
 

  
Abstract—We report on the implementation of an algorithm and 
hardware platform to allow real-time processing of the 
previously described Statistics-Based Positioning (SBP) method 
for continuous miniature crystal element (cMiCE) detectors. The 
SBP method allows an intrinsic spatial resolution of ~1.4 mm 
FWHM to be achieved using our cMiCE design. Previous SBP 
solutions have required a post-processing procedure due to the 
computation and memory intensive nature of SBP. This new 
implementation takes advantage of a combination of algebraic 
simplifications, conversion to fixed-point math, and a hierarchal 
search technique to greatly accelerate the algorithm. For the 
presented seven stage, 127x127 bin LUT implementation, these 
algorithm improvements result in a reduction from >7x106 
floating-point operations per event for an exhaustive search to 
<5x103 integer operations per event. Simulations show nearly 
identical FWHM positioning resolution for this accelerated SBP 
solution, and positioning differences of <0.1mm from the 
exhaustive search solution. A pipelined Field Programmable Gate 
Array (FPGA) implementation of this optimized algorithm is able 
to process events in excess of 250K events per second, which is 
greater than the maximum expected coincidence rate for an 
individual detector. In contrast to all detectors being processed at 
a centralized host, as in the current system, a separate FPGA is 
available at each detector thus dividing the computational load. 
These methods allow SBP results to be calculated in real-time 
and to be presented to the image generation components in real-
time. A prototype hardware implementation has been tested, 
limited to 4 stages due to memory limitations of the initial 
prototyping board. A custom board is currently under 
development to allow implementation of the full seven stage 
algorithm. 
 

Index Terms—Continuous crystal, PET detector, FPGA. 

I. INTRODUCTION 
iscrete crystal detector modules have traditionally been 
used to achieve high spatial resolution for small animal 
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(pre-clinical) PET scanners. However, the cost goes up rapidly 
as crystal cross-section gets smaller. We have previously 
presented a continuous miniature crystal element (cMiCE) 
detector as a lower cost alternative, with a statistics based 
positioning (SBP) algorithm used for event positioning from 
list mode data [1-3]. We are currently developing a full pre-
clinical scanner based on the cMiCE detector module. 
However, the processing and memory requirements of 
performing the event positioning from the list mode data 
results in an undesirable delay between the end of data 
collection and the positioning of the event data.  Processor 
arrays are able to reduce this time; however, a goal of this 
work is to provide a real-time implementation. In this work, 
several methods of algorithm optimizations, along with a 
pipelined FPGA implementation, results in a system capable 
of generating SBP results in real-time (i.e., SBP event 
positioning of over 250K events per second per detector).   
 An FPGA is a special purpose integrated circuit (IC) 
designed to perform complex interface and logic processing in 
a small footprint [4]. The FPGA is a reconfigurable hardware 
platform consisting of a large number of simple logic elements 
with a matrix of interconnects that can be selectively enabled 
or disabled under the control of a downloadable configuration 
file. This allows the FPGA a flexibility that is not available 
with microprocessors.  
 The flexibility of the FPGA will allow many options to be 
considered in implementing the SBP method. The proposed 
system requires a method of generating solutions at a much 
higher rate than available with the post-processing method 
currently used. Some of the hardware options to be explored 
include parallel processing and hardware acceleration of the 
individual computations. Software options include optimizing 
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Figure 1.  Picture of cMiCE detector with 8 mm thick LYSO 
crystal and white paint. 



 

the algorithm performing the computations and conversion 
from floating-point to an integer or fixed-point 
implementation to reduce the computational complexity. 
These methods will be explored in the following sections. 

II. MATERIALS AND METHODS 

A. cMiCE Detector Module 
A cMiCE detector module is pictured in Fig. 1.  It is 

composed of a 50 mm by 50 mm by 8 mm thick slab of LYSO 
(Saint Gobain, Newbury, Ohio) coupled to a 64-channel multi-
anode PMT (H8500, Hamamatsu Photonics K.K., Japan). One 
of the 50 mm by 50 mm surfaces was polished.  All other 
surfaces were roughened.  The polished side was coupled to 
the PMT using Bicron BC-630 optical grease. The face of the 
crystal opposite the PMT was painted white.  The side 
surfaces of the crystal were painted black to reduce light 
reflections off the sides. 

