
 1

Runtime and Quality Tradeoffs in
FPGA Placement and Routing

Master’s Thesis
July 2001

Chandra S. Mulpuri
Northwestern University

As submitted to
Northwestern University

Department of Electrical and
Computer Engineering

Evanston, IL USA

Advisor
Scott Hauck

University of Washington
Seattle, WA USA

 2

TABLE OF CONTENTS

ABSTRACT... 4

1 INTRODUCTION.. 4

2 BACKGROUND .. 6

2.1 ROLE OF FPGAS .. 6
2.2 FPGA ARCHITECTURE ... 7
2.3 FPGA-CAD... 9
2.4 THE NEED FOR TRADEOFFS... 10

3 PRIOR WORK... 11

4 EXPERIMENTAL PROCEDURE... 12

4.1 SETUP .. 12
4.2 PLACEMENT... 13

4.2.1 Fiduccia-Mattheyses.. 13
4.2.2 Force-directed.. 14
4.2.3 Scatter .. 14
4.2.4 Simulated annealing... 15
4.2.5 Xilinx placer... 16

4.3 ROUTING.. 17
4.3.1 Original Pathfinder.. 17
4.3.2 Modified Pathfinder... 18
4.3.3 Xilinx router... 19
4.3.4 Hierarchical ... 19
4.3.5 Simple... 20

5 RESULTS AND ANALYSIS .. 20

5.1 PLACEMENT... 20
5.2 ROUTING.. 22
5.3 OVERALL TRADEOFFS .. 25
5.4 EFFECT OF FPGA SIZES ON THE ALGORITHMS.. 27

6 CONCLUSIONS AND FUTURE WORK... 28

7 ACKNOWLEDGEMENTS... 29

BIBLIOGRAPHY... 30

 3

TABLE OF FIGURES

FIGURE 1: TYPICAL FPGA ARCHITECTURE ... 7
FIGURE 2: INTERCONNECT ARCHITECTURE.. 8
FIGURE 3: CLB ARCHITECTURE .. 8
FIGURE 4: TYPICAL CAD-FLOW IN AN FPGA DESIGN PROCESS... 9
FIGURE 5: CRITICAL PATH DELAYS VS. RUNTIMES FOR PLACEMENT ALGORITHMS............. 21
FIGURE 6: CRITICAL PATH DELAYS VS. RUNTIMES FOR ROUTING ALGORITHMS.................. 23
FIGURE 7: ROUTER RUNTIMES FOR DIFFERENT CHOICES OF PLACEMENT. 24
FIGURE 8: CRITICAL PATH DELAYS VS. TOTAL RUNTIMES FOR COMBINATIONS OF

PLACEMENT AND ROUTING ALGORITHMS. .. 25
FIGURE 9: EFFECT OF RESOURCE USAGE ON THE PERFORMANCE OF ALGORITHMS. 28

 4

Abstract

Many applications of FPGAs, especially logic emulation and custom
computing, require the quick placement and routing of circuit designs. In
these applications, the advantages FPGA-based systems have over software
simulation are diminished by the long run-times of current CAD software
used to map the circuit onto FPGAs. To improve the run-time advantage of
FPGA systems, users may be willing to trade some mapping quality for a
reduction in CAD tool runtimes. Our work seeks to establish how much
quality degradation is necessary to achieve a given runtime improvement.
For this purpose, we implemented and investigated numerous placement
and routing algorithms for FPGAs. We also developed new tradeoff-
oriented algorithms, where a tuning parameter can be used to control this
quality vs. runtime tradeoff. We show how different algorithms can achieve
different points within this tradeoff spectrum, as well as how a single
algorithm can be tuned to form a curve in the spectrum. We demonstrate
that the algorithms vary widely in their tradeoffs, with the fastest algorithm
being 8x faster than the slowest, and the highest quality algorithm being 5x
better than the least quality algorithm. Compared to the commercial Xilinx
CAD tools, we can achieve a 3x speed-up by allowing 1.27x degradation in
quality, and a factor of 1.6x quality improvement with 2x slowdown.

1 Introduction

Most CAD development efforts have focused on the creation of as efficient a mapping as

possible for a given computation. The application of complex optimization techniques, for

the solving of multiple NP-Hard problems, has yielded efficient mapping tools that can

take hours to produce an implementation.

For the design of ASIC circuits, producing the highest quality results at the cost of

significant runtimes is justified by the long fabrication times and large costs. However the

development of FPGAs, where a new computation can be realized in hardware in

milliseconds, may require the re-evaluation of this tradeoff.

For systems that require problem-specific compilation in custom-computing devices, the

execution involves first creating an FPGA (or multiple FPGA) configuration(s) from a

 5

specification for a given problem instance, and then executing the configuration on the

FPGA hardware. Thus, the CAD tool runtime becomes part of the execution time. The

longer the CAD tools take to operate, the smaller the advantage that custom-computing

devices have over software simulators, since simulators typically do not require such

sophisticated pre-processing.

In many FPGA-based systems the CAD tool performance can thus be a critical concern. In

fact, users may be willing to trade some mapping quality (typically measured in critical

path length and/or device capacity) for a reduction in CAD tool runtimes. For example,

users may have excess FPGA capacity available to accelerate the mapping process.

Alternatively, a slowing down of the FPGA execution because of lengthened critical paths

may be more than balanced by the decrease in CAD runtimes, yielding an overall

performance increase. However, what is unclear is how much quality must be sacrificed for

a significant improvement in runtimes.

What is allowable in tradeoff depends on the applications. For some systems no reduction

in mapping quality is acceptable (and in fact, for some systems only hand-design yields the

required mapping quality). For others, larger quality reductions may be justified.

