
206 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 2, FEBRUARY 2004

The Chimaera Reconfigurable Functional Unit
Scott Hauck, Senior Member, IEEE, Thomas W. Fry, Matthew M. Hosler, and Jeffrey P. Kao

Abstract—By strictly separating reconfigurable logic from the
host processor, current custom computing systems suffer from a
significant communication bottleneck. In this paper, we describe
Chimaera, a system that overcomes the communication bottleneck
by integrating reconfigurable logic into the host processor itself.
With direct access to the host processor’s register file, the system
enables the creation of multi-operand instructions and a specu-
lative execution model key to high-performance, general-purpose
reconfigurable computing. Chimaera also supports multi-output
functions and utilizes partial run-time reconfiguration to reduce
reconfiguration time. Combined, the system can provide speedups
of a factor of two or more for general-purpose computing, and
speedups of 160 or more are possible for hand-mapped applica-
tions.

Index Terms—Adaptive systems, field-programmable gate ar-
rays (FPGAs), reconfigurable architectures.

I. INTRODUCTION

RECONFIGURABLE systems have provided significant
performance improvements by adapting to computations

not well served with current processor architectures. Adaptive
computing systems developed to date accelerate processing by
offering custom logic implementations of computation kernels.
However, purely field-programmable gate array (FPGA)-based
systems are usually unsuitable for complete algorithm imple-
mentation. In most computations, there is a large amount of
code which is executed relatively rarely. Attempting to map all
of these functions into reprogrammable logic would be very
logic inefficient. Also, reconfigurable logic is much slower than
the processor’s built-in functional units for standard compu-
tations, such as floating point and complex integer arithmetic,
variable-length shifts, and others. The solution to this dilemma
is to combine the advantages of both microprocessor and FPGA
resources into a single system. The microprocessor is used to
support the bulk of the functionality required to implement an
algorithm, while the reconfigurable logic is used to accelerate
only the most critical computation kernels of the program.

Manuscript received December 11, 2002, revised July 29, 2003. This work
was supported in part by a grant from the Defense Advanced Research Projects
Agency and by a grant from the National Science Foundation (NSF). The work
of S. Hauck was supported by a NSF CAREER Award and a Sloan Research
Fellowship.

S. Hauck was with Northwestern University, Evanston, IL 60201 USA. He is
now with the Department of Electrical Engineering, University of Washington,
Seattle, WA 98195 USA (e-mail: hauck@ee.washington.edu).

T. W. Fry was with the University of Washington, Seattle, WA 98195 USA.
He is now with IBM Microelectronics, Waltham, MA 02454 USA (e-mail:
fry1@us.ibm.com).

M. M. Hosler was with Motorola Corporate Research Labs, Schaumburg, IL
60179 USA. He is now with Arrow Electronics, Dayton, IL 61350 USA (e-mail:
mhosler@pobox.com).

J. P. Kao was with Intel Chandler, AZ 85224 USA. He is now with the Uni-
versity of Michigan Business School, Ann Arbor, MI 48103 USA (e-mail: jef-
fkao@umich.edu).

Digital Object Identifier 10.1109/TVLSI.2003.821545

Most current mixed processor-FPGA systems suffer from
a communication bottleneck between the processor and the
reconfigurable logic [11]. By placing the reconfigurable logic
in a separate chip from the processor, the limited off-chip band-
width and added delay interfere in efficient FPGA-processor
communication. The resulting overhead requires that large
chunks of the application code be mapped to the reconfigurable
logic to achieve any performance benefits at all. This means that
relatively few applications can benefit from current adaptive
systems, and they must be hand-mapped in order to achieve
high enough performance benefits to justify the hardware costs
and extra complexities. All of these factors keep reconfigurable
computing from entering the mainstream and drive up the cost
and complexity of these systems.

Initial work on integrating processors and reconfigurable
logic has been done [1], [2], [5], [6], [8], [13], [18]–[23].
For example, the PRISC architecture allows the CPU to issue
instructions to a reconfigurable array to optimize an applica-
tion. However, these systems typically use standard FPGA
architectures which were not designed specifically to optimize
the needs of an integrated FPGA-processor system.

In this paper, we describe Chimaera, a hardware system
consisting of a microprocessor with an integrated recon-
figurable functional unit (RFU) designed small enough to
fit onto the microprocessor itself. In order to coexist on a
microprocessor’s die, the Chimaera architecture was designed
to be a stripped-down FPGA optimized for small function
acceleration. By implementing a “light” FPGA array, the
Chimaera architecture is designed to use relatively little chip
real estate within a microprocessor’s die and improve the
overall cost/performance ratio of the system, rather than only
optimize speed by including more functionality than required.

II. CHIMAERA EXECUTION MODEL

The primary strength of a reconfigurable coprocessor (RCP)
or functional unit is the ability to customize hardware for a spe-
cific program’s requirements. When a communications program
is active, the reconfigurable logic might contain data compres-
sion and decompression routines, and when a rendering package
is running, the reconfigurable logic would be switched to sup-
port graphics operations. More complex applications, such as
a complete word processing application, might have different
mappings to the reconfigurable logic for different sections of
the code, with text search routines active in one phase of the
code’s operation and postscript acceleration routines for an-
other. While these operations may not provide as large a perfor-
mance improvement as custom hardware, due to the inevitable
overheads inherent in reconfigurable logic, by being able to ac-
celerate most or all applications running on a system, they pro-
vide performance gains for a much larger class of problems.

1063-8210/04$20.00 © 2004 IEEE

HAUCK et al.: THE CHIMAERA RECONFIGURABLE FUNCTIONAL UNIT 207

In order to efficiently support these demands, the Chimaera
system treats the reconfigurable logic not as a fixed resource,
but instead as a cache for RFU instructions. Those instructions
that have recently been executed, or that we can otherwise pre-
dict might be needed soon, are kept in the reconfigurable logic.
If another instruction is required, it is brought into the RFU by
overwriting one or more of the currently loaded instructions. In
this way, the system uses partial run-time reconfiguration tech-
niques to manage the reconfigurable logic. Since the reconfig-
urable logic is somewhat symmetric, a given instruction may
be placed into the RFU wherever there is space available. Also,
some FPGAs have forbidden configurations (such as multiple
active drivers to the same shared routing resource), which can
mean that intermediate states accidentally reached during re-
configuration can destroy the chip. The Chimaera system deals
with these intermediate states by using an architecture with no
forbidden states by employing hardware support to avoid these
problems. As a desirable side effect, a faulty configuration gen-
erated by the run-time system will not destroy the processor.

