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Abstract 

 
Many applications of FPGAs, especially logic emulation and custom 
computing, require the quick placement and routing of circuit designs. In 
these applications, the advantages FPGA-based systems have over software 
simulation are diminished by the long run-times of current CAD software 
used to map the circuit onto FPGAs. To improve the run-time advantage of 
FPGA systems, users may be willing to trade some mapping quality for a 
reduction in CAD tool runtimes. Our work seeks to establish how much 
quality degradation is necessary to achieve a given runtime improvement. 
For this purpose, we implemented and investigated numerous placement 
and routing algorithms for FPGAs. We also developed new tradeoff-
oriented algorithms, where a tuning parameter can be used to control this 
quality vs. runtime tradeoff. We show how different algorithms can achieve 
different points within this tradeoff spectrum, as well as how a single 
algorithm can be tuned to form a curve in the spectrum. We demonstrate 
that the algorithms vary widely in their tradeoffs, with the fastest algorithm 
being 8x faster than the slowest, and the highest quality algorithm being 5x 
better than the least quality algorithm. Compared to the commercial Xilinx 
CAD tools, we can achieve a 3x speed-up by allowing 1.27x degradation in 
quality, and a factor of 1.6x quality improvement with 2x slowdown.  

 

1 Introduction 

Most CAD development efforts have focused on the creation of as efficient a mapping as 

possible for a given computation. The application of complex optimization techniques, for 

the solving of multiple NP-Hard problems, has yielded efficient mapping tools that can 

take hours to produce an implementation. 

For the design of ASIC circuits, producing the highest quality results at the cost of 

significant runtimes is justified by the long fabrication times and large costs. However the 

development of FPGAs, where a new computation can be realized in hardware in 

milliseconds, may require the re-evaluation of this tradeoff. 

For systems that require problem-specific compilation in custom-computing devices, the 

execution involves first creating an FPGA (or multiple FPGA) configuration(s) from a 
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specification for a given problem instance, and then executing the configuration on the 

FPGA hardware. Thus, the CAD tool runtime becomes part of the execution time. The 

longer the CAD tools take to operate, the smaller the advantage that custom-computing 

devices have over software simulators, since simulators typically do not require such 

sophisticated pre-processing. 

In many FPGA-based systems the CAD tool performance can thus be a critical concern. In 

fact, users may be willing to trade some mapping quality (typically measured in critical 

path length and/or device capacity) for a reduction in CAD tool runtimes. For example, 

users may have excess FPGA capacity available to accelerate the mapping process. 

Alternatively, a slowing down of the FPGA execution because of lengthened critical paths 

may be more than balanced by the decrease in CAD runtimes, yielding an overall 

performance increase. However, what is unclear is how much quality must be sacrificed for 

a significant improvement in runtimes. 

What is allowable in tradeoff depends on the applications. For some systems no reduction 

in mapping quality is acceptable (and in fact, for some systems only hand-design yields the 

required mapping quality). For others, larger quality reductions may be justified. 

In our work, therefore, we consider the tradeoff between the runtimes of CAD algorithms 

and the critical path lengths of the resulting mappings. We seek to establish how much 

quality degradation is necessary to achieve a given runtime increase. As part of this process 

we investigate multiple placement and routing algorithms for FPGAs. We also develop 

new tradeoff-oriented physical design tools, where a tuning parameter can be used to 

control this balance. As part of these efforts we show both how different algorithms can 

achieve different points within this tradeoff spectrum, as well as how a single algorithm can 

be broadened in its applicability. 
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2 Background 

2.1 Role of FPGAs 

Traditional computer architectures have a fixed Central Processing Unit (CPU) operating 

on data stored in a memory. Programs determine the sequence of single instructions 

executed by the CPU. This is a disadvantage for algorithms that can be executed in 

parallel. The advent of Field Programmable Gate Arrays (FPGAs) makes possible a faster 

execution of such algorithms. FPGAs have no given processor structure but offer large 

amounts of logic gates, registers, RAM and routing resources. Programs determine only 

the logical structure of the FPGA and not the sequence of execution. Therefore, 

algorithms are not only executed in parallel but also executed using a minimum amount 

of hardware. A single bit operation for instance is mapped on a single logic block of an 

FPGA (a fraction of a percentage of the FPGA size for currently existing architectures) 

instead of using a complete 32bit ALU like in a general-purpose processor. Typically 

thousands of operations can be performed in parallel on an FPGA computer during every 

clock cycle. Though the clock speed of FPGAs (20-100MHz) is lower than that of current 

general-purpose processors (~GHz), the speedup resulting from parallelization can be 

extremely high. In many applications like image processing, data encryption or string 

processing, speedups between 100 and 1000 have been reported. 