B. Statistics-based Positioning Method (SBP) 
Suppose the distributions of observing PMT outputs M = 

M1, M2, …, Mn for scintillation position x, are independent 
normal distributions with mean {µ(x)} and standard deviation 
{σ(x)}. 

The likelihood function for making any single observation 
mi from distribution Mi given x is: 

  

 
    

( )( )
( )!

=
""
#

$
%%
&

' (
(=

n

i i

ii

i

i

x

xm

x
xmL

1
2

2

2
exp

2)(

1
]|[

)
µ

*)      
(1). 

 
The maximum likelihood estimator of the event position x is 

given by: 
 
                        (2). 

 
 
The SBP method requires that the light response function 

versus interaction location be characterized for the detector.  
Two SBP look-up tables (LUTs) corresponding to the mean 
and variance of the light probability density function (PDF) 
versus (x,y) position are created during the characterization 
process.  The LUTs are 127x127, corresponding to ~0.4 mm 
by ~0.4 mm pixels for binning.  For more detailed 
explanations about the SBP implementation refer to Joung [1]. 

C. Equation Simplification 
The proposed method to implement SBP within an FPGA 

relies upon multiple levels of optimization. The first to be 
employed is reducing the number of computations required for 
each iteration of the likelihood equation, the central 
component of the SBP method. The log likelihood function for 
each signal channel can be represented as in Equation 3. 
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The objective is to manipulate this function to minimize those 
numerical operations which are expensive to perform in terms 
of time or resources. With the computational resources 
available in this project the following guidelines are 
employed: 

• Adds and subtracts are efficient. 
• Multiply is relatively efficient, but should be kept to a 

minimum. 
• Squares are special cases of multiply, but should also be 

minimized. 
• Division is very inefficient because it requires an 

iterative approach. 
• Transcendental functions should be avoided at all costs. 

Each iteration of Equation 3 consists of seven operations: 
 

1. Subtract (E - µ). 
2. Square the result. 
3. Square σ. 
4. Multiply the result by 2. 
5. Divide the result of step 2 by the result of step 4. 
6. Find the natural log of σ. 
7. Add the result of step 7 to the result of step 5. 
 

The transcendental function of step 6 increases the 
complexity of this method well beyond the seven operations, 
and needs to be eliminated. Also, the division should be 
replaced by a multiplication by a pre-computed inverse if 
possible. Following the guidelines given above leads to the 
simplification shown in Equation 4. 

If we let A=µi(x), B=1/(1.414σi(x)) and C=ln(σi(x)), 
Equation 3 can be rewritten as Equation 4. 

 ((x ! A)" B)
2
+ C  (4) 

In this simplification, the three variables A, B and C replace 
the original µ and σ in the data tables. Variable A is simply 
equal to µ.  Variables B and C can be pre-calculated by the 
host before being stored in the data tables used for this 
calculation, saving the time and resources of both the 
arithmetic operations and the transcendental function. With 
these simplifications, only four operations are required: 
 

1. Subtract (E - A). 
2. Multiply the results by B. 
3. Square the results. 
4. Add C. 
 

This greatly reduces the computational complexity of each 
iteration of the likelihood equation and will be substituted for 
the original equation in all of the following uses.  

D. Twenty-One channel solution 
The original SBP solution summed the log likelihood 

equation for each of the 64 channels of the 8x8 sensor. 
However, it was found that using channels far from the peak 
reduced positioning accuracy. Using the 21 channels 
surrounding the peak energy, as shown in Figure 2, led to 
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better positioning performance.  In addition to improving 
positioning, this results in a ~3:1 reduction in the number of 
operations needed for each solution. 

  

Figure 2. Twenty-one channel masking, centered on the peak energy 
channel. 

E. Conversion to Fixed-Point 
Floating-point calculations are computationally expensive 

in an FPGA implementation. Additionally, floating-point 
values occupy 4 or more bytes of memory storage per value, 
creating an excessive storage requirement. Converting to 
integer representations, while retaining the required resolution, 
necessitates multiplying by a power of two before the 
conversion to move fractional parts of the value into the 
resulting integer. Proper management of these multiplication 
steps allows the resulting calculations to correctly represent 
the relative values of the original results. The advantages of 
using integer values are that a smaller number of bits are 
required for storage, and integer math operations can be used 
for all calculations and comparisons. 