In our work, therefore, we consider the tradeoff between the runtimes of CAD algorithms

and the critical path lengths of the resulting mappings. We seek to establish how much

quality degradation is necessary to achieve a given runtime increase. As part of this process

we investigate multiple placement and routing algorithms for FPGAs. We also develop

new tradeoff-oriented physical design tools, where a tuning parameter can be used to

control this balance. As part of these efforts we show both how different algorithms can

achieve different points within this tradeoff spectrum, as well as how a single algorithm can

be broadened in its applicability.

 6

2 Background

2.1 Role of FPGAs

Traditional computer architectures have a fixed Central Processing Unit (CPU) operating

on data stored in a memory. Programs determine the sequence of single instructions

executed by the CPU. This is a disadvantage for algorithms that can be executed in

parallel. The advent of Field Programmable Gate Arrays (FPGAs) makes possible a faster

execution of such algorithms. FPGAs have no given processor structure but offer large

amounts of logic gates, registers, RAM and routing resources. Programs determine only

the logical structure of the FPGA and not the sequence of execution. Therefore,

algorithms are not only executed in parallel but also executed using a minimum amount

of hardware. A single bit operation for instance is mapped on a single logic block of an

FPGA (a fraction of a percentage of the FPGA size for currently existing architectures)

instead of using a complete 32bit ALU like in a general-purpose processor. Typically

thousands of operations can be performed in parallel on an FPGA computer during every

clock cycle. Though the clock speed of FPGAs (20-100MHz) is lower than that of current

general-purpose processors (~GHz), the speedup resulting from parallelization can be

extremely high. In many applications like image processing, data encryption or string

processing, speedups between 100 and 1000 have been reported.

Traditionally, applications that required such high performance warranted the

development and fabrication of an Application-Specific Integrated Circuit (ASIC).

However, this process consumes precious time, has prohibitive costs for low volume

production, and the design itself cannot be modified or debugged once the fabrication

process has started. By utilizing their programmable nature, FPGAs offer a low cost,

flexible solution over traditional ASICs. Since a single FPGA design may be used for

many tasks, it can be fabricated in higher volumes, lowering fabrication costs. Also, their

ability to be reprogrammed allows for easy design modifications and bug fixes without

the need to construct a new hardware system. FPGAs may be reprogrammed within

milliseconds for no cost other than the designer’s time, while ASICs require a completely

new fabrication run lasting a month or two and costing hundreds of thousands of dollars.

 7

2.2 FPGA architecture

Figure 1: Typical FPGA Architecture

FPGAs comprise of arrays of configurable elements, the three major configurable

elements being: configurable logic blocks (CLBs), input/output blocks (IOBs), and

interconnects. The CLBs provide the functional elements for constructing user's logic.

The IOBs provide the interface between the package pins and internal signal lines. The

programmable interconnect resources provide routing paths to connect the inputs and

outputs of the CLBs and IOBs. Customized configuration is established by programming

internal static memory cells that determine the logic functions and internal connections

implemented in the FPGA.

 8

Figure 2: Interconnect Architecture

Figure 2 depicts an FPGA with a two-dimensional array of logic blocks that can be

interconnected by interconnect wires. All internal connections are composed of metal

segments with programmable switching points to implement the desired routing. An

abundance of different routing resources is provided to achieve efficient automated

routing. Interconnect is of different types, distinguished by the relative lengths of their

segments: single-length lines, double-length lines and long-lines (as in the case of Xilinx

XC4000E family of FPGAs) [Xilinx96]. In addition, there can be global buffers that

drive fast, low-skew nets and are most often used for clocks or global control signals.

Figure 3: CLB Architecture

The principal CLB elements (in this case, of the Xilinx XC4000E family of FPGAs) are

shown in Figure 3 [Xilinx96]. Each CLB contains a pair of flip-flops (FFs) and two

independent 4-input function generators (also called Look-Up Tables or LUTs). These

LUTs have a good deal of flexibility, as most combinatorial logic functions need less

 9

than four inputs. CLBs implement most of the logic in an FPGA. The flexibility and

symmetry of the CLB architecture facilitates the mapping process of a given application.

2.3 FPGA-CAD

Figure 4: Typical CAD-flow in an FPGA design process

Typically, a circuit is designed as either a schematic or is described in a high-level

hardware description language such as VHDL or Verilog. The task of converting this

design into an implementation on an FPGA is usually subdivided into more manageable

sub-problems as shown in Figure 4 [Hauck96].

The first stage, Synthesis, compiles the high-level design into a netlist of CLBs with the

goal of minimizing the number of such blocks and/or optimizing the critical path delay.

This process involves performing logic optimization, then mapping the circuit onto the

LUTs and FFs used in the FPGA, and finally packing them into the CLBs.

The next stage in the FPGA-CAD flow is placement, the process of determining what

physical CLB to assign to each CLB in the netlist, and which IOB to assign to each I/O

signal. This step attempts to optimize some measure of placement quality, which can be

 10

total wiring required, the speed of the critical path, congestion in the routing resources, or

any combinations of the above measures.

The final step in the FPGA-CAD flow is routing. Routing is the process of determining

which programmable switches to turn on to establish the desired connections between

pins on placed CLBs and IOBs.

These three stages in the FPGA-CAD process can be executed independent of each other.

However, poor performance of the algorithms at any stage adversely affects the overall

quality of the solution and also the runtimes of the stages that follow it. In our work we

quantified this relationship between the choice of an algorithm at an earlier stage and the

run-time at the present stage. Since the final two stages in the FPGA-CAD process,

placement and routing, consume the most amount of time in the process, we devoted our

work to studies in these two stages.