Traditionally, applications that required such high performance warranted the 

development and fabrication of an Application-Specific Integrated Circuit (ASIC). 

However, this process consumes precious time, has prohibitive costs for low volume 

production, and the design itself cannot be modified or debugged once the fabrication 

process has started. By utilizing their programmable nature, FPGAs offer a low cost, 

flexible solution over traditional ASICs. Since a single FPGA design may be used for 

many tasks, it can be fabricated in higher volumes, lowering fabrication costs. Also, their 

ability to be reprogrammed allows for easy design modifications and bug fixes without 

the need to construct a new hardware system. FPGAs may be reprogrammed within 

milliseconds for no cost other than the designer’s time, while ASICs require a completely 

new fabrication run lasting a month or two and costing hundreds of thousands of dollars. 
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2.2 FPGA architecture 

 
Figure 1: Typical FPGA Architecture 

 
FPGAs comprise of arrays of configurable elements, the three major configurable 

elements being: configurable logic blocks (CLBs), input/output blocks (IOBs), and 

interconnects. The CLBs provide the functional elements for constructing user's logic. 

The IOBs provide the interface between the package pins and internal signal lines. The 

programmable interconnect resources provide routing paths to connect the inputs and 

outputs of the CLBs and IOBs. Customized configuration is established by programming 

internal static memory cells that determine the logic functions and internal connections 

implemented in the FPGA.  
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Figure 2: Interconnect Architecture 

Figure 2 depicts an FPGA with a two-dimensional array of logic blocks that can be 

interconnected by interconnect wires. All internal connections are composed of metal 

segments with programmable switching points to implement the desired routing. An 

abundance of different routing resources is provided to achieve efficient automated 

routing. Interconnect is of different types, distinguished by the relative lengths of their 

segments: single-length lines, double-length lines and long-lines (as in the case of Xilinx 

XC4000E family of FPGAs) [Xilinx96]. In addition, there can be global buffers that 

drive fast, low-skew nets and are most often used for clocks or global control signals. 

 

Figure 3: CLB Architecture 

The principal CLB elements (in this case, of the Xilinx XC4000E family of FPGAs) are 

shown in Figure 3 [Xilinx96]. Each CLB contains a pair of flip-flops (FFs) and two 

independent 4-input function generators (also called Look-Up Tables or LUTs). These 

LUTs have a good deal of flexibility, as most combinatorial logic functions need less 
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than four inputs. CLBs implement most of the logic in an FPGA. The flexibility and 

symmetry of the CLB architecture facilitates the mapping process of a given application. 

2.3 FPGA-CAD 

 

 

Figure 4: Typical CAD-flow in an FPGA design process 

Typically, a circuit is designed as either a schematic or is described in a high-level 

hardware description language such as VHDL or Verilog. The task of converting this 

design into an implementation on an FPGA is usually subdivided into more manageable 

sub-problems as shown in Figure 4 [Hauck96]. 

The first stage, Synthesis, compiles the high-level design into a netlist of CLBs with the 

goal of minimizing the number of such blocks and/or optimizing the critical path delay. 

This process involves performing logic optimization, then mapping the circuit onto the 

LUTs and FFs used in the FPGA, and finally packing them into the CLBs. 

The next stage in the FPGA-CAD flow is placement, the process of determining what 

physical CLB to assign to each CLB in the netlist, and which IOB to assign to each I/O 

signal. This step attempts to optimize some measure of placement quality, which can be 
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total wiring required, the speed of the critical path, congestion in the routing resources, or 

any combinations of the above measures. 

The final step in the FPGA-CAD flow is routing. Routing is the process of determining 

which programmable switches to turn on to establish the desired connections between 

pins on placed CLBs and IOBs. 

These three stages in the FPGA-CAD process can be executed independent of each other. 

However, poor performance of the algorithms at any stage adversely affects the overall 

quality of the solution and also the runtimes of the stages that follow it. In our work we 

quantified this relationship between the choice of an algorithm at an earlier stage and the 

run-time at the present stage. Since the final two stages in the FPGA-CAD process, 

placement and routing, consume the most amount of time in the process, we devoted our 

work to studies in these two stages.  