In order to use instructions in the RFU, the application code
includes calls to the RFU and the corresponding RFU mappings
are contained in the instruction segment of that application. The
RFU calls are made by special instructions which tell the pro-
cessor to execute an RFU instruction. As part of this RFU call,
an instruction ID is specified which determines which specific
instruction should be executed. If that instruction is present in
the RFU, the instruction’s result is written to the destination
register (also contained in the RFU call) during the instruc-
tion’s writeback cycle. In this way, the RFU calls act like any
other instruction, fitting into the processor’s standard execution
pipeline. If the requested instruction is not currently loaded into
the RFU, the host processor is stalled while the RFU fetches
the instruction from memory and properly reconfigures itself.
The reconfiguration time can be quite significant. Thus, care
must be taken to avoid constant reloading of the RFU. Tech-
niques such as prefetching, caching algorithms, and caching hi-
erarchies have been developed in order to avoid or reduce these
reconfiguration penalties [16].

Normal instructions in the host processor specify not only the
instruction to be performed and the destination for the result,
but they also specify up to two source registers for the operands
of the instruction. We could use a similar scheme for the RFU
instructions as well. Since the operands are fetched in the pre-
vious cycle and written back to the registers in the next cycle,
this would mean that the RFU would have exactly one cycle (the
instruction’s execute cycle) to compute its function. In addition,
such a scheme would limit the RFU to having only two source
operands, limiting the complexity of the computations.

In Chimaera, we have chosen another approach. The recon-
figurable logic is given direct read access to a subset of the reg-
isters in the processor (either by adding read connections to the
host’s register file, or by creating a shadow register file which
contains copies of those registers’ values). The RFU configura-
tion itself determines from which registers it reads as operands.
A single RFU instruction can read from all of the registers con-
nected to the RFU, allowing a single RFU instruction to use up
to nine different operands. Thus, the RFU call consists of only
the RFUOP opcode indicating that an RFU instruction is being

Fig. 1. Overall Chimaera architecture.

called, an ID operand specifying which instruction to call, and
the destination register operand. Just as importantly, an RFU in-
struction currently loaded into the RFU does not have to wait
for the occurrence of an RFU call in the instruction stream to
begin executing, since it already knows which registers it needs
to access. In fact, all loaded RFU instructions “speculatively”
execute during every processor cycle, though their results are
only written back to the register file when their corresponding
RFU call is actually made. One result is that an RFU instruction
may, in fact, use multiple cycles to execute without stalling the
host processor. Also, internal pipelining is not necessary for a
complex mapping that requires more than one clock cycle. For
example, assume that RFU instruction #12 uses the values in
register R0…R3 and these values are computed in the four pre-
vious cycles. The instruction stream for this situation might look
like the following:

In this example, while the RFU instruction might only have
one cycle (its normal execute cycle) to use the value from reg-
ister R3, it will have at least four cycles to use the value from R0,
three cycles to use the value from R1, and two cycles to use the
value from R2. As long as late-arriving operands are not needed
until near the end of an RFU computation, more complex oper-
ations can be done inside the RFU than are possible in a single
clock cycle. With careful RFU mapping, creation, and register
assignment, and the application of code motion techniques, very
complicated computations can be performed.

III. CHIMAERA ARCHITECTURE

Fig. 1 shows the overall Chimaera architecture. The main
component of the system is the reconfigurable array, which con-
sists of FPGA-like logic designed to support high-performance
computations. In the array, all RFU instructions will be exe-
cuted. The array receives inputs from a shadow register file
which duplicates a subset of the values in the host’s register file.

208 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 2, FEBRUARY 2004

Fig. 2. Chimaera reconfigurable array routing structure (two cells within a row
of the array).

Essentially, all changes to the target registers are broadcast to
the array, so that RFU instructions can execute on the new value.
Next to the array is a set of content-addressable memory (CAM)
locations, one per row in the reconfigurable array, which deter-
mine which of the loaded instructions are completed. When an
RFUOP is loaded into the array, one or more rows are designated
as output rows by placing the RFUOP ID into the CAM line cor-
responding to that row. The CAM looks at the next instruction
in the instruction stream and determines if the instruction is an
RFUOP. If so, it checks whether the RFUOP is currently loaded.
If the value in the CAM matches the RFUOP ID, the value from
that row in the reconfigurable array is written onto the result bus
and sent back to the register file. If the instruction corresponding
to the RFUOP ID is not present, the caching/prefetch control
logic stalls the processor and loads the proper RFU instruction
from memory into the reconfigurable array. The caching logic
also determines which parts of the reconfigurable array are over-
written by the instruction being loaded and attempts to retain
those RFU instructions most likely to be needed in the near fu-
ture. Reconfiguration is done on a per-row basis, with one or
more rows making up a given RFU instruction.

The reconfigurable array is shown in Figs. 2 and 3. The Chi-
maera architecture was inspired by the Triptych FPGA [4], [7],
[10], the Altera FLEX 8000 series [3], and PRISC [19], [20]. In
addition, before creating the Chimaera architecture, candidate
code segments were analyzed to help determine what routing
and logic structures would be most beneficial in an RFU. To re-
duce the total size of the RFU array, only the most commonly
required structures were included in the RFU.

The routing structure is shown in Fig. 2. The reconfigurable
logic is broken into rows of logic cells between routing chan-
nels. Within each row, there is one cell per bit in the processor’s
memory word. For example, a 32-bit processor has 32 cells per
row. All cells in a given column have access to the th bit

Fig. 3. Chimaera reconfigurable array logic block (the 4-LUT/2� 3-LUT
structure within Fig. 2).

of registers R0–R8, allowing it to access any two of these bits.
Thus, a cell in the rightmost (zeroth) column in the reconfig-
urable array can read any two least significant bits from registers
R0 through R8. Which register(s) a cell accesses is determined
by its configuration, and cells can independently choose which
register(s) to access.

The cells of the array send four outputs O1…O4 and receive
four inputs I1…I4 from the rest of the array. Inputs I1 and I4
come from the cell directly above, yielding high-speed connec-
tions to support regular data-path structures. Most computations
tend to involve bits from the same position in a data word and
often make heavy use of these direct connections. Inputs I2 and
I3 can come from further away in the array (although they also
draw exclusively from the outputs of the cells in the row above
them). Input I2 for a cell in column can choose from the O2
outputs from the cells in column , , or in the row
above it, or from longline A. Input I3 can read from the same
O2 outputs as I2 and the O3 outputs of cells within three of this
cell (through) and longline B. The longlines span
the width of the array, with longline A connected to any one of
the O2 outputs from the row above, and longline B connected to
any one of the O3 outputs. The routing structure allows for effi-
cient communication of values locally within the array, as well
as global communication of any two values through the long-
lines. Each of the outputs of a cell are independently chosen
from any of its four inputs, the two outputs from the function
block, and the two values read from the registers.