2.4 The need for tradeoffs

Traditionally, applications needed as efficient a mapping as possible for a given

computation. While this is a must for ASIC design, not all applications for FPGA systems

have efficient mapping as the primary requirement. In custom-computing systems, the

FPGA hardware is often used as a form of software accelerator, where designers expect fast

turnaround from specification to implementation. In some systems the runtimes can even

become part of the execution time of the system, where slow CAD performance directly

impacts the utility provided to the user. For example, in logic emulation a circuit under

development may need to be remapped to the accelerator on a weekly, daily, or even hourly

basis, as modifications are made to the circuit while it is debugged. The longer the CAD

tools take to operate, the smaller the advantage the emulation system has over software

simulation, since simulators typically do not require such sophisticated pre-processing.

For these kinds of applications, users may even be willing to tradeoff some quality of the

solution for an improved runtime of the CAD tools. This is proved by the simultaneous

viability of two commercial emulation tools from Quickturn: the CoBALT and Mercury

systems [Quickturn00]. While each of these systems are capable of supporting roughly

 11

equivalent circuit complexities, and have equivalent system costs, the CoBALT system

provides more than an order of magnitude reduction in mapping time (days to hours) at the

cost of 1-2 orders of magnitude increase in system delay (MHz to 100 KHz performance).

Thereby it is evident that, at least for some applications, users are willing to accept huge

quality losses for significant CAD runtime improvements.

In some applications, the slow runtimes of current CAD tools completely eliminate some

opportunities for FPGA-based systems. For example, there has been much interest in

problem-specific custom computing for Boolean Satisfiability, where the inherent

parallelism of FPGAs provides high-performance hardware to finding solutions to arbitrary

Boolean equations. In [Zhong98] a comparison of software runtimes and total solution time

using FPGAs for SAT solver circuits reveals that while there is 94.8x speedup that could be

achieved over software in solving a200_6_0_y1_1 problem, large compilation times using

a commercial CAD tool resulted in a 781x slowdown for the FPGA based solution. As the

complexities of target circuits and FPGAs increase, the effectiveness and efficiency of

these CAD tools become even more important in such applications. Techniques that

accelerate core CAD algorithms can bring about important changes in product design times

for these applications.

Since different applications emphasize different mapping techniques based on their need

for efficient or fast mapping, a detailed analysis of the tradeoffs involved in choosing

mapping techniques is required. We therefore seek to establish how much quality

degradation is necessary to achieve a given runtime increase. As part of this process we

investigate multiple placement and routing algorithms for FPGAs.

3 Prior work

Several works have concentrated on speeding up the FPGA CAD processes. For example,

VPR [Betz97] fine-tunes the placement parameters of an established algorithm, simulated

annealing, to give minimal quality loss while speeding up the process. It also presents

techniques to speed up the Pathfinder algorithm [McMurchie95] used during the routing

phase. Other works like Ultra Fast Placer [Sankar99] and Parallel Pathfinder [Chan00] have

dealt with the individual stages in the process. However, not much has been documented so

 12

far in the way of overall trade-offs involved in choosing an algorithm for a particular stage

in the CAD process.

4 Experimental procedure

4.1 Setup

In order to quantify the tradeoff between CAD tool runtimes and the resulting quality, we

implemented multiple placement and routing algorithms. Our algorithms are targeted to

the Xilinx XC4000E family of FPGAs. For representing the exact logic and routing

resources in this FPGA architecture, as well as for the LCA format file input and output,

we utilized the routines developed at the University of California, Santa Cruz for their

implementation of parallel pathfinder. These routines were originally developed for the

XC4000 family of FPGAs. We retargeted them to the XC4000E series of FPGAs

[Xilinx96].

Our results were obtained by running the algorithms on SUN UltraSparc 5 workstations

with 512 MB of memory. Twelve combinatorial benchmarks were used from the MCNC

benchmark circuits [Yang91], and range in size from 189 logic blocks to 1020 logic

blocks. The properties of the benchmarks we used are summarized in the following table.

Benchmark
FPGA

Device

Number

Of

Nets

Number

of

CLBs

k2 4005E 261 189

misex3 4005E 244 192

alu4 4005E 276 194

seq 4008E 629 300

apex4 4010E 1235 388

tseng 4013E 1099 542

ex5p 4013E 1072 570

 13

diffeq 4020E 946 751

dsip 4020E 1093 780

s298 4025E 1304 1002

des 4025E 1360 1013

bigkey 4025E 1501 1020

The algorithms were evaluated based on the comparison of their run-times to the delay of

the mapped circuit. The critical path delay results were obtained by using Xdelay, which

is part of the commercial Xilinx CAD tools.

4.2 Placement

The logic circuit that is to be placed and routed is specified in terms of CLBs, which are the

basic logic elements that make up the array architecture of the FPGA. Placement is

essentially assigning a unique position inside the FPGA to each of the circuit’s

configurable logic blocks.

We have implemented four different algorithms for placement, and a fifth placer was

obtained from Xilinx. Our aim was to compare each of these placers in terms of their run-

time vs. quality characteristics.

As part of this work we have developed runtime-adaptive versions of Simulated Annealing

and Force-directed placement. In these algorithms, a balance parameter is introduced which

can apply more or less effort, trading runtimes for resulting quality. These algorithms

therefore are represented on the run-time vs. quality graph not by a single point, but by a

set of points corresponding to different values of the tuning parameter. The placement

algorithms we used are briefly explained below.

4.2.1 Fiduccia-Mattheyses

This implementation is based on the Fiduccia-Mattheyses algorithm [Fiduccia84]. The

FPGA is divided into two halves, and the Fiduccia-Mattheyses algorithm is applied to

determine which logic blocks go into which half. These two halves of the FPGA are

 14

further partitioned into two halves each, and this recursive process is applied on each

FPGA partition until the partitions become small (contain less than nine CLBs). A greedy

algorithm then determines the exact placement of the logic blocks corresponding to each

of the small partitions. During the bipartitioning, the logic blocks in both partitions are

arranged in a decreasing order of the gain obtained if they were to be moved across the

partition. This gain is computed using the “Terminal Propagation” technique [Dunlop85],

which considers nets connected to logic blocks from other partitions as well. Once a logic

block is moved across the partition, it is locked and the gains are updated for the rest of

the logic blocks. This process is repeated until there is no further cost improvement.