2.4 The need for tradeoffs  

Traditionally, applications needed as efficient a mapping as possible for a given 

computation. While this is a must for ASIC design, not all applications for FPGA systems 

have efficient mapping as the primary requirement. In custom-computing systems, the 

FPGA hardware is often used as a form of software accelerator, where designers expect fast 

turnaround from specification to implementation. In some systems the runtimes can even 

become part of the execution time of the system, where slow CAD performance directly 

impacts the utility provided to the user. For example, in logic emulation a circuit under 

development may need to be remapped to the accelerator on a weekly, daily, or even hourly 

basis, as modifications are made to the circuit while it is debugged. The longer the CAD 

tools take to operate, the smaller the advantage the emulation system has over software 

simulation, since simulators typically do not require such sophisticated pre-processing. 

For these kinds of applications, users may even be willing to tradeoff some quality of the 

solution for an improved runtime of the CAD tools. This is proved by the simultaneous 

viability of two commercial emulation tools from Quickturn: the CoBALT and Mercury 

systems [Quickturn00]. While each of these systems are capable of supporting roughly 
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equivalent circuit complexities, and have equivalent system costs, the CoBALT system 

provides more than an order of magnitude reduction in mapping time (days to hours) at the 

cost of 1-2 orders of magnitude increase in system delay (MHz to 100 KHz performance). 

Thereby it is evident that, at least for some applications, users are willing to accept huge 

quality losses for significant CAD runtime improvements. 

In some applications, the slow runtimes of current CAD tools completely eliminate some 

opportunities for FPGA-based systems. For example, there has been much interest in 

problem-specific custom computing for Boolean Satisfiability, where the inherent 

parallelism of FPGAs provides high-performance hardware to finding solutions to arbitrary 

Boolean equations. In [Zhong98] a comparison of software runtimes and total solution time 

using FPGAs for SAT solver circuits reveals that while there is 94.8x speedup that could be 

achieved over software in solving a200_6_0_y1_1 problem, large compilation times using 

a commercial CAD tool resulted in a 781x slowdown for the FPGA based solution. As the 

complexities of target circuits and FPGAs increase, the effectiveness and efficiency of 

these CAD tools become even more important in such applications. Techniques that 

accelerate core CAD algorithms can bring about important changes in product design times 

for these applications.  

Since different applications emphasize different mapping techniques based on their need 

for efficient or fast mapping, a detailed analysis of the tradeoffs involved in choosing 

mapping techniques is required. We therefore seek to establish how much quality 

degradation is necessary to achieve a given runtime increase. As part of this process we 

investigate multiple placement and routing algorithms for FPGAs. 

3 Prior work 

Several works have concentrated on speeding up the FPGA CAD processes. For example, 

VPR [Betz97] fine-tunes the placement parameters of an established algorithm, simulated 

annealing, to give minimal quality loss while speeding up the process. It also presents 

techniques to speed up the Pathfinder algorithm [McMurchie95] used during the routing 

phase. Other works like Ultra Fast Placer [Sankar99] and Parallel Pathfinder [Chan00] have 

dealt with the individual stages in the process. However, not much has been documented so 
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far in the way of overall trade-offs involved in choosing an algorithm for a particular stage 

in the CAD process. 

4 Experimental procedure 

4.1 Setup 

In order to quantify the tradeoff between CAD tool runtimes and the resulting quality, we 

implemented multiple placement and routing algorithms. Our algorithms are targeted to 

the Xilinx XC4000E family of FPGAs. For representing the exact logic and routing 

resources in this FPGA architecture, as well as for the LCA format file input and output, 

we utilized the routines developed at the University of California, Santa Cruz for their 

implementation of parallel pathfinder. These routines were originally developed for the 

XC4000 family of FPGAs. We retargeted them to the XC4000E series of FPGAs 

[Xilinx96]. 

Our results were obtained by running the algorithms on SUN UltraSparc 5 workstations 

with 512 MB of memory. Twelve combinatorial benchmarks were used from the MCNC 

benchmark circuits [Yang91], and range in size from 189 logic blocks to 1020 logic 

blocks. The properties of the benchmarks we used are summarized in the following table. 