Chimaera’s logic block is shown in Fig. 3. The logic block
takes the four inputs to the cell and shuffles them (via muxes
1–4) into intermediate signals , , , and . Since I1 and
I4 can be interchanged in the routing structure without conflict,
and and can be interchanged in the logic block without
changing the possible functionality, we can use 2:1 muxes for

and . In addition, since I3 can read the same O2 outputs as
I2, we still have complete permutability of the inputs. The logic
block can be configured as a 4-LUT, two 3-LUTs, or a 3-LUT

HAUCK et al.: THE CHIMAERA RECONFIGURABLE FUNCTIONAL UNIT 209

and a carry computation. The first 3-LUT is created by real-
izing that a 2:1 mux controlled by an internal signal (not a pro-
gramming bit) choosing between two -LUT outputs, where
those inputs are identical, creates a LUT. Although
mux 6 looks like it just chooses between two values, it actu-
ally forms a 3-LUT with the two 2-LUTs generating its input.
To configure the cell as two 3-LUTS, is routed to mux 6
and this result is passed through mux 9. is routed through
mux 5 and the output of the 3-LUT is sent through 11, making

and . A 4-LUT
is created by sending through mux 5, sending the result of
mux 6 though mux 9, and sending the output of mux 10 through
mux 11. Thus, mux 6 is still part of a 3-LUT and mux 10 be-
comes the end of the 4-LUT, making .

To perform a carry computation, the output of the two 2-LUTs
are passed through muxes 7 and 8 into the carry tree. The carry
tree is a modified Brent Kung adder [12] which takes two in-
puts from each cell and produces one output (the value of Cout).
The output of the carry tree is then routed from the previous
cell through mux 5 and the output is passed through mux 11.
Thus, and , with the
left 3-LUT configured to compute the propagate and generate
values for this bit position, and the right 3-LUT generating the
sum. The modified Brent Kung adder also supports an inverse
propagate and generate value for the purpose of checking parity,
something which standard adders may not perform. By using
the carry configuration arithmetic, logical operations such as
addition, subtraction, comparison, parity, and others can be sup-
ported efficiently.

There are some unusual aspects of the Chimaera architecture
design, allowing it to efficiently provide custom instructions for
its host processor. First, there are no state-holding elements in
the reconfigurable array. Most FPGAs have flip flops or latches
in their logic block in order to implement sequential logic. How-
ever, such elements would require special consideration during
context switches and during the loading of new instructions,
since this state would need to be properly maintained over time.
Also, these state-holding elements would complicate the specu-
lative execution model of the system. Not only must there be
support to write the proper result back to the register file, it
would also need to have control over when the state-holding ele-
ments are overwritten. Instead, we use the register file of the host
processor as the only storage elements in the system and allow
the standard context switch mechanisms to handle all storage
management issues. Sequential computations can still be im-
plemented, with the result of one RFU instruction becoming the
input to a subsequent RFU instruction by storing the value in a
register accessible by the reconfigurable array.

In addition to the Chimaera RFU not having internal state-
holding elements to implement sequential logic, it also lacks
pipelining latches. This means that the registers a mapping ac-
cesses must remain at their proper value until the instruction
is completed. An alternative to this would be to insert latches
into the signal flow, allowing an input register to change before
the instruction executes as long as the value was stable while it
was being accessed. However, because of context switches due
to multiprogramming and stalls in the host processor, this turns
out to be impractical. Specifically, imagine that we have an RFU

instruction that reads the value of register R0 four cycles before
it completes (i.e., there are four sets of pipeline latches between
the register access and the output), and the instruction stream
stores a new value into R0 two cycles before the RFU instruc-
tion is called. During normal operation, the RFU reads the old
value stored in R0 (the value it is designed to use) and the result
is properly computed. However, there may be a multiple cycle
stall or context switch between the storing of the new value into
R0 and the calling of the RFU instruction. In such a situation,
the proper value will no longer be available in R0, and the RFU
instruction will compute the wrong value. As a result, we require
that a register remain stable between the time an RFU instruc-
tion reads that register and the time it completes. In addition,
under such a model, pipelining latches become unnecessary and
so are not present in our architecture.

Another interesting aspect of this architecture is the strictly
downward flow of information and computation through the
array. There is no way to send signals back to a higher row in
the system. This structure mimics both the linear sequence of
instructions found in an instruction stream, as well as the uni-
directional flow of information found in strictly combinational
logic. Inputs are accessed at any level in the computation, with
early processing occurring near the top of an instruction and re-
sults being produced at the bottom. Signals that travel across
several rows must route through unused inputs and outputs in
the intervening cells.

The routing structure has been designed to efficiently support
partial run-time reconfiguration. Instead of requiring that every
time a new instruction needs to be loaded into the RFU the entire
reconfigurable array must be reconfigured, we will only change
the contiguous set of rows required to hold the new instruc-
tion(s). In a normal FPGA, there are some configurations (such
as multiple active writers to a single shared routing resource)
which can destroy the FPGA with excessive current flows and
must be avoided. Avoiding these configurations during run-time
reconfiguration is difficult. In some cases, it is required that the
portion of the FPGA be overwritten by a default “safe” config-
uration before the new configuration is loaded. Such methods
slow down reconfiguration time and mean that a corrupted con-
figuration could destroy the system. In Chimaera’s reconfig-
urable array, no writing elements have more than one possible
driver. All are multiplexer based, meaning that regardless of
the state of the programming bits, there will be only one active
driver.

The longlines require a different solution (see Fig. 4). Along
each longline, a control signal travels from left to right. During
normal operation, the “Configured?” input is true. The value
passed from a cell to its neighbor on the right is true so long as
none of the drivers to the recipient’s left are active. Once an ac-
tive bit is found, that bus writer is enabled. The control line from
this cell is false, ensuring that no other bus writer will be turned
on. Thus, even if the configuration bits are set to turn on more
than one writer, all but the leftmost will be disabled. During con-
figuration of this row, the “Configured?” signal is set to false,
ensuring that none of the longline drivers will be enabled. The
control signal for disabling drivers is also useful for control-
ling bus repeaters. Since the longlines span the width of the
reconfigurable array, the capacitance of this line would either

210 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 2, FEBRUARY 2004

Fig. 4. Control logic for the longlines, including logic to avoid multiple writer conflicts and a repeater.

greatly slow down signal propagation or require unreasonably
large drivers. We can instead insert repeaters into the system,
breaking the longline into shorter segments and boosting signal
drive.

As mentioned earlier, the Chimaera RFU supports partial
run-time reconfiguration on a per-row basis. Such partial
reconfiguration is possible since no vertical routing element
extends beyond a single row. Specifically, when a new instruc-
tion is loaded, it will overwrite one or more rows of the system.
While not all rows need be changed, if an instruction wishes
to use any portion of a row, it must use that entire row. What
constitutes a “row” is an important consideration. In Chimaera,
all primary inputs to an RFU instruction come from the register
access ports. Also, the result of an instruction comes from the
F2 output of the function block. Thus, the natural breakpoint
between one RFU instruction and the next is in the middle of
a cell. A “row” for reconfiguration purposes consists of the
register access ports and output muxes of one row of cells, the
input muxes and logic blocks of the row of cells below it, and
the routing channel between these cells.