F. Hierarchal Search 
An exhaustive search method has the advantage of being 

easy to implement and is guaranteed to always find the 
absolute minimum solution. It has the disadvantage of being 
very inefficient, both in terms of the number of iterations, and 
the number of memory accesses to find a solution. 
Observation of the solution set, figure 3, made it apparent that 
a structured search could be used to converge to a solution 
with many fewer iterations.  

 

Figure 3. The complete solution set for a representative event. 

Of the structured searches explored [5], it was found that a 
hierarchal search provided the best combination of reduced 
iterations and memory usage, allowing memory to be 
partitioned in a way that was conducive to a pipelined 
implementation. This search functions by finding the solutions 
at a number of evenly distributed samples points. The 
minimum result from these samples identifies the region 
holding the ultimate solution and a new, smaller solution 

space is sampled, centered on the previous best solution. This 
process continues iteratively until the solution space is a single 
pixel. An advantage of this method is that the early stages of 
the search only require access to a small number of the table 
values. This allows separate tables for each stage of the 
search, without the large storage requirements of multiple 
copies of the complete tables. 

This algorithm yields a large reduction in the number of 
points that need to be sampled. Variations in the number of 
sampled points at each iteration were simulated, ranging from 
a 2x2 array of samples at each iteration of the search, resulting 
in an 8 iteration search in a 127x127 solution space (best case) 
to 5x5 samples resulting in a three iteration search. These 
require a total of 2*2*8=32 sampled points for the 2x2 search 
to 5*5*3=75 points for a 5x5 search. 
 The optimal solution was found to be a hierarchal search 
with 3x3 samples at each iteration, dividing the solution space 
to approximately one-quarter of its previous size. An example 
of this search on a 63x63 solution space is shown in Figure 4. 
This example shows the five iterations necessary to fully 
search the 63x63 space. The solution space of each successive 
stage is shown by the increasingly smaller box. Within each 
solution space, the nine X-Y points to be tested are shown, 
centered on the best solution from the preceding stage. The 
search concludes with a three by three search at a spacing of 
one pixel. 

The regularity of this search allows each level of the search 
to consist of an almost identical process, where each iteration 
starts with a center point for the search and the spacing 
between points to be tested at this iteration. For the 3x3 search 
shown, 9 sets of characterization data table values are needed 
for the first stage, one for each position to be tested. The next 
iteration will consist of potential sample positions at one-half 
the spacing, with sets of points centered on each of the 
previous stage’s points, with the first stage defaulting to being 
centered on the center of the entire data table (see figure 4). 
This results in each stages’ data table having approximately 
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Figure 4. Five iterations of a 3x3 search on a 63x63 solution 
space. 



 

four times the number of testable locations as the previous 
stage, but still only a fraction of the overall table, until the last 
stage is reached. The last stage is the only stage that needs 
access to the entire table. Each iteration will begin with the 
best solution from the previous stage as the center point of its 
search and will test all points adjacent to it at the current 
resolution. As each stage passes its best result to the next 
stage, eventually the last stage is reached where the spacing 
between adjacent pixels is one. The results of this stage 
represent the best solution available for the data table used. 
 Structuring the search in this way allows points sampled 
during each iteration to be independent of calculations 
currently underway in other iterations. This can allow 
calculations for different events to be pipelined, allowing 
multiple stages to be processed simultaneously.  
 A second advantage of this method is that the storage 
requirement for each stage’s data table is reduced for each 
iteration prior to the last. Ideally, for n samples, the new 
solution space would contain n times as many possible 
solutions as the previous iteration. For our example with nine 
samples, we would hope for nine times as many potential 
sample points at the next iteration. However, experiments 
determined that when the final solution was located 
approximately midway between two sampled points, this 
solution was not always nearest to the best sampled point. The 
cause of this was found to be that the solution set is not 
completely symmetric and is subject to some solution noise. 
To solve this problem, each successive iteration must operate 
on a subset that is significantly larger than n times the size of 
the previous iteration. 
 Our solution is to have the solution space dimension at each 
stage to be an integer power of 2, minus 1 (2n-1). Constraining 
each level to have an odd number of values allows each 
solution space to have a pixel in the exact center, with other 
X-Y locations spaced at a power of two. A representation of a 
simple four stage system is shown in Figure 5. The top row of 
figures shows the spacing of the locations that can be tested at 
each stage. The bottom row of figures shows how these values 
are stored using a compressed addressing scheme where the 
unused values are not included in the table for that stage. This 
allows the data table at all stages except for the final stage to 
be stored in a much smaller memory space. The storage of the 
odd number of values is padded with blank values to allow 
separate X and Y addresses to access the desired coordinate 
without requiring an address calculation. The proper value is 
addressed by simply appending the binary representation of 
the X location to the Y location. For example, if the desired X 
coordinate is 11b and the Y coordinate is 01b, the address of 
the desired value is at 1101b. As the solution moves from one 
stage to the next, address translations to match the next stage 
are accomplished by multiplying the X and Y coordinates by 
two. This is accomplished by appending a zero to the binary 
address values. For the example above, 11b->110b and 01b-
>010b, so the resulting address of the same coordinate in the 
next stages addressing scheme would be 110010b. This allows 
the binary system to do in-stage addressing and next-stage 
address translations in zero time. 