 

Benchmark 
FPGA 

Device 

Number 

Of 

Nets 

Number 

of  

CLBs 

k2 4005E 261 189 

misex3 4005E 244 192 

alu4 4005E 276 194 

seq 4008E 629 300 

apex4 4010E 1235 388 

tseng 4013E 1099 542 

ex5p 4013E 1072 570 
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diffeq 4020E 946 751 

dsip 4020E 1093 780 

s298 4025E 1304 1002 

des 4025E 1360 1013 

bigkey 4025E 1501 1020 

 

The algorithms were evaluated based on the comparison of their run-times to the delay of 

the mapped circuit. The critical path delay results were obtained by using Xdelay, which 

is part of the commercial Xilinx CAD tools. 

 

4.2 Placement 

The logic circuit that is to be placed and routed is specified in terms of CLBs, which are the 

basic logic elements that make up the array architecture of the FPGA. Placement is 

essentially assigning a unique position inside the FPGA to each of the circuit’s 

configurable logic blocks.  

We have implemented four different algorithms for placement, and a fifth placer was 

obtained from Xilinx. Our aim was to compare each of these placers in terms of their run-

time vs. quality characteristics. 

As part of this work we have developed runtime-adaptive versions of Simulated Annealing 

and Force-directed placement. In these algorithms, a balance parameter is introduced which 

can apply more or less effort, trading runtimes for resulting quality. These algorithms 

therefore are represented on the run-time vs. quality graph not by a single point, but by a 

set of points corresponding to different values of the tuning parameter. The placement 

algorithms we used are briefly explained below. 

4.2.1 Fiduccia-Mattheyses 

This implementation is based on the Fiduccia-Mattheyses algorithm [Fiduccia84]. The 

FPGA is divided into two halves, and the Fiduccia-Mattheyses algorithm is applied to 

determine which logic blocks go into which half. These two halves of the FPGA are 
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further partitioned into two halves each, and this recursive process is applied on each 

FPGA partition until the partitions become small (contain less than nine CLBs). A greedy 

algorithm then determines the exact placement of the logic blocks corresponding to each 

of the small partitions. During the bipartitioning, the logic blocks in both partitions are 

arranged in a decreasing order of the gain obtained if they were to be moved across the 

partition. This gain is computed using the “Terminal Propagation” technique [Dunlop85], 

which considers nets connected to logic blocks from other partitions as well. Once a logic 

block is moved across the partition, it is locked and the gains are updated for the rest of 

the logic blocks. This process is repeated until there is no further cost improvement.  

 

4.2.2 Force-directed 

This implementation is based on the Force-directed algorithm [Shahookar91]. From an 

initial random placement, each logic block is moved to its “best location”, which is 

determined as the closest available location to the centroid of all the other logic blocks to 

which it is connected. If another logic block already exists at this location, the two logic 

blocks are interchanged. After this move, the logic block in consideration is “locked”, and 

the location is considered unavailable for other logic blocks. Once all the logic blocks are 

locked, they are unlocked and the process is repeated until a terminating condition is met. 

The terminating condition dictates the per-iteration percent change in cost at which the 

algorithm will halt. If this percentage is small, the algorithm will perform significant 

optimization, with a commensurate increase in runtimes. With a large percentage change 

(including only performing a single iteration regardless of change in cost) the algorithm 

will perform a much lower quality optimization, but with much faster runtimes. We 

therefore use the stopping criteria as a tuning parameter for the Force-directed Placement 

algorithm. 

4.2.3 Scatter 

The fastest possible legal placement algorithm would simply randomly scatter the logic 

blocks across the chip area. For circuits that are fairly small, or with very easy 

requirements, such an algorithm might achieve usable results with very fast runtimes. 
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However, if the logic blocks are placed very close together, the resultant congestion will 

affect the route times for the worse. The Scatter algorithm therefore does arbitrary 

placement, but ensures that logic blocks are placed reasonably far apart. 

4.2.4 Simulated annealing  

The simulated annealing implementation is based on the VPR placer [Betz97]. The 

various simulated annealing parameters that define the algorithm are explained below: 

Cost function: This cost function is described by the equation: 

 
 

The summation is over all the nets in the circuit. For each net, bbx and bby denote the 

horizontal and vertical spans of its bounding box respectively. The q(n) factor is a value 

used to compensate for the underestimation of cost when nets have more than 3 

terminals, and is obtained from a lookup table.  

Initial Temperature: Let Nblocks be the total number of CLBs and IOBs in the circuit. 

From an initial random placement, Nblocks random pair wise swaps of CLBs or IOBs are 

performed, and the standard deviation of the cost is computed. The initial temperature is 

set to 20 times this standard deviation. 