The last portion of Chimaera which needs to be described is
the RFU’s decode unit. The host processor’s decode logic will
determine if the current instruction is the RFUOP opcode. If
so, the decode unit tells the RFU to produce the next result.
The RFU must now decide if the requested instruction is cur-
rently loaded. This is done by associating a content-addressable
memory cell with each row in the reconfigurable array, with its
value specified by an RFU instruction’s configuration data. This
cell contains the ID of the instruction computed in that row and
is checked against the RFU instruction ID contained as one of
the operands in the RFU call. Rows that are not configured, or
which are in the middle of a multirow instruction, are set to a de-
fault value which can never match an RFU call. If the value con-
tained in that CAM cell matches the value in the RFU call, the
value computed in that row is sent onto the result bus and written
into the proper register. The value written is the F2 output of
the function blocks in that row, with the Ith cell producing the
Ith bit of the result. If no CAM cell matches the RFU call, the
configuration management unit first loads the instruction from
memory and then executes it. Note that this organization allows
for multi-output mappings. If a single mapping needs to produce
multiple values, each of these values is generated at the output
of a different row, and each of these rows is given a different
RFU instruction ID. Each output will require a separate RFU
call to write it back to the register file. In doing so, it allows
these outputs to share logic in the RFU.

A slight modification to this decode scheme has been added
to improve mapping density. In many cases, a logical test will

determine which of a set of values will be assigned to a register.
For example, consider the code segment

if

In the RFU structure described so far, this sequence of instruc-
tions would require four rows: one to test if and are equal,
one to compute , one to add to that value, and a final
row to choose between the values and
based on the value of the test. We can do better than such a se-
lection. In addition to checking whether the value of the CAM
matches the RFU instruction ID in the RFU call, it also checks
the value of the F1 signal in cell #31 of that row. If the CAM
value matches the instruction ID and the F1 signal is true, the
row produces the result. Otherwise, this row does not match the
RFU call. We can use this logic to remove the fourth row from
the mapping just proposed. Instead of muxing together the two
potential output values, we instead assign the same RFU instruc-
tion ID to both rows two and three .
To choose between them, we configure the leftmost cell in each
row to output the value of the test done in the first row onto
its F1 signal, with the second row outputting true if the test is
false and the third row outputting true if the test is true. Thus,
the addition of this small extra logic in the instruction decode
CAMs allows the muxing together of values often required in
computations. Since the F1 signal is generated by a 3-LUT and
uses signals from inside the reconfigurable array, complicated
multiplexing can be accomplished with multiple rows assigned
the same RFU instruction ID and computing a possible output.
There are also provisions for disabling this logic by forcing the
signal to the CAM to true in cases where the F1 3-LUT in cell
#31 is needed for other logic.

IV. APPLICATION EXAMPLES

In this section, we give some examples of using the Chimaera
RFU to accelerate standard software algorithms. An automated
Chimaera compiler has been developed at Northwestern Univer-
sity (Evanston, IL), and those results are presented elsewhere
[24]. Here we will focus on hand-selected and mapped exam-
ples to demonstrate the potential of this architecture. We have
mapped critical portions of some standard algorithms by hand to
our architecture. Mapping these examples by hand does some-
what restrict our achievable speedups. The reason is that typi-
cally we have to optimize only one or two short code sequences
in the inner loop of the program in order to achieve acceptable
speedups for each algorithm. The production version should be
able to find many such opportunities in a single program and

HAUCK et al.: THE CHIMAERA RECONFIGURABLE FUNCTIONAL UNIT 211

Fig. 5. Source code (left) of an inner loop of the MPEG2 encoder, code produced by the the gcc compiler with the -O2 flag (center), and the Chimaera RFU code
(right).

achieve higher performance gains. So far, the results of this re-
search have been very promising [24].

In order to test our results, we have taken various software
programs and compiled them for a MIPS R4000 processor.
These assembly language implementations were then opti-
mized by hand, taking critical regions found by the performance
evaluator Pixie and mapping them to the RFU. Since we are
working with the MIPS instruction set, all branches and loads
are followed by a single delay slot which must be filled. For
simplicity we ignore pipeline stalls from cache misses.

In the examples, we will use a textual shorthand to describe
a mapping to a row in the RFU. A “read” operation is the ac-
cessing of a value from the register file, with all cells reading
their bit of that register. This read is performed at the top of that
row (before the horizontal routing channel), and thus, the values
are available for the logic blocks to access. An “output” opera-
tion means that that value is computed in the cell’s logic block
and sent to the F2 signal, where it is available to be written back
to the register file. The “flag” signal is the signal sent from cell
31 to the instruction-decode CAMs, where both the CAM value
must match the instruction ID in the RFU call and the flag must
be true in order to write this value back to the register file. This
flag value comes from the left 3-LUT in the cell, though it can
be forced to true via the configuration.

A. MPEG2 Encoding

MPEG2 encoding is part of the MediaBench [15] benchmark
suite. The target applications for this benchmark are various
types of compression and video processing. Roughly 89% of the
execution time for MPEG2 encoding is spent within the function
“dist1.” For this reason, we aggressively targeted this function
for RFU mappings. An example of one targeted area is shown in
Fig. 5. The code and resulting assembly are given. As shown,
the code performs two additions, a shift and one subtraction in
the source code lines 1–3, which typically take four instructions.
However, we can do better than just mapping this basic block of
code. Because of the RFU’s ability to select from one of two
rows for a given configuration with the decode CAM, we can
compute both the if and else branch within the mapping as well.
Upon execution, the RFU will test whether “ ” and com-
pute both line five and line seven in parallel. The result of the
test is stored in the variable “neg” and passed to the last two

Fig. 6. Detailed view of the fifth and sixth rows for RFU instruction
#1. The fifth row adds the values v3 and s, while the sixth row subtracts
them. Depending on the neg value, which was computed in the previous
row, one of these two rows is selected. Since columns 30 through 0 are
identical, they are represented here as column X. Also, detailed routing on a
multiplexer-by-multiplexer basis is not shown.

Fig. 7. RFU contents of the MPEG2 encoder example. The RFUOP selects
from either the fourth or fifth row, depending on the value of the negative flag.
This method saves an extra row, which otherwise would need to select from
either the fifth or sixth row.

rows of the RFU in order to compute the CAM value. The re-
sulting assembly code is given.

As can be seen in Fig. 5, the entire section of code is broken
down into one RFU operation, resulting in 50% fewer instruc-
tions needed for execution. Figs. 6 and 7 shows the RFU map-
ping for the code. The mapping took six rows. Rows one through
three perform the two additions, the shift, and the subtraction.
Row four tests whether the resulting value is less than zero. The
last two rows perform both sections of the branch statement.
The “neg” flag is sent to the instruction decode CAM. If “neg”
is true, the F2 value from row six is returned from the RFU. In
row five, we negate the “neg” flag and send the resulting value
to the decode CAM, since we want this row’s value if the “neg”
flag is false. Since the result bus will read the value from the
correct branch, an extra row to select from the values in rows
five and six is saved.