Stage 2
Stage 3

Stage 4

Stage 1

 

Figure 5. Compressed storage for data tables. 

 As the solution progresses, the only information passed 
from one stage to the next is the center point on which to base 
that stage’s search. Each stage has access to data table 
information at twice the resolution as the previous stage, but 
will only be accessing values directly adjacent to the center 
value, as shown in Figure 6. This is done by sequentially 
adding then subtracting one from the values of the center X 
and Y positions passed from the previous stage. 
 In this example, it can be seen that the spacing between 
tested locations reduces from four in the 15x15 space, to two 
in the 7x7 space, to one pixel as the last 3x3 stage is reached. 

The one pixel spacing of the last stage results in an exhaustive 
search of this reduced space.  

G. Pipelined Architecture 
To attain the desired processing rates for this project, 

multiple events must be simultaneously processed. Although 
parallel processing paths could easily be formed in the FPGA, 
multiple copies of the complete data tables would be required 
to support this architecture. Using the search described above, 
a pipelined architecture is possible. In this design, each stage 
of the hierarchal search is implemented with dedicated 
hardware that has exclusive access to a data table 
appropriately sized for the stage. As each event’s processing at 
one stage is completed, the intermediate results are passed as a 
starting point to the successive stage, allowing the next event 
to immediately begin processing. This results in multiple 
events simultaneously being at various stages of their 
processing without requiring multiple complete copies of the 
data tables. 

H. Memory Division 
The characterization tables for each sensor must be 

available for solving the likelihood function. The most direct 
approach would be to store the tables in the FPGA’s on-chip 

Figure 6.  Diagram of the last three iterations of a hierarchal 
search. 



 

SRAM memory. Processing the events would be simplified 
compared to accessing off-chip synchronous dynamic (SD) or 
double data rate (DDR) memory. The difficulty with this 
method is the large size of the tables. Each of the three tables 
requires 16-bit values for each of the 8x8 channels of sensed 
data, for 127 possible positions in each of the X and Y axes. 
This equates to [3 Tables] x [2 byte values] x [8x8 channels] x 
[127x127 possible X-Y locations] or >6 Mbytes.  This is well 
above the approximately 300 kB to 1.1 MB available in 
members of the family of FPGA devices chosen for this 
project (i.e., Altera Stratix II or III devices, Altera, San Jose, 
CA).  Further, future versions of this system are planned that 
will require multiple sets of tables to support three 
dimensional positioning of a detected event. If it were possible 
to create the current solution using only internal memory, this 
project’s work would not be reusable for future designs that 
will certainly require access to external memory. 

The design employs a mix of FPGA internal memory and 
high-speed external memory. This allows all the small data 
tables required by the early stages of the process to have 
individual data and address busses, allowing parallel access by 
the different stages. The largest data tables are kept in external 
memories where adequate storage is available. Because most 
of the processing is done in the multiple earlier stages, 
memory bandwidth requirements are significantly reduced to 
the external memories. 