Cooling Schedule: The new temperature is computed as Tnew = α Told, where the value of 

α depends on the fraction of attempted moves that were accepted (Raccept) at Told, as 

shown: 

Fraction of moves accepted (Raccept) α 

Raccept > 0.96 0.5 

0.8 < Raccept ≤ 0.96 0.9 

0.15 < Raccept ≤ 0.8 0.95 
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Raccept ≤ 0.15 0.8 

 

Since it is desirable to keep Raccept near 0.44 for as long as possible [Lam88], the 

algorithm uses a range limiter which restricts swaps to blocks that are less than Dlimit  

units apart in either the horizontal or vertical direction. If Raccept were less than 0.44, Dlimit  

would be reduced, thereby forcing moves over a smaller range and hence greater 

acceptance. This Dlimit is updated across temperatures according to: 

Dnew
limit = Dold

limit * ( 1 – 0.44 + Rold
accept )  

and then clamped to 1 ≤ Dlimit ≤ maximum FPGA dimension. 

Final Temperature: The annealing is terminated when the temperature is less than 0.5% 

of the average cost per net. 

Number of moves at each temperature: In the original VPR placer, at each temperature 

10*(Nblocks)
1.33 moves are evaluated. However, the number of moves evaluated at each 

temperature directly controls the amount of time Annealing spends in searching for a 

good solution. Increasing or decreasing this number will directly increase or decrease the 

run-time, and will therefore affect the quality of the solution. Hence we can perform a 

tradeoff between CAD runtimes and resulting quality by using C*(Nblocks)
1.33 moves, 

where increasing C results in higher quality results at the expense of longer runtimes. 

4.2.5 Xilinx placer 

This placement tool is part of the commercially available Xilinx Alliance Software Series 

2.1i for Solaris. The placement is run at different effort levels (1-5), which indicate the 

amount of time the tool spends searching for a better quality solution. An effort level of 1 

indicates that the tool terminates when it finds a low quality placement and an effort level 

of 5 indicates that the tool searches for a high quality placement. 
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4.3 Routing 

While the previous comparisons have considered only placement, the physical design 

process includes both placement and routing. In this section we present a similar 

algorithm development and comparison for FPGA routing. 

All the routing algorithms we implemented represent the architecture of the XC4000E 

series FPGA as a directed resource graph G = (N, E). A node n ∈ N represents a routing 

resource such as a wire or terminal, and an edge e ∈ E represents a switch or a feasible 

connection between two nodes. Each net consists of one Source node, and a set of Sink 

nodes. Routing a signal is essentially assigning routing resources such that all sinks are 

connected to the source.  

We implemented 5 different routers, including the standard commercial router from 

Xilinx. Our aim is to compare each of these routers in terms of their run-time vs. quality 

characteristic. As in the case of placement, some of the routers have tuning parameters 

with which they can be forced to spend more time searching for, and therefore potentially 

arrive at, a better quality solution. The following sub-sections detail the various routing 

algorithms implemented. 

4.3.1 Original Pathfinder 

The original pathfinder algorithm was developed at the University of Washington 

[McMurchie95], and has shown very high quality results. For our work we utilized an 

implementation of this algorithm that was developed at the University of California, 

Santa Cruz [Chan00]. This is a negotiation-based router in which each net negotiates the 

use of shared resources with other nets until none of the resources are shared. Congestion 

costs are assigned to the shared resources and are increased after each iteration, thereby 

forcing some signals to explore alternate routes. The cost of using a node n is given by 

cn = ( dn + hn ) * ( pn + 1 ) 

where dn is the basic delay cost for using the node. The first order congestion term pn, is 

the number of signals that currently share the node. The second order congestion term hn 
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grows monotonically with each iteration in which the node is shared. In order to 

minimize congestion and delay, the actual cost function for using a resource when routing 

a net joining Source ns to Sink tij, is defined as 

Cn = Aijdn + ( 1 – Aij ) cn 

where cn is the cost as defined earlier. The slack ratio Aij is the ratio of the delay of the 

longest path containing the edge (ns, tij) to the maximum delay over all paths. This slack 

ratio becomes 1 if the source-sink pair lies on the critical path, thereby reducing the cost 

to just the delay term. If the source-sink pair lies on a totally non-critical path, the 

congestion term will dominate, resulting in a route that avoids congestion at the expense 

of extra delay. 

4.3.2 Modified Pathfinder 

This version of the Pathfinder algorithm has two modifications over the Original 

Pathfinder, both intended to decrease the run-time of the algorithm. 