4.2.2 Force-directed

This implementation is based on the Force-directed algorithm [Shahookar91]. From an

initial random placement, each logic block is moved to its “best location”, which is

determined as the closest available location to the centroid of all the other logic blocks to

which it is connected. If another logic block already exists at this location, the two logic

blocks are interchanged. After this move, the logic block in consideration is “locked”, and

the location is considered unavailable for other logic blocks. Once all the logic blocks are

locked, they are unlocked and the process is repeated until a terminating condition is met.

The terminating condition dictates the per-iteration percent change in cost at which the

algorithm will halt. If this percentage is small, the algorithm will perform significant

optimization, with a commensurate increase in runtimes. With a large percentage change

(including only performing a single iteration regardless of change in cost) the algorithm

will perform a much lower quality optimization, but with much faster runtimes. We

therefore use the stopping criteria as a tuning parameter for the Force-directed Placement

algorithm.

4.2.3 Scatter

The fastest possible legal placement algorithm would simply randomly scatter the logic

blocks across the chip area. For circuits that are fairly small, or with very easy

requirements, such an algorithm might achieve usable results with very fast runtimes.

 15

However, if the logic blocks are placed very close together, the resultant congestion will

affect the route times for the worse. The Scatter algorithm therefore does arbitrary

placement, but ensures that logic blocks are placed reasonably far apart.

4.2.4 Simulated annealing

The simulated annealing implementation is based on the VPR placer [Betz97]. The

various simulated annealing parameters that define the algorithm are explained below:

Cost function: This cost function is described by the equation:

The summation is over all the nets in the circuit. For each net, bbx and bby denote the

horizontal and vertical spans of its bounding box respectively. The q(n) factor is a value

used to compensate for the underestimation of cost when nets have more than 3

terminals, and is obtained from a lookup table.

Initial Temperature: Let Nblocks be the total number of CLBs and IOBs in the circuit.

From an initial random placement, Nblocks random pair wise swaps of CLBs or IOBs are

performed, and the standard deviation of the cost is computed. The initial temperature is

set to 20 times this standard deviation.

Cooling Schedule: The new temperature is computed as Tnew = α Told, where the value of

α depends on the fraction of attempted moves that were accepted (Raccept) at Told, as

shown:

Fraction of moves accepted (Raccept) α

Raccept > 0.96 0.5

0.8 < Raccept ≤ 0.96 0.9

0.15 < Raccept ≤ 0.8 0.95

 16

Raccept ≤ 0.15 0.8

Since it is desirable to keep Raccept near 0.44 for as long as possible [Lam88], the

algorithm uses a range limiter which restricts swaps to blocks that are less than Dlimit

units apart in either the horizontal or vertical direction. If Raccept were less than 0.44, Dlimit

would be reduced, thereby forcing moves over a smaller range and hence greater

acceptance. This Dlimit is updated across temperatures according to:

Dnew
limit = Dold

limit * (1 – 0.44 + Rold
accept)

and then clamped to 1 ≤ Dlimit ≤ maximum FPGA dimension.

Final Temperature: The annealing is terminated when the temperature is less than 0.5%

of the average cost per net.

Number of moves at each temperature: In the original VPR placer, at each temperature

10*(Nblocks)
1.33 moves are evaluated. However, the number of moves evaluated at each

temperature directly controls the amount of time Annealing spends in searching for a

good solution. Increasing or decreasing this number will directly increase or decrease the

run-time, and will therefore affect the quality of the solution. Hence we can perform a

tradeoff between CAD runtimes and resulting quality by using C*(Nblocks)
1.33 moves,

where increasing C results in higher quality results at the expense of longer runtimes.

4.2.5 Xilinx placer

This placement tool is part of the commercially available Xilinx Alliance Software Series

2.1i for Solaris. The placement is run at different effort levels (1-5), which indicate the

amount of time the tool spends searching for a better quality solution. An effort level of 1

indicates that the tool terminates when it finds a low quality placement and an effort level

of 5 indicates that the tool searches for a high quality placement.

 17

4.3 Routing

While the previous comparisons have considered only placement, the physical design

process includes both placement and routing. In this section we present a similar

algorithm development and comparison for FPGA routing.

All the routing algorithms we implemented represent the architecture of the XC4000E

series FPGA as a directed resource graph G = (N, E). A node n ∈ N represents a routing

resource such as a wire or terminal, and an edge e ∈ E represents a switch or a feasible

connection between two nodes. Each net consists of one Source node, and a set of Sink

nodes. Routing a signal is essentially assigning routing resources such that all sinks are

connected to the source.

We implemented 5 different routers, including the standard commercial router from

Xilinx. Our aim is to compare each of these routers in terms of their run-time vs. quality

characteristic. As in the case of placement, some of the routers have tuning parameters

with which they can be forced to spend more time searching for, and therefore potentially

arrive at, a better quality solution. The following sub-sections detail the various routing

algorithms implemented.