Three different RFU configurations totaling 20 rows are used
within the “dist1” function, the core of the motion estimation

212 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 2, FEBRUARY 2004

kernel. Two of these mappings, including the one shown in
Fig. 6, are used in multiple sections of the code. Because of
these multiple uses for the configurations, RFU cache misses
will decrease, resulting in less configuration overhead. Also
note that we read some values from registers multiple times
in order to reduce the depth of the logic (which also serves
to minimize routing congestion). With only these three map-
pings, we achieved a speedup of 1.59 times over the standard
software-only version for the “dist1” function and a total
improvement of 1.50 for the overall application. However, there
are many other opportunities for such optimizations, and a more
aggressive approach would result in further improvements.

B. Data Encryption Standard (DES) Encryption

DES has been the standard for encryption for the past 20
years, and is probably the most widely used encryption algo-
rithm. DES encrypts blocks of 64 bits of data using a 56-bit
key. It performs an initial permutation, cycles through 16 block
rounds using precomputed subkeys, and performs a final per-
mutation which is the inverse of the initial permutation. After
an initial permutation, the 64-bit block of plain text is broken
into a right and left half. Then for each round, the right half is
combined with the round’s subkey through a function . The
result of the computation is XOR’d with the original left half to
produce the right half for the next round. The original right half
becomes the new left half for the next round as well. After 16
rounds, the resulted two halves are combined through an inverse
of the initial permutation to produce the 64 bits of cipher text.
Thus, for each round, the calculation is

Function is the block cipher shown in Fig. 8. It is imple-
mented in Chimaera with the use of seven mappings. One for
the initial permutation, one for the final permutation, four for
the S-box substitution mappings, and one for the P-box per-
mutation. The initial and final permutations are the inverse of
each other. Both read in two registers (for the input 64 bits) and
produce two rows of output (for the output 64 bits). The P-box
permutation is similar to the initial and final permutations but
operates only on 32 bits of data. Finally, the S-box substitution
is broken up into four separate pieces. Each mapping has eight
S-boxes within it and produces one bit for each box. For ex-
ample, the first mapping calculates bit 0 for all eight S-boxes.
Four of these mappings will produce the 32-bit result. Because
of the ordering of data for the S-boxes, we broke the expan-
sion permutation down to only a rotate left and a rotate right to
produce the 48 bits from the 32 bits. The rotate left by 1 will
produce one register where we will use all 32 bits. The rotate
right by 2 will produce a second input for the S-box mappings,
but we only use 16 of these values.

The routing for one box from the S-box mappings can be seen
in Fig. 9. This is repeated eight times for the eight S-boxes. The
mapping creates a six-input LUT which produces one bit for
each S-box. Thus, four separate six-input LUTs are required for
each S-box. In order to keep the S-box mappings to only three
rows, we were able to take advantage of the fact that the carry

Fig. 8. Block round.

Fig. 9. S-box routing.

Fig. 10. Mapping statistics.

tree can be used as an extra routing channel to pass signals from
lower to higher bit positions.

The three permutation mappings essentially reorder the bits.
Fig. 10 shows that these permutations execute very quickly, in
less than three clock cycles, since they only use the routing chan-
nels of Chimaera to reorder the bits and do not use any internal
logic of the cells (except to output the final result). In fact, any
reorder of bits will typically take three clock cycles or less.

HAUCK et al.: THE CHIMAERA RECONFIGURABLE FUNCTIONAL UNIT 213

Fig. 11. Assembly code for one block round of DES.

The entire block round from Fig. 8 can be reduced to only
21 instructions with the Chimaera RFU. Fig. 11 shows the as-
sembly code for the block round. Our notation uses C[1–8] to
represent a register the Chimaera array can read from. An inter-
esting item to note is that even though the S-box mappings take
three clock cycles to execute, the delay is only incurred during
the first instance of the block. By realizing that although the pro-
cessor does not have the ability to perform more than one cal-
culation at a time, the RFU can be configured to compute mul-
tiple calculations at once. Thus, each subsequent instance of the
S-box mapping runs in parallel with the first mapping and will
have enough time to compute its value even before being called.
By taking advantage of this parallel execution, six clock cycles
per round (96 clock cycles per block) are saved.

To analyze the performance of the Chimaera DES implemen-
tation, we compared it to a software version of DES running on
a MIPS processor. The software implementation we used was
taken from the Applied Cryptography book by Bruce Schneier
[25]. It is generally considered to be one of the fastest publicly
available versions of DES out there. The software-only version
requires 2725 total clock cycles per 64-bit block, while the Chi-
maera version executes in just 349 clock cycles. The final speed
up yields 7.8 times faster execution.

C. Other Examples

For completeness, in addition to these two examples, we ana-
lyzed nine other applications and hand-mapped these to the Chi-
maera RFU. We attempted to select a broad range of applica-
tions including compression, encryption, and video processing,
among others. These examples range from simple configura-
tions such as the MPEG2 encoder to completely revamped algo-
rithms that fully take advantage of the RFU, such as the skele-
tonization algorithm, DNA string comparison, and the Game of
Life [9]. Overall, the performance numbers are very impressive.
Typically, speedups of over 100% are achieved, and in some

cases, speedups over 1000% are realized. In all of these appli-
cations, the algorithms are redone to take advantage of the fast
bit-wise manipulations the Chimaera array offers.

V. CAD MAPPING SOFTWARE

In order to effectively make use of the RFU, the system must
be able to identify sections of a program most often called
during run time. Compiling and tech mapping, which is the
topic of another paper [24], will produce a graph of logic blocks
which must be placed into a LUT within the RFU and routed
accordingly. The place and route CAD tools must be able to
develop an efficient placement in reasonable time that utilizes
as few rows of the RFU as possible. The goal of our place and
route tool was not only to be able to compute a valid solution
for ideal code segments, i.e., basic blocks of assembly code,
but also to develop accurate solutions for hand-mapped net
lists as in the Application Examples section. An efficient place
and route tools is possible by taking advantage of the following
properties of the Chimaera RFU:

1) the structure of the Chimaera RFU matches that of the
host processor’s ALU;

2) the downward flow of computations simplifies the al-
lowed ordering of logic blocks and reduces the solution
space;

3) the routing structures are limited, with usually only a few
reasonable paths;

4) the number of logic cells to map is much smaller than a
typical place and route job.

The Chimaera RFU was specifically designed to efficiently
handle the typical instructions of a host processor. Each row of
the RFU is capable of computing a logic operation such as AND,
OR, XOR, XNOR, a simple arithmetic operation such as addition
and subtraction, or a conditional branch such as greater than,
less than, or some combination of the above. A basic block of
executable code usually will have a logical placement where
each line of code naturally maps within a row of the RFU and
logic blocks line up with the bits within the shadow register file.
Thus, the placement problem is greatly simplified by the RFU’s
structure and becomes more straightforward than placement of
random logic.