The first modification is based on VPR’s router [Betz97]. It aids in routing multi-terminal 

nets more efficiently and has no tradeoff associated with it. The Original Pathfinder 

algorithm uses the maze router to route between a given Source and a Sink. For multi-

terminal nets, this means that the wavefront generated while routing between the source 

and kth sink will be discarded and a whole new wavefront will be generated to route the 

source to the (k+1)th sink. This requires considerable CPU time for high-fanout nets, 

since the partial routing used as the net source will be very large. Instead, in this 

implementation, we just update the wavefront around the newly found path until it 

reaches the same expansion level as the rest of the wavefront, and then proceed to find 

the next sink. Since the path from the existing wavefront to the newly found sink is fairly 

small, it will take little time to add this to the wavefront, and the next sink will be reached 

quicker than if the whole wavefront was to be generated again.  

The second modification provides a decrease in the routing runtime at a small cost in 

quality. During each iteration, the Original Pathfinder algorithm rips up and reroutes all 

the nets so as to eliminate dependencies on the order of the nets. In our implementation, 
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only those nets that are routed through congested resources are ripped up and rerouted. 

This may adversely affect the net delays, but considerably speeds up the algorithm. 

One of the parameters of all versions of Pathfinder, the history cost for a node, indirectly 

influences the run-time of the algorithm. If we raise the per iteration history cost increase, 

the algorithm will more quickly resolve node sharing. While this may increase the 

corresponding net delays, because of the reduced number of iterations, the algorithm 

tends to run faster. Hence, by varying this history cost, we obtain several versions of the 

Modified Pathfinder algorithm that exhibit different run-time vs. quality characteristics.  

We varied this history cost parameter in two different ways. One is by assigning fixed 

values to the history cost, which represents multiplying the standard pathfinder history 

cost by a scaling factor. Different history cost settings were considered across a wide 

range of workable assignments. The second approach was taken to determine if there is 

any dependence of the history cost of a node on its basic delay. Hence, in this approach, 

the history cost of a node equals its basic delay multiplied by a scaling factor. This 

scaling factor was again varied till the algorithm either fails to converge on a solution, or 

fails to route the given placement. 

4.3.3 Xilinx router 

This routing tool is part of the commercially available Xilinx Alliance Software Series 

2.1i for Solaris. The tool is run at different effort levels (1-5), which indicate the amount 

of time the tool spends searching for a better quality solution. An effort level of 1 

indicates that the tool terminates when it finds a low quality routing and an effort level of 

5 indicates that the tool searches for a high quality routing. 

4.3.4 Hierarchical 

This routing algorithm is partly based on the Timing-Driven Router [Zhu00]. Starting 

with the entire FPGA, a cut line is chosen to divide the FPGA into 2 parts. Across the cut 

line there are routing sections that represent routing spaces on the chip. A routing section 

is a group of tracks in a channel with the same segment length. Each net crossing the cut 

line is assigned a cost similar to the pathfinder cost function with congestion considered 
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at a segment level rather than at the track level. At each hierarchical level, the algorithm 

assigns routing sections to the nets crossing the cut line. After finishing routing at this 

hierarchical level, both parts separated by the cut line are independently routed by the 

same method recursively. When the parts become small enough, a simple greedy 

algorithm determines all the tracks in the routing sections that are assigned to each net. 

4.3.5 Simple 

This is a fast router based on the maze running algorithm [Lee88]. Each net is routed 

once, with no rip-up-and-retry or other technique for avoiding congestion. It simply seeks 

the shortest available route from source to destination(s), avoiding resources used by 

previous signals. If the maze runner fails to find any unshared paths from the source to 

the sink, the router declares the placement as unroutable and exits. 

5 Results and analysis 

5.1 Placement 

For our initial comparison all the placement outputs were routed using the Xilinx router 

with effort level set to 5. Figure 5 shows the placement run-times vs. critical path delay 

graph. The results we obtained for each benchmark were normalized to the best value 

across all the algorithms. The graph represents the geometric mean of these normalized 

values for all the benchmarks. If any of the placement results failed to route with the 

Xilinx router, they were placed again with the Xilinx placement tool with the effort level 

set to 5, and the runtimes of both Xilinx router and the Xilinx placement tool were added 

to the corresponding placement runtimes as a failure penalty. 