4.3.1 Original Pathfinder

The original pathfinder algorithm was developed at the University of Washington

[McMurchie95], and has shown very high quality results. For our work we utilized an

implementation of this algorithm that was developed at the University of California,

Santa Cruz [Chan00]. This is a negotiation-based router in which each net negotiates the

use of shared resources with other nets until none of the resources are shared. Congestion

costs are assigned to the shared resources and are increased after each iteration, thereby

forcing some signals to explore alternate routes. The cost of using a node n is given by

cn = (dn + hn) * (pn + 1)

where dn is the basic delay cost for using the node. The first order congestion term pn, is

the number of signals that currently share the node. The second order congestion term hn

 18

grows monotonically with each iteration in which the node is shared. In order to

minimize congestion and delay, the actual cost function for using a resource when routing

a net joining Source ns to Sink tij, is defined as

Cn = Aijdn + (1 – Aij) cn

where cn is the cost as defined earlier. The slack ratio Aij is the ratio of the delay of the

longest path containing the edge (ns, tij) to the maximum delay over all paths. This slack

ratio becomes 1 if the source-sink pair lies on the critical path, thereby reducing the cost

to just the delay term. If the source-sink pair lies on a totally non-critical path, the

congestion term will dominate, resulting in a route that avoids congestion at the expense

of extra delay.

4.3.2 Modified Pathfinder

This version of the Pathfinder algorithm has two modifications over the Original

Pathfinder, both intended to decrease the run-time of the algorithm.

The first modification is based on VPR’s router [Betz97]. It aids in routing multi-terminal

nets more efficiently and has no tradeoff associated with it. The Original Pathfinder

algorithm uses the maze router to route between a given Source and a Sink. For multi-

terminal nets, this means that the wavefront generated while routing between the source

and kth sink will be discarded and a whole new wavefront will be generated to route the

source to the (k+1)th sink. This requires considerable CPU time for high-fanout nets,

since the partial routing used as the net source will be very large. Instead, in this

implementation, we just update the wavefront around the newly found path until it

reaches the same expansion level as the rest of the wavefront, and then proceed to find

the next sink. Since the path from the existing wavefront to the newly found sink is fairly

small, it will take little time to add this to the wavefront, and the next sink will be reached

quicker than if the whole wavefront was to be generated again.

The second modification provides a decrease in the routing runtime at a small cost in

quality. During each iteration, the Original Pathfinder algorithm rips up and reroutes all

the nets so as to eliminate dependencies on the order of the nets. In our implementation,

 19

only those nets that are routed through congested resources are ripped up and rerouted.

This may adversely affect the net delays, but considerably speeds up the algorithm.

One of the parameters of all versions of Pathfinder, the history cost for a node, indirectly

influences the run-time of the algorithm. If we raise the per iteration history cost increase,

the algorithm will more quickly resolve node sharing. While this may increase the

corresponding net delays, because of the reduced number of iterations, the algorithm

tends to run faster. Hence, by varying this history cost, we obtain several versions of the

Modified Pathfinder algorithm that exhibit different run-time vs. quality characteristics.

We varied this history cost parameter in two different ways. One is by assigning fixed

values to the history cost, which represents multiplying the standard pathfinder history

cost by a scaling factor. Different history cost settings were considered across a wide

range of workable assignments. The second approach was taken to determine if there is

any dependence of the history cost of a node on its basic delay. Hence, in this approach,

the history cost of a node equals its basic delay multiplied by a scaling factor. This

scaling factor was again varied till the algorithm either fails to converge on a solution, or

fails to route the given placement.

4.3.3 Xilinx router

This routing tool is part of the commercially available Xilinx Alliance Software Series

2.1i for Solaris. The tool is run at different effort levels (1-5), which indicate the amount

of time the tool spends searching for a better quality solution. An effort level of 1

indicates that the tool terminates when it finds a low quality routing and an effort level of

5 indicates that the tool searches for a high quality routing.

4.3.4 Hierarchical

This routing algorithm is partly based on the Timing-Driven Router [Zhu00]. Starting

with the entire FPGA, a cut line is chosen to divide the FPGA into 2 parts. Across the cut

line there are routing sections that represent routing spaces on the chip. A routing section

is a group of tracks in a channel with the same segment length. Each net crossing the cut

line is assigned a cost similar to the pathfinder cost function with congestion considered

 20

at a segment level rather than at the track level. At each hierarchical level, the algorithm

assigns routing sections to the nets crossing the cut line. After finishing routing at this

hierarchical level, both parts separated by the cut line are independently routed by the

same method recursively. When the parts become small enough, a simple greedy

algorithm determines all the tracks in the routing sections that are assigned to each net.

4.3.5 Simple

This is a fast router based on the maze running algorithm [Lee88]. Each net is routed

once, with no rip-up-and-retry or other technique for avoiding congestion. It simply seeks

the shortest available route from source to destination(s), avoiding resources used by

previous signals. If the maze runner fails to find any unshared paths from the source to

the sink, the router declares the placement as unroutable and exits.

5 Results and analysis

5.1 Placement

For our initial comparison all the placement outputs were routed using the Xilinx router

with effort level set to 5. Figure 5 shows the placement run-times vs. critical path delay

graph. The results we obtained for each benchmark were normalized to the best value

across all the algorithms. The graph represents the geometric mean of these normalized

values for all the benchmarks. If any of the placement results failed to route with the

Xilinx router, they were placed again with the Xilinx placement tool with the effort level

set to 5, and the runtimes of both Xilinx router and the Xilinx placement tool were added

to the corresponding placement runtimes as a failure penalty.

Figure 5 demonstrates the tradeoff between the runtimes of algorithms and the quality of

the results achieved. The height of each graph represents the critical path delay achieved,

with a higher value representing a worse result. Horizontally we move from the fastest

algorithms (at left) to the slowest (at right). Because of the structure of the graph, any

point “dominates” all others that lie above and to the right of that point. This is because

the given point gives equal or better results in equal or lower runtimes.

 21

0.8

1.2

1.6

2

2.4

2.8

3.2

0 4 8 12 16 20 24

Placer runtime (normalized)

C
rit

ic
al

 p
at

h
de

la
y

(n
or

m
al

iz
ed

) Scatter

Annealer

FM

Xilinx

Force-directed

VPR

Figure 5: Critical path delays vs. runtimes for placement algorithms.