The unidirectional flow of computations restricts and sim-
plifies the placement problem further. Since computational
results can only propagate to cells below themselves in the RFU,
any logic block that reads data from another logic block must
be positioned after the first block. By taking advantage of this
property, each row of the RFU may be placed and routed by
selecting from the list of unplaced cells which are ready, i.e.,
all of their inputs have already been calculated. Once a row
is completed, the next row may be placed and routed from an
updated list of available unplaced logic blocks. Since each row
is placed somewhat independently of one another, the problem
space is greatly reduced to placement of, at most, the 32 logic
blocks for the current row. Last, the size of each mapping is much
smaller than a typical design which must be placed and routed.
The average number of logic blocks for the mappings of the
sample applications above was less than 150 per mapping. With
FPGA designs today reaching over 1 million gates, mappings for

214 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 2, FEBRUARY 2004

the Chimaera RFU are much simpler. All of the properties above
allow for a very fast place and route tool to be developed without
sacrificing the quality of results.

A. Placement

TheplacementalgorithmdevelopedfortheChimaeraRFUwas
designedtooperatequicklywhilegeneratingplacementsusingthe
minimum number of rows. A valid placement has to meet the fol-
lowing requirements to fit within the structure of the RFU:

• logic blocks which produce an output (read by the host
processor) must be placed in the correct column and within
the same row as each other;

• each cell of the RFU may be mapped to one four-input
logic block or two three-input logic blocks;

• values along the carry chain are read/written by three input
LUTs, where one of the inputs is the current value of the
carry chain.

The placement algorithm begins each row by generating a list
of valid logic blocks. A valid logic block is one where all of the
inputs are either read in from the shadow register file or have
been produced by a logic block in a previous row. Each valid
logic block is then scanned for the possible start of a carry tree.
A valid use of the carry tree logic is identified when a three (or
less)-input logic block:

• outputs to, at most, two three-input logic blocks;
• the two logic blocks’ other inputs are identical;
• the two logic blocks’ other inputs are ready at the current

row.
These rules will identify standard arithmetic logic such as ad-

dition, where the chain of three-input logic blocks generates the
carry value, and the second logic block generates the summation
value. In addition, mappings will be compressed vertically by
identifying ways of placing more logic blocks within the same
row, which otherwise would have been placed in later rows.
Once valid carry chains are identified, valid three (or less)-input
logic blocks, which have two common inputs and can be placed
within the same cell, are paired. This pairing will place as many
logic blocks in the current row as possible and maximize cell
density. Then blocks are selected from the longest carry chain
to the shortest, and finally, individual logic blocks are randomly
selected if space is left. The selection stops once 32 items have
been selected for the current row or there are no more valid logic
blocks for the row.

Once up to 32 blocks (a carry tree is considered to be one block
during placement) have been selected for placement within the
current row, a cost matrix is generated. The cost matrix values
represent the relative difficulty of routing the connections of each
logic block at each column. Higher costs represent more columns
that a signal would have to travel. In addition, the cost values
jump once more flexible routing logic has to be used (such as
the longline routing logic, or the I3 input which can read values
up to three columns away). The problem may now be thought
of as minimizing the cost of placing 32 blocks in 32 bins, where
there is an individual cost for each block in each bin. Such a
problem is not NP-hard and may be computed efficiently by
bipartite weighted matching. Using bipartite weighted matching,
the run time required to find a minimum cost assignment is

, where is the number of nodes to the
graph, and is the number of edges. Given that is, at most,
32, and is, at most, 32 , bipartite weighted matching will
compute a solution within a reasonable amount of time. The
Library of Efficient Data types and Algorithms (LEDA) was used
to compute the minimum weighted assignment [14]. LEDA is a
collection of common data types and algorithms and was selected
for both its speed and ease of use.

Once the minimum cost placement is determined, logic blocks
are placed in their optimal column for the current row. The input
signals are then routed (described below). Routing is performed
from the most difficult signal to the most direct. Because of the
limited routing channels available, it may not be possible to pro-
duce a valid routing assignment for the current row’s placement.
When an input signal fails to be routed, it is determined that that
logic block cannot routed if placed on the current row and it is re-
movedfromthelistofvalid logicblocksfor thecurrent row.Doing
so effectively forces the logic block to be placed within a lower
rowsothatmoreroutingresourcesareavailabletoroutethesignal.
Severalotherchecksareperformedwhenalogicblockis removed
from the current row. If the logic block produces an output which
is readfromtheRFUtotheregister file, thenall logicblockswhich
produce a corresponding value to be read from the RFU, and thus
must be on the same row, are removed from the current row. In ad-
dition, if the logic block was part of a carry chain four columns
or longer, all of the logic blocksare removed from the current row.
Otherwise, just thelogicblockthatcouldnotberoutedisremoved.
Experience shows that longer carry chains generally are part of
a common computation, such as a 16-bit addition, and should be
maintained, while shorter carry chains are just opportunities to
compress the mapping and may be separated as needed.

Oncealogicblockisremovedfromthelistofvalidlogicblocks,
the placement for the row starts over. Logic blocks which were
available to be routed on the current row, but which were not se-
lected,maynowbeselectedaswell.Bycontinuing in thismanner,
logic blocks tend to be placed in the highest row possible given
the routingstructuresavailable, thusyieldingamappingusing the
fewest rows possible. Once a valid placement and routing assign-
ment has been found for the current row, the algorithm repeats for
the subsequent row(s) until all logic blocks are placed and routed.

B. Routing

The routing algorithm developed is a greedy algorithm which
attempts to route from the most difficult signals to the easiest.
It does so by first selecting signals which read from another
logic block just one row above, then two rows above, and so on.
Signals which read from the shadow register file have the most
flexibility (since they can be read from any row), and they are
routed last. The routing order is further refined by selecting the
signals which span the largest number of columns to those that
span the least. Traditionally, routing algorithms in RFUs use a
minimum cost analysis spanning all or multiple paths from the
destination of the signal to the source. However, given the very
limited routing structure available within the Chimaera RFU,
there generally is a main best path which reaches the signal’s
source. The routing algorithm developed uses a greedy heuristic
that attempts to find and select this path on the first pass.

HAUCK et al.: THE CHIMAERA RECONFIGURABLE FUNCTIONAL UNIT 215

Routing for each individual signal proceeds as follows. The
inputs to the cell are scanned to see if it already exists along
one of the available paths. An example of this would be if an-
other logic block required the same signal and routed previously
placed it along one of that row’s long lines. The signal would
then be available at every column within the row and may just
be read, thus routing does not need to proceed all the way to
the source. If the signal is not immediately available, given the
number of columns left to travel and the current position of the
signal (i.e., I1, I2, I3, or I4) a routing structure is selected from
a predetermined set of rules. The signal has now been routed to
the next row above in the mapping. If the source of the signal
is within the current cell routing is complete, otherwise, routing
continues in the same manner with the new starting point in the
new row. The routing fails if the current row of signals is higher
than its source row or it is in the top of the mapping (in the case
of reading from the shadow register file). If the router failed, it
can be assumed that there is no valid route for the signal, since
the supposedly optimal route was being selected at each point. In
reality, some valid paths will be missed; however, tests show that
this situation is very rare and only occurs in a few unexpected
situations. For the vast majority of mappings, a valid route will
be found if there is one available. Further, this method is excep-
tionally fast. At each row, a case statement selects the path to
the next row. The runtime of the routing job for each signal is

where is the number of rows which the signal travels
through (typically 1–5, and never more than the height of the
mapping). Considering that the number of signals is, at most,
four per column, or 128 per row, and the number of rows is a
small value, the total number of steps required to route a row
is lower than 1000. Since each step consists of mostly a large
single-case statement, the routing time for a row is minimal. See
Fig. 12 for application examples.