Figure 5 demonstrates the tradeoff between the runtimes of algorithms and the quality of 

the results achieved. The height of each graph represents the critical path delay achieved, 

with a higher value representing a worse result. Horizontally we move from the fastest 

algorithms (at left) to the slowest (at right). Because of the structure of the graph, any 

point “dominates” all others that lie above and to the right of that point. This is because 

the given point gives equal or better results in equal or lower runtimes. 
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Figure 5: Critical path delays vs. runtimes for placement algorithms. 

While the Scatter and Fiduccia-Mattheyses algorithms are depicted as single points, the 

Xilinx placer, Simulated Annealing, and Force-Directed algorithms are shown as curves. 

This is because the latter algorithms were run a number of times while varying the tuning 

parameter of each algorithm. For the Xilinx placer this tuning parameter was the effort 

level, which was varied from 1 to 5. For Annealing, this tuning parameter was the 

number of moves attempted at each temperature, ranging from 1*(Nblocks)
1.33 to 

20*(Nblocks)
1.33. For the Force-directed algorithm, this tuning parameter was the 

terminating condition. We varied it from <20% cost decrease across iterations to <0.5% 

cost decrease across iterations. Also, we used an ultra-fast version of Force-directed 

algorithm that runs for only a single iteration. 

There are several striking features of these graphs. First is the comparison between the 

Force-directed and Simulated Annealing algorithms. For relatively fast runtimes the 

Force-directed algorithm produces mappings with equivalent critical path delays to the 

Simulated Annealing algorithm. Although the Scatter algorithm runs extremely fast for 

certain benchmarks, it fails to produce a routable design for some large benchmarks. This 

adds a huge failure penalty to the runtimes and thereby brings down the overall 

performance of the Scatter algorithm. Thus, at least for placement runtimes, achieving the 
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best tradeoff between quality and runtimes may require different algorithms at different 

points in the spectrum. 

A second observation is that several of the algorithms simply are not competitive when 

only placement performance is considered. The partitioning-based (FM) placer and most 

effort levels of the Xilinx placer provide significantly worse results than the other 

approaches.  

From this data we can quantify the overall tradeoff between runtimes and quality for 

FPGA placement. For example, when we compare the fastest to the slowest competitive 

algorithms, we can achieve a speedup of 20x with a degradation of a factor of 2.3x in 

critical path delay. Also, compared to the VPR placer, if we allow a factor of 1.34x 

degradation in quality we can achieve 2.5x speedup in placement times, and a factor of 

5.2x speedup if we allow 1.9x degradation in quality. 

 

5.2 Routing 

For all the routers, we used the placement obtained from the VPR-based Annealer. Figure 

6 shows the routing run-times vs. critical path delay graph. Similar to placement, for each 

benchmark the results for each benchmark were normalized to the best value across all 

algorithms and a geometric mean of these normalized values is indicated in the graph.  

While the Original Pathfinder, Hierarchical Router and Simple Router appear as single 

points on the figures, the Xilinx router and Modified Pathfinder are shown as curves. This 

is because the Xilinx router was run with different effort levels (1-5) with effort level 1 

indicating a low quality routing and an effort level 5 indicating a high quality routing. 

The Modified Pathfinder was run a number of times while varying the history congestion 

cost from 0.7 to 5 as a fixed value, and from dn / 2 to 2*dn as a delay dependent value, 

and these two variations are shown as two different curves. 

The graph features some interesting results. Firstly, the Original Pathfinder algorithm 

gives the best quality and the Simple Router runs the fastest. However, the simple router 

fails on some circuits, and thus may not be useable in all situations. In such cases, the 
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placement was rerouted using the Xilinx router with an effort level of 5, and this run-time 

was added to the Simple routers runtime as a failure penalty. 
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Figure 6: Critical path delays vs. runtimes for routing algorithms. 

Secondly, the fact that the Modified Pathfinder curves never give a better quality than the 

Original Pathfinder algorithm suggests that there is a permanent quality loss associated 

with ripping up and re-routing only congested nets instead of all the nets. At values of 

history cost greater than 5, the Modified Pathfinders failed to route the given placement, 

and for values less than 0.7, they failed to converge on a possible route. 

A third observation is that, for lower runtimes, Modified Pathfinder algorithms with delay 

based history congestion costs outperformed those with fixed-value history costs. 

However, at longer runtimes, this situation is exactly reversed, with fixed value history 

cost based algorithms giving better qualities. One more important observation from the 

graph is that the Xilinx Router outperforms certain Pathfinders.  