While the Scatter and Fiduccia-Mattheyses algorithms are depicted as single points, the

Xilinx placer, Simulated Annealing, and Force-Directed algorithms are shown as curves.

This is because the latter algorithms were run a number of times while varying the tuning

parameter of each algorithm. For the Xilinx placer this tuning parameter was the effort

level, which was varied from 1 to 5. For Annealing, this tuning parameter was the

number of moves attempted at each temperature, ranging from 1*(Nblocks)
1.33 to

20*(Nblocks)
1.33. For the Force-directed algorithm, this tuning parameter was the

terminating condition. We varied it from <20% cost decrease across iterations to <0.5%

cost decrease across iterations. Also, we used an ultra-fast version of Force-directed

algorithm that runs for only a single iteration.

There are several striking features of these graphs. First is the comparison between the

Force-directed and Simulated Annealing algorithms. For relatively fast runtimes the

Force-directed algorithm produces mappings with equivalent critical path delays to the

Simulated Annealing algorithm. Although the Scatter algorithm runs extremely fast for

certain benchmarks, it fails to produce a routable design for some large benchmarks. This

adds a huge failure penalty to the runtimes and thereby brings down the overall

performance of the Scatter algorithm. Thus, at least for placement runtimes, achieving the

 22

best tradeoff between quality and runtimes may require different algorithms at different

points in the spectrum.

A second observation is that several of the algorithms simply are not competitive when

only placement performance is considered. The partitioning-based (FM) placer and most

effort levels of the Xilinx placer provide significantly worse results than the other

approaches.

From this data we can quantify the overall tradeoff between runtimes and quality for

FPGA placement. For example, when we compare the fastest to the slowest competitive

algorithms, we can achieve a speedup of 20x with a degradation of a factor of 2.3x in

critical path delay. Also, compared to the VPR placer, if we allow a factor of 1.34x

degradation in quality we can achieve 2.5x speedup in placement times, and a factor of

5.2x speedup if we allow 1.9x degradation in quality.

5.2 Routing

For all the routers, we used the placement obtained from the VPR-based Annealer. Figure

6 shows the routing run-times vs. critical path delay graph. Similar to placement, for each

benchmark the results for each benchmark were normalized to the best value across all

algorithms and a geometric mean of these normalized values is indicated in the graph.

While the Original Pathfinder, Hierarchical Router and Simple Router appear as single

points on the figures, the Xilinx router and Modified Pathfinder are shown as curves. This

is because the Xilinx router was run with different effort levels (1-5) with effort level 1

indicating a low quality routing and an effort level 5 indicating a high quality routing.

The Modified Pathfinder was run a number of times while varying the history congestion

cost from 0.7 to 5 as a fixed value, and from dn / 2 to 2*dn as a delay dependent value,

and these two variations are shown as two different curves.

The graph features some interesting results. Firstly, the Original Pathfinder algorithm

gives the best quality and the Simple Router runs the fastest. However, the simple router

fails on some circuits, and thus may not be useable in all situations. In such cases, the

 23

placement was rerouted using the Xilinx router with an effort level of 5, and this run-time

was added to the Simple routers runtime as a failure penalty.

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0.8 1.4 2 2.6 3.2 3.8 4.4 5

Router runtime (normalized)

C
rit

ic
al

 p
at

h
de

la
y

(n
or

m
al

iz
ed

)

Original Pathfinder

Simple

Xilinx

Modified Pathfinder

Hierarchical

Figure 6: Critical path delays vs. runtimes for routing algorithms.

Secondly, the fact that the Modified Pathfinder curves never give a better quality than the

Original Pathfinder algorithm suggests that there is a permanent quality loss associated

with ripping up and re-routing only congested nets instead of all the nets. At values of

history cost greater than 5, the Modified Pathfinders failed to route the given placement,

and for values less than 0.7, they failed to converge on a possible route.

A third observation is that, for lower runtimes, Modified Pathfinder algorithms with delay

based history congestion costs outperformed those with fixed-value history costs.

However, at longer runtimes, this situation is exactly reversed, with fixed value history

cost based algorithms giving better qualities. One more important observation from the

graph is that the Xilinx Router outperforms certain Pathfinders.

Finally, we can quantify the overall tradeoff between runtimes and quality for FPGA

routing. For example, when we compare the fastest to the slowest routing algorithms, we

can achieve a speedup of 6x with a degradation of a factor of 1.6x in critical path delay.

Also, compared to Original pathfinder, if we allow 1.25x degradation in quality, we can

achieve a factor of 2.5x speedup in routing times.

 24

However, the runtimes of the routers are dependent on the quality of the placement that is

input to them. For example, choosing a faster placement algorithm may make the routers

job harder because of less efficient placement and hence increase the runtimes of the

router. Quantifying this increase would help us decide on a specific combination of

placement and routing algorithms for a particular total runtime constraint.

0.8

1.6

2.4

3.2

4

4.8

0 4 8 12 16 20 24 28

Router runtime (normalized)

C
rit

ic
al

 p
at

h
de

la
y

(n
or

m
al

iz
ed

)

Original Pathfinder

Modified Pathfinder

Coarsened Pathfinder

Xilinx Router

Simple Router

Hierarchical Router

 Annealer
 Force-directed
 Xilinx
 FM
 Scatter

Figure 7: Router runtimes for different choices of Placement.

Figure 7 demonstrates how the routing run-times vary with different choices for

placement. For each of the routers, the least runtime and best quality was obtained when

Annealer was used as the placer and least quality and longest runtime was obtained when

Scatter algorithm was used for placement. The only exception to this is the Hierarchical

router, which gave comparable results with both Annealer and FM Placer. Also, the effect

of the placement is much more drastic on the Simple Router compared to the Original

pathfinder as can be seen from the increased slopes of the curves. This clearly

demonstrates that tradeoffs in placement will have correspondingly opposite tradeoffs in

routing.