C. Results

Fig. 13 compares the results of the place and route tool for
a variety of mappings. They are a selection of code segments
mapped to the RFU and custom-generated mappings for specific
applications. The ADPCM, DES, DNA, Gaussian and MPEG2
mappings are select mappings from the Application Examples
section. The Adder functions are simple 32-bit additions and
subtractions used to verify the use of the carry tree. Reference
[17] describes an image skeletonization mapping and the num-
bers correspond to mappings shown in Figs. 13, 15, and 16 of
that paper. Overall, the Chimaera place and route tools perform
extremely well. For all but two mappings, the software tools pro-
duced results as well as a hand mapping, which ideally is the
best possible solution.

The two examples where one or more rows were required
were extremely complex mappings which most likely will not
be generated automatically by a Chimaera compiler and will
not have to be placed and routed during runtime. In order for
the compiler to improve results to match the hand mappings, it
would need to predict where logic block inputs values in future
rows will be required and move data to those locations. Such
predictions would decrease the fast performance of the Chi-
maera compiler’s algorithm, with a relatively minor improve-
ment in overall results. The DNA string comparison mapping

Fig. 12. Application examples.

Fig. 13. Mapping results.

involves dense random logic and three separate output rows. The
software tools used eight rows, where a hand mapping only took
seven. The Gaussian blur mapping involved nine additions and
nine shifts; a custom hand mapping required 10 rows, where the
software tools needed 13 rows.

The Chimaera CAD software tool was able to place and route
each of the mappings in less than one second on a Sparc 5
workstation. By taking advantage of the limited structure of
the Chimaera RFU, it is possible to design CAD software tools
which limit the search space of the place and route problem.
Such a high-speed placement and routing tool is able to generate
high-quality mappings for designs in reasonable time, allowing
for compilers to optimize applications during the execution of
an application.

VI. LAYOUT RESULTS

The Chimaera test chip was designed using Magic version
6.5. The reconfigurable array was fabricated by MOSIS using
a standard 0.5 m complementary metal–oxide–semiconductor
(CMOS) process (0.6 m, effective with a 0.35 m). Fig. 14

216 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 2, FEBRUARY 2004

Fig. 14. Chimaera test chip.

shows the resulting test chip die. Each cell requires 52 pro-
gramming bits, yielding 1664 bits, or 208 bytes, of uncom-
pressed data to configure a single row. Research at the Univer-
sity of Washington (Seattle, WA) and Northwestern University
has been done to compress these data [16]. A complete row is
roughly 13 400 1400 , or 4.69 mm 0.49 mm in a 0.6 m
process. Shrinking the array to the 0.13 m drawn process of
today’s processors, means 32 Chimaera rows fit within a 1.016
mm 3.3 mm area (3.35 mm), a relatively small amount of
chip real estate. Thus, the array’s size is small enough for sev-
eral rows of the RFU to fit on today’s processors.

To analyze the performance of the test chip, we provide the
absolute timings, along with a comparison to a processor with
a 150-MHz clock cycle. It was found that the 150-MHz clock
cycle is the average clock cycle for a MIPS processor fabri-
cated on a similar technology. Note that the first version of the
Chimaera array which was fabricated used a 32:1 mux spread
throughout the row for the longlines, instead of the bus logic
shown previously in Fig. 4. This multiplexer method also en-
sures no forbidden configuration can ever be reached. How-
ever, because of the larger capacitances associated with such a
single long wire, the multiplexer-based longline is expected to
be slower than the previously mentioned method.

The routing channel numbers in Fig. 15 show the delay from
the output muxes of the previous row to the input muxes of the
current row, while the longline rows include the cost of using a
longline. For the internal cell logic paths, refer to Fig. 3. 2LUT is
the left LUT made out of the two 2LUTs and 3LUT refers to the
3LUT on the right side. The reason using the X and D signals are
faster than using the A or B signals is that the computation does
not actually use a LUT. Rather, it will switch between different
LUTs by using mux 6 for the X signal and mux 10 for the D
signal. However, if the X or D signal is routed through mux 5
and into the 3LUT, this improvement in speed is lost.

VII. CONCLUSIONS

Current reconfigurable systems deliver huge speedups for
some types of applications. However, because of the commu-
nication bottleneck between the reconfigurable logic and the
host processor, these algorithms require a significant effort at
hand optimizations. In addition, the migration of a significant
amount of computation to the reconfigurable logic is needed to
overcome the communication delay.

Fig. 15. Test-chip timing numbers.

In order to extend the benefits of reconfigurable logic to
general-purpose computing, we propose integrating the recon-
figurable logic into the processor itself. The Chimaera system
provides a host microprocessor with a RFU for implementing
custom instructions on a per-application basis. Direct read
access to the processor’s register file enables multi-input
functions, and a speculative execution model allowing for
multicycle operations without pipeline stalls. A novel instruc-
tion decode structure provides for multi-output functions and
efficient implementation of complex operations. Finally, by
using partial run-time reconfiguration, we can view the RFU as
an operation cache, retaining those instructions necessary for
the current operations.

From the timing numbers, it can be seen that computations
have time to flow through a couple rows within one clock
cycle. In addition, through several hand mappings to the RFU,
we have demonstrated the power of the Chimaera system.
More simple basic block mappings (Gaussian Blur, Eqntott,
and MPEG2 encoding) offer speedups of two to four times at
a cost of roughly 3.35 mm of die area. These optimizations
required only local optimization of a small amount of the
source code, using transformations that should be possible to
achieve in an automatic mapping system. Completely revamped
applications, coded specifically for the Chimaera system (such
as DNA string comparison, the skeletonization algorithm,
Conway’s Game of Life and DES encryption/decryption) offer
7–160 times improvement in running times. Such careful hand
optimizations demonstrate the potential high performance of
the system.

The limited, yet powerful, interconnect structure of Chimaera
also lends itself well to automatic compilation. As was demon-
strated here, a very fast and efficient placement and routing
system has been developed that almost always achieves results
identical to hand mapping, yet runs in less than one second.

REFERENCES

[1] O. T. Albaharna, P. Y. K. Cheung, and T. J. Clarke, “Area & time limi-
tations of FPGA-based virtual hardware,” in Proc. Int. Conf. Computer
Design, 1994, pp. 184–189.