I. Input Buffering 
Although the average event rate is expected to be 250K 

events per second or less, because of the random nature of 
positron decay, instantaneous peak rates as high as 2 times this 
value are expected. An input FIFO buffer allows data 
collection at up to the peak rate, and delivery to the SBP 
algorithm at no more than the designed rate.  

J. Prototype Implementation 
A block-diagram of the system design is shown in Figure 7.  

The numbered components of this system are: 
1.  An interface to the incoming data. In the prototype system 

this is previously collected data that is downloaded, stored 
in local memory and sequenced into the system to 
simulate actual data collection. 

2.  A FIFO buffer. This allows the randomly occurring 
samples to be collected at up to the peak rate, but 
processed at their average rate. This will be necessary in 
the target system because the events occur randomly and 
may momentarily occur at faster rates than the SBP 
algorithm can process them. This buffer allows them to be 
stored and dispensed to the algorithm at a lower average 
rate. 

3.  The Fetch Event block gets the next available event from 
the FIFO and structures it for use in the SBP calculations. 

4.  This block determines the row and column of the sensor 
with the peak energy. This is made available to the SBP 
algorithm to allow the 21-cell version of the SBP 
algorithm to calculate the proper channels to process for 
the corresponding event. 

5.  The values of an event are stored locally at each stage so 
that they can be accessed for the calculations required at 
that stage. As processing of a particular stage completes, 
the values are passed along to the next stage. Double-
buffering is used to allow each stage to transfer the values 
to the next stage before either stage has completed its 
current calculations. This allows the transfer of data to 
overlap the calculations.  

6.  Row center (Rc), Column center (Cc). The values of the 
row and column centers for the 21-cell solution are also 
stored locally at each stage. 

7.  The characterization tables for each stage holds the data 
required for the SBP algorithm.  

Figure 7. Block diagram of FPGA implementation of SBP.  The numbered components are defined in section J. 

Stages 5 - n 



 

8.  The SBP calculations to determine the likelihood values 
are performed here. As each X-Y position is tested, if the 
sum is less than previously tested positions the X-Y value 
is saved. When the last X-Y position is tested, the X-Y 
position of the position with the lowest sum is made 
available to the next stage as the center X-Y position (Xc-
Yc) of the positions to be tested. 

9.  Increment dX, and dY. This sequences each step of the 
algorithm through the proper X and Y locations for each 
X and Y position to be tested. The dX (delta X) is added 
to the Xc (X center) to determine proper position on which 
to perform the likelihood calculation. The Y values are 
computed in the same way. Additional timing signals are 
generated here to signify occurrences of the first X-Y and 
last X-Y tested to coordinate resetting values at the 
beginning of calculations and transferring values at the 
end of calculations. 

10. Increment dRow and dCol. This sequences the likelihood 
calculation through all the rows and columns of the 21-
cell solution. Similar to the X-Y locations, the delta 
values for the row and column are added to the center 
location of the 21 cells to be included in the calculation. 
Additional timing signals are generated here to signify 
occurrences of the first row/column and last row/column 
to coordinate resetting values at the beginning of each 
iteration of the likelihood function. 

 
When the computations at each stage are complete the event 
data, the row and column centers, and the newly computed X 
and Y centers are passed to the next stage. Each stage operates 
identically to the previous stage except that the data tables are 
larger at each successive stage. The number of potential X-Y 
positions that will be tested for each event at each stage are the 
same, but they can have a larger number of potential Xc and 
Yc positions on which to center this stage of the search. This is 
accommodated by appending a single bit to the least 
significant end of the Xc and Yc values as they are transferred 
to the next stage. This also explains the apparent lack of a first 
stage. The first stage data table would consist of only one 
location, so the results of this computation are known without 
requiring any computations. The address of this value (0,0) are 
passed to stage two and used as the starting point for that 
stage. The result at each stage is the X-Y location of the best 
fit to the characterization data to the precision achieved at that 
stage. The result of the final stage is the value that represents 
the highest precision available in this implementation. 

IV. RESULTS  
 To test the accuracy of our design implementation, 
simulations were run where the results of a large number of 
sampled locations were compared to the results of the 
exhaustive search on an event-by-event basis. To summarize 
the cumulative effect of these comparisons, a histogram 
showing the distance error between the positions calculated 
using the exhaustive search and the same positions calculated 
using the hierarchal search was prepared. The worst case 
results were for a 2x2 search. These results are shown in 
Figure 8. 