 25

5.3 Overall tradeoffs

While the previous results demonstrate that trade-offs exist among different placement

algorithms and routing algorithms, they do not address the critical question of deciding

which set of algorithms should be chosen for a specified trade-off. In other words, given

that the user is willing to trade-off some quality for an improved run-time, should a faster

placement algorithm and a slower route algorithm be chosen, or a slower placement

algorithm and a faster route algorithm? This choice not only reflects the balancing criteria

that the overall runtime should be optimized for a given quality level, but also the fact

that the choice of a faster, but less efficient, placement algorithm may increase the

runtimes of the router, as it must accommodate a more difficult placement. In other

words, tradeoffs made in placement or routing individually may not necessarily translate

into corresponding tradeoffs overall.

0.5

1.4

2.3

3.2

4.1

5

0.5 2.2 3.9 5.6 7.3 9

Total runtime (normalized)

C
rit

ic
al

 p
at

h
de

la
y

(n
or

m
al

iz
ed

)

Annealing

Force-directed

Fiduccia-Mattheyses

Scatter

Xilinx

 Simple
 Hierarchical
 Xilinx Router
 Coarsened Pathfinder
 Modified Pathfinder
 Original Pathfinder

Figure 8: Critical path delays vs. Total runtimes for combinations of placement and

routing algorithms.

We therefore compared all combinations of place and route algorithms mentioned (note

that the Xilinx Placer was only run with the Xilinx router because we could not read the

intermediate format). The results are depicted in Figure 8. In this figure, we chose a

 26

single representative of the tunable placement and routing algorithms. Hence, Annealer

represents the VPR-based annealing algorithm with 10 * (Nblocks)
1.33 number of moves at

each temperature, Force-directed placement represents the Force-directed algorithm with

<5% cost decrease across iterations as the terminating condition, Modified Pathfinder

router represents the Modified Pathfinder algorithm with history cost hn = 1 which is the

same value as for the Original Pathfinder, and Coarsened Pathfinder router represents the

Modified Pathfinder algorithm with history cost hn = dn / 1.35. The Xilinx algorithms

were run at an effort level of 5.

The graph demonstrates the tradeoff between the overall runtimes and the quality of the

results achieved by the different combinations of placement and routing algorithms. As in

the earlier graphs, the height of each graph represents the quality of the result decreasing

as we move up. Horizontally, the runtimes increase as we move to the right. Because of

the structure of the graph, any point “dominates” all others that lie above and to the right

of that point. This is because the given point gives equal or better results in equal or

lower runtimes.

One noticeable feature of this graph is that, in combination with any router, the VPR-

based Annealing algorithm always dominates the other placement algorithms. However,

the Force-directed algorithm performs almost as well as Annealer. This illustrates an

interesting point that any trade-off to be made in run-time vs. quality is better made in

route algorithms, while the Annealer algorithm should be used as the placer. This is

primarily due to the fact that for most of our algorithm combinations the routing time

dominates the placement time. Also, consistent with the results for routing algorithms, for

each placement the Original Pathfinder algorithm always gives the best quality mapping

and the Simple Router always gives the fastest solution (when it actually succeeds in

routing).

One more important observation is that the combination of Xilinx Placer and Xilinx

Router performs much better than we observed in the earlier results for individual

placement or routing.

 27

Finally, we can quantify the overall tradeoff between total runtimes and quality for FPGA

CAD tools. For example, when we compare the fastest to the slowest algorithms, we can

achieve a speedup of 8x with a quality loss of just 1.1x in critical path delays. However,

the combinations vary very widely, from speed-ups up to 8x, and up to 4.5x quality

degradation. Also, compared to the Xilinx CAD tool, if we allow 1.15x degradation in

quality, we can achieve 3x speedup in total runtime. Compared against the VPR-based

Annealer, and Original Pathfinder (two of the most successful research CAD tools), we

can achieve a factor of 5x speedup if we allow a factor of 2.5x degradation in quality, and

a factor of 2.2x speedup if we allow 1.8x degradation in quality.

5.4 Effect of FPGA sizes on the algorithms

The results obtained so far assume the user to be resource constrained, in that all the

benchmarks were fitted into the smallest real FPGA possible. However, if the user were

to have no such constraint, the algorithms will have more freedom in dealing with

congestion and hence might result in a better quality of solutions. In order to investigate

this dependence of algorithms on the amount of FPGA resources utilized, we ran a set of

place and route algorithms on three benchmarks for five different FPGA sizes. This set of

algorithms was chosen from the dominant set from the previous section. Hence, they

contain all router combinations with Annealer as the placer, and the combination of

Force-directed placement and Original Pathfinder. The set of FPGAs used correspond to

three real FPGAs, while two of the sizes correspond to hypothetical FPGAs one step

immediately above and below the originally targeted FPGA. Figure 9 illustrates the

results obtained in graph form. The vertical axis of the graph represents the critical path

delays obtained, and the horizontal axis represents the runtimes for placement and

routing. The results were normalized with average values across the algorithms and a

geometric mean of these normalized values are represented in the graph. Each point in

the graph denotes the mean result of all the algorithms used for a particular FPGA size.

The percentages next to these points denote the amount of resources occupied in the

FPGA.

 28

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0.6 1 1.4 1.8 2.2 2.6 3

Total runtime (normalized)

C
rit

ic
al

 p
at

h
de

la
y

(n
or

m
al

iz
ed

)

87%
75%

57%

65%

37%

Figure 9: Effect of Resource Usage on the performance of algorithms.

We did not observe any appreciable deviance in the behavior of individual algorithms as

opposed to the mean behavior that is represented in the graph. While the runtimes of the

algorithms keep increasing with size, which is to be expected with the increase in

available resources, the quality of the solutions keep increasing too. However, for the

lowest size, both the quality and the runtimes are adversely affected due to an increase in

congestion.