HAUCK et al.: THE CHIMAERA RECONFIGURABLE FUNCTIONAL UNIT 217

[2] , “On the viability of FPGA-based integrated coprocessors,” in
Proc. IEEE Symp. FPGA for Custom Computing Machines, Apr. 1996,
pp. 206–215.

[3] Data Book. San Jose, CA: Altera Corp., 1995.
[4] G. Borriello, C. Ebeling, S. Hauck, and S. Burns, “The triptych FPGA

architecture,” IEEE Trans. VLSI Syst., vol. 3, pp. 491–501, Dec. 1995.
[5] J. E. Carrillo and P. Chow, “The effect of reconfigurable units in su-

perscalar processors,” in ACM/SIGDA Symp. Field-Programmable Gate
Arrays, 2001.

[6] A. DeHon, “DPGA-coupled microprocessors: Commodity IC’s for the
early 21st century,” in Proc. IEEE Workshop FPGA for Custom Com-
puting Machines, 1994, pp. 31–39.

[7] C. Ebeling, L. McMurchie, S. Hauck, and S. Burns, “Placement and
routing tools for the triptych FPGA,” IEEE Trans. VLSI Syst., vol. 3,
pp. 473–482, Dec. 1995.

[8] P. C. French and R. W. Taylor, “A self-reconfiguring processor,” in
Proc. IEEE Workshop FPGA for Custom Computing Machines, 1993,
pp. 50–59.

[9] M. Gardner, “Mathematical games: The fantastic combinations of John
Conway’s new solitaire game “Life”,” Sci. Amer., pp. 120–123, Oct.
1970.

[10] S. Hauck, G. Borriello, and C. Ebeling, “TRIPTYCH: An FPGA ar-
chitecture with integrated logic and routing,” in Proc. 1992 Brown/MIT
Conf. Advanced Research in VLSI and Parallel Systems, Mar. 1992, pp.
26–43.

[11] S. Hauck, “Multi-FPGA systems,” Ph.D. dissertation, Dept. Comp. Sci.
& Eng., Univ. Washington, , Seattle, WA, 1995.

[12] S. Hauck, M. M. Hosler, and T. W. Fry, “High-performance carry chains
for FPGAs,” IEEE Trans. VLSI Syst., vol. 8, pp. 138–147, Apr. 2000.

[13] H. S. Kim, A. K. Somani, and A. Tyagi, “A reconfigurable multi-func-
tion computing cache architecture,” in Proc. ACM/SIGDA Symp. Field-
Programmable Gate Arrays, 2000.

[14] LEDA, the Library of Efficient Data Types and Algorithms.
Algorithmic Solutions. [Online]. Available: http://www.algorithmic-so-
lutions.com/as_html/products/products.html

[15] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: a tool
for evaluating and synthesizing multimedia and communications sys-
tems,” Univ. California at Los Angeles, Los Angeles, CA, 1997.

[16] Z. Li, “Configuration management techniques for reconfigurable
computing,” Ph.D. dissertation, Dept. of ECE, Northwestern Univ.,
Evanston, IL, 2002.

[17] K. Nelson and S. Hauck, “Mapping methods for the Chimaera reconfig-
urable functional unit,” Northwestern Univ., Evanston, IL, Dept. ECE
Tech. Rep., 1997.

[18] S. Rajamani and P. Viswanath, “A quantitative analysis of processor-
programmable logic interface,” in Proc. IEEE Symp. FPGA for Custom
Computing Machines, Apr. 1996, pp. 226–234.

[19] R. Razdan, “PRISC: programmable reduced instruction set computers,”
Ph.D. dissertation, Harvard Univ., Div. Appl. Sci., Cambridge, MA,
1994.

[20] R. Razdan and M. D. Smith, “A high-performance microarchitecture
with hardware-programmable functional units,” in Proc. Int. Symp. Mi-
croarchitecture, 1994, pp. 172–180.

[21] G. Stitt, B. Grattan, J. Villarreal, and F. Vahid, “Using on-chip config-
urable logic to reduce embedded system software energy,” presented at
the IEEE Symp. FPGA for Custom Computing Machines, 2002.

[22] M. J. Wirthlin and B. L. Hutchings, “A dynamic instruction set com-
puter,” in Proc. IEEE Symp. FPGA for Custom Computing Machines,
Apr. 1995, pp. 99–107.

[23] R. Wittig and P. Chow, “OneChip: An FPGA processor with reconfig-
urable logic,” in Proc. IEEE Symp. FPGA for Custom Computing Ma-
chines, Apr. 1996, pp. 126–135.

[24] Z. A. Ye, N. Shenoy, S. Hauck, P. Banerjee, and A. Moshovos, “CHI-
MAERA: A tightly-coupled reconfigurable unit/high-performance pro-
cessor architecture,” presented at the Int. Symp. Computer Architecture,
2000.

[25] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source
Code in C, 1995.

Scott Hauck (S’94–M’95–SM’01) received the B.S.
degree in computer science from the University of
California, Berkeley, in 1990, and the M.S. and Ph.D.
degrees in computer science from the University of
Washington, Seattle, in 1992 and 1995, respectively.

He was an Assistant Professor at Northwestern
University, Evanston, IL, from 1995–1999 before
joining the University of Washington’s Department
of Electrical Engineering, where he is currently
an Associate Professor. His research focuses on
FPGAs and reconfigurable computing, including

applications, architectures and CAD tools for these devices.
Dr. Hauck has received an NSF CAREER Award, an IEEE TRANSACTIONS

ON VLSI Best Paper Award, and is a Sloan Research Fellow.

Thomas W. Fry received the B.S. degree in
computer engineering from Northwestern Univer-
sity, Evanston, IL, in 1998, and the M.S. degree
in electrical engineering from the University of
Washington, Seattle, in 2001.

He was a Research Assistant at the University of
Washington from 1999–2001, before joining IBM
Microelectronics, Waltham, MA, in 2001, where
he is a Physical Design Methodology Engineer. His
research focuses on reconfigurable and adaptive
logic design, high-performance clock distribution

techniques, FPGA architectures, image processing, and compression tech-
niques.

Matthew M. Hosler received the B.S. degree in
electrical engineering from the University of Dayton,
Dayton, OH, and the M.S. degree in computer engi-
neering from Northwestern University, Evanston, IL.

He was with Motorola’s Corporate Research
Labs, Schaumburg, IL, where he developed new
reconfigurable arrays optimized for digital signal
processing. He is currently a Field Applications
Engineer for Arrow Electronics, Dayton, OH.

Jeffrey P. Kao received the B.S. degree in computer engineering in 1997 from
Northwestern University, Evanston, IL. He is currently working towards the
MBA degree at the University of Michigan, Ann Arbor.

He was with Intel Corporation in Chandler, AZ, as a Technical Marketer and
Senior Design Engineer from 1997–2003. His industry experience includes Xs-
cale processor performance analysis and design work on three generations of
the Itanium processor.