 The results show that over 90% of the events show no error 
and over 99% are within 1.4 pixels (actually 0.3 mm), 
representing all the pixels immediately adjacent to the 
reference pixel. Note that in this comparison, diagonal pixels 
are represented by the Euclidean distance. A large portion of 
the <1% remaining errors are the results of the solutions of 
background noise, seen as the scattering of points across the 
surface. Many of these events have solution sets that do not 
allow an accurate solution regardless of the method used. 
These errors do not noticeably impact the quality of the 
resulting image. 
 A four stage system has been tested in hardware and a seven 
stage system is currently being developed. An integer based 
simulation extending the results of the four stage hardware 
was developed to compare solutions with the reference 
floating-point SBP solutions.  Positioning results using 
floating point and fixed-point calculations, illustrated in figure 
9, show no visible difference in performance. The results for 
fifteen tested experimental data sets are shown in Table 1. 
Data collected near the edge of the detectors (i.e., data set 1 
and 2) showed the largest differences from the reference 
floating-point calculations. Points further from the edge 
showed little to no error. 

Table 1. Comparison of reference (original SBP implementation) and 
optimized calculation (FPGA implementation) FWHM values. 

 
The throughput of the system is defined as the rate at which 

new solutions are completed. In this pipelined design, it is 

Reference
Calculation

data-set n FWHM (mm)FWHM (mm)delta (mm)
1 16793 2.16 1.93 -0.23
2 18796 1.90 2.33 0.43
3 19540 1.41 1.43 0.02
4 19560 1.28 1.31 0.03
5 18921 1.19 1.10 -0.09
6 13699 1.46 1.48 0.02
7 14136 1.25 1.43 0.18
8 13100 1.35 1.33 -0.02
9 13223 1.19 1.23 0.04
10 14209 1.37 1.30 -0.07
11 12584 1.32 1.35 0.03
12 14043 1.46 1.43 -0.03
13 13545 1.54 1.54 0.00
14 12920 1.56 1.59 0.03
15 13690 1.25 1.27 0.02

1.45 1.47 0.02

Optimized
Calculation

Average  
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equal to the time for one stage to complete. For the current 
design, each stage requires nine summations of the 21-channel 
solution, each being able to complete in one clock cycle. 
Additionally, three clock cycles are required for determining 
the minimum of the nine summations and transferring this 
value to the next stage. This results in a new event starting, 
and one completing, every 192 clock cycles. At the designed 
clock rate of 70 MHz, this results in a throughput of >360k 
events per second. 

The latency is defined as the time from the acceptance of 
the data to the presentation of the processed SBP position to 
the host. Disregarding the time required to pass the detector 
data through the FIFO and the time to pass the results to the 
host, this is equivalent to the combined time of all the stages. 
For a complete seven stage system, this would be seven times 
192 clock cycles at 70 MHz, or approximately 20 µS. 

V. CONCLUSIONS  
 This study showed that optimizations to the SBP algorithm 
to allow real-time implementation on an FPGA can be made 
without adversely affecting the accuracy of the results. These 
optimizations included algebraic manipulation of the SBP 
equation to allow higher speed computations, reduction of the 
number of cells required for each solution, conversion to 
fixed-point math, and the use of a structured search algorithm. 
 The hierarchal search method developed as part of this 
study, in addition to greatly increasing the search speed over 
current implementations, allows the memory requirements of 
the SBP method to be distributed across multiple stages, and 
across both internal and external memories. This allows a 
multi-stage pipeline solution to be used. This was a significant 
factor in increasing the speed of the SBP solution. 
 Collectively, these optimizations allow an accelerated SBP 
solution to be found at a rate that exceeds the maximum 
expected average event rate, to an accuracy that compares 
satisfactorily with existing methods. This project has shown 
that it is possible to use an FPGA implementation of SBP to 
facilitate real-time processing of event data for a PET system. 
This is a major step forward in the development of a research 
preclinical PET system being built at the University of 
Washington. 
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 Figure 9. Resulting point source image for floating point (left) 
and fixed-point (right) calculations. 