Unfortunately, these results indicate that one cannot simply throw more resources at the

problem to increase the performance of the CAD tools – adding more space in the FPGA

slows the runtimes, even though (or perhaps precisely because) the placement and routing

are less constrained. Thus, performance improvements come from algorithm changes, not

the easing of FPGA resource constraints.

6 Conclusions and future work

The results we obtained demonstrate that the CAD algorithms are dispersed widely in the

quality vs. runtimes tradeoff spectrum, from a speedup of 8x to 4.5x quality degradation.

However, compared to the slowest combination of algorithms (Scatter and Original

Pathfinder), the fastest combination (Annealer and Simple Router) produces only 1.2x

degradation in the quality of the solution with 8x speedup in total runtime.

 29

Apart from implementing a variety of placement and routing algorithms, we developed

tradeoff-oriented algorithms for both placement and routing. These algorithms can be

tuned to obtain different tradeoffs by varying a single parameter. This tuning helps in

broadening the applicability of individual algorithms. For example, Force-directed placer

can be tuned to run 9x faster with only 1.3x quality degradation.

Achieving the best results requires varying different algorithms as well as varying the

tuning parameters of these algorithms. Also, for the best results, both place and route

times need to be considered since a faster (but lower quality) placement can slow down

the router. In fact, using Annealing algorithm for placement in combination with other

routers gives the best quality solutions for a given run-time. Thus, the advantages of a

faster, but lower-quality, placement must be balanced against the runtime and quality

degradations this will cause in the router.

In order to take advantage of these opportunities, it is critical to develop methodologies

for automatically choosing the best combination of placer and router, as well as the

correct tuning parameter setting, to get the desired result in the best time. In our future

work we will seek to quantify the tradeoffs involved, and automatically seek the best

combination of CAD algorithms on a problem-by-problem basis. Most importantly, we

will seek to meet requirements on the critical path delay set by the user or the available

resources, while performing placement and routing as quickly as possible.

7 Acknowledgements

We are grateful to Prof. Pak K. Chan at the University of California, Santa Cruz for

letting us use their implementation of Pathfinder algorithm, and for providing us with

some of the benchmarks we used. We thank Prof. Jonathan Rose at the University of

Toronto for providing us with some of the benchmarks we used and the VPR CAD tool.

We are also indebted to Larry McMurchie for helping us understand the Pathfinder

algorithm. This research is funded in part by the National Science Foundation (NSF) and

the Defense Advanced Research Projects Agency (DARPA).

 30

Bibliography

[Betz97] Vaughn Betz and Jonathan Rose, “VPR: A New Packing, Placement

and Routing Tool for FPGA Research”, International Workshop on

Field Programmable Logic and Applications, 1997, pp.213-222.

[Chan00] Pak K. Chan and Martine D.F.Schlag, “New Parallelization and

Convergence Results for NC: A Negotiation-Based FPGA Router”,

ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays, Feb. 2000.

[Cormen97] T. Cormen, C. Leiserson, and R. Rivest, “Introduction to Algorithms,

The MIT Press, Cambridge, Massachusetts, 1997.

[Dunlop85] A.E.Dunlop and B.W.Kernighan, “A Procedure for Placement of

Standard Cell VLSI Circuits”, IEEE Transactions on Computer-Aided

Design, Vol. 4, No. 1, 1985, pp.92-98.

[Fiduccia84] C.M.Fiduccia and R.M.Mattheyses, “A Linear Time Heuristic for

Improving Network Partitions”, Design Automation Conference, May

1984, pp.175-181.

[Hauck96] S. Hauck and A. Agarwal, "Software Technologies for

Reconfigurable Systems" (PDF), Northwestern University, Dept. of

ECE Technical Report, 1996.

[Lam88] J. Lam and J. Delosme, “Performance of a New Annealing Schedule”,

Design Automation Conference, 1988, pp.306 – 311.

[Lee88] K.W. Lee and C. Sechen, “A New Global Router for Row-Based

Layout”, International Conference on Computer-Aided Design, IEEE,

1988, pp.180-183.

[McMurchie95] L.McMurchie and C.Ebeling, “Pathfinder: a negotiation-based

performance-driven router for FPGAs”, Proceedings of 3rd

International ACM/SIGDA Symposium on Field-Programmable Gate

Arrays, Feb. 1995, pp.111-117.

[Quickturn00] http://www.quickturn.com/products/products.htm

 31

[Sankar99] Yaska Sankar and Jonathan Rose, “Trading Quality for Compile

Time: Ultra-Fast Placement for FPGAs”, International ACM/SIGDA

Symposium on Field-Programmable Gate Arrays, Feb. 1999, pp.157-

166.

[Shahookar91] K. Shahookar and P. Mazumder, “VLSI Cell Placement Techniques”,

ACM Computing Surveys, vol.23, No.2, June 1991, pp.143-220.

[Xilinx96] Xilinx, “The Programmable Logic Data Book”, 1996, pp.4.5-4.106.

[Yang91] S.Yang, “Logic Synthesis and Optimization Benchmarks, Version

3.0”, Tech. Report, Microelectronics center of North Carolina, 1991.

[Zhong98] Peixin Zhong, Margaret Martonosi, Pranav Ashar, and Sharad Malik.

“Accelerating Boolean Satisfiability with Configurable Hardware”.

IEEE Symposium on FPGAs for Custom Computing Machines, April.

1998, pp. 186—195.

[Zhu00] Kai Zhu, Yao-Wen Chang, and D. F. Wong, Timing-Driven Routing

for Symmetrical Array-Based FPGAs, ACM Transactions on Design

Automation of Electronic Systems, Vol. 5, No. 3, July 2000, pp. 433-

450.

