424945. URL http://dx.doi.org/10.1109/ACCESS.2024.3424945.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,

Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet

large scale visual recognition challenge, 2015. URL https://arxiv.org/abs/1409.0575.

12

Appendix

Proof of BatchNormalization Linear Transformation

y =
γ(x− µ)√
σ2 + ϵ

+ β

=
γx√
σ2 + ϵ

− γµ√
σ2 + ϵ

+ β

=
γ√

σ2 + ϵ
x+

(
β − γµ√

σ2 + ϵ

)
= wx+ b where w =

γ√
σ2 + ϵ

and b = β − γµ√
σ2 + ϵ

Resource Utilization

Resource Utilization Available Utilization %

LUT 138742 1728000 8.03

FF 70570 3456000 2.04

BRAM 0 2688 0.00

DSP 391 12288 3.18

Table 3: Handmade Resource Utilization

Resource Utilization Available Utilization %

LUT 67147 1728000 3.89

FF 9712 3456000 0.28

BRAM 2 2688 0.07

DSP 694 12288 5.65

Table 4: HLS4ML Resource Utilization Tables

13

Module LUT FF BRAM DSP

denselayer1 36736 17828 0 120

denselayer2 24087 30580 0 80

denselayer3 13167 16555 0 171

denselayer4 2506 2941 0 15

relulayer1 37380 1336 0 0

relulayer2 20810 788 0 0

relulayer3 3882 480 0 0

softmax 206 59 0 5

Table 5: Handmade Per-Module Resource Utilization