Finally, we can quantify the overall tradeoff between runtimes and quality for FPGA 

routing. For example, when we compare the fastest to the slowest routing algorithms, we 

can achieve a speedup of 6x with a degradation of a factor of 1.6x in critical path delay. 

Also, compared to Original pathfinder, if we allow 1.25x degradation in quality, we can 

achieve a factor of 2.5x speedup in routing times. 
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However, the runtimes of the routers are dependent on the quality of the placement that is 

input to them. For example, choosing a faster placement algorithm may make the routers 

job harder because of less efficient placement and hence increase the runtimes of the 

router. Quantifying this increase would help us decide on a specific combination of 

placement and routing algorithms for a particular total runtime constraint. 
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Figure 7: Router runtimes for different choices of Placement. 

Figure 7 demonstrates how the routing run-times vary with different choices for 

placement. For each of the routers, the least runtime and best quality was obtained when 

Annealer was used as the placer and least quality and longest runtime was obtained when 

Scatter algorithm was used for placement. The only exception to this is the Hierarchical 

router, which gave comparable results with both Annealer and FM Placer. Also, the effect 

of the placement is much more drastic on the Simple Router compared to the Original 

pathfinder as can be seen from the increased slopes of the curves. This clearly 

demonstrates that tradeoffs in placement will have correspondingly opposite tradeoffs in 

routing. 
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5.3 Overall tradeoffs 

While the previous results demonstrate that trade-offs exist among different placement 

algorithms and routing algorithms, they do not address the critical question of deciding 

which set of algorithms should be chosen for a specified trade-off. In other words, given 

that the user is willing to trade-off some quality for an improved run-time, should a faster 

placement algorithm and a slower route algorithm be chosen, or a slower placement 

algorithm and a faster route algorithm? This choice not only reflects the balancing criteria 

that the overall runtime should be optimized for a given quality level, but also the fact 

that the choice of a faster, but less efficient, placement algorithm may increase the 

runtimes of the router, as it must accommodate a more difficult placement. In other 

words, tradeoffs made in placement or routing individually may not necessarily translate 

into corresponding tradeoffs overall.  
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Figure 8: Critical path delays vs. Total runtimes for combinations of placement and 

routing algorithms. 

We therefore compared all combinations of place and route algorithms mentioned (note 

that the Xilinx Placer was only run with the Xilinx router because we could not read the 

intermediate format). The results are depicted in Figure 8. In this figure, we chose a 
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single representative of the tunable placement and routing algorithms. Hence, Annealer 

represents the VPR-based annealing algorithm with 10 * (Nblocks)
1.33 number of moves at 

each temperature, Force-directed placement represents the Force-directed algorithm with 

<5% cost decrease across iterations as the terminating condition, Modified Pathfinder 

router represents the Modified Pathfinder algorithm with history cost hn = 1 which is the 

same value as for the Original Pathfinder, and Coarsened Pathfinder router represents the 

Modified Pathfinder algorithm with history cost hn = dn / 1.35. The Xilinx algorithms 

were run at an effort level of 5. 

The graph demonstrates the tradeoff between the overall runtimes and the quality of the 

results achieved by the different combinations of placement and routing algorithms. As in 

the earlier graphs, the height of each graph represents the quality of the result decreasing 

as we move up. Horizontally, the runtimes increase as we move to the right. Because of 

the structure of the graph, any point “dominates” all others that lie above and to the right 

of that point. This is because the given point gives equal or better results in equal or 

lower runtimes. 

One noticeable feature of this graph is that, in combination with any router, the VPR-

based Annealing algorithm always dominates the other placement algorithms. However, 

the Force-directed algorithm performs almost as well as Annealer. This illustrates an 

interesting point that any trade-off to be made in run-time vs. quality is better made in 

route algorithms, while the Annealer algorithm should be used as the placer. This is 

primarily due to the fact that for most of our algorithm combinations the routing time 

dominates the placement time. Also, consistent with the results for routing algorithms, for 

each placement the Original Pathfinder algorithm always gives the best quality mapping 

and the Simple Router always gives the fastest solution (when it actually succeeds in 

routing). 

One more important observation is that the combination of Xilinx Placer and Xilinx 

Router performs much better than we observed in the earlier results for individual 

placement or routing.  
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Finally, we can quantify the overall tradeoff between total runtimes and quality for FPGA 

CAD tools. For example, when we compare the fastest to the slowest algorithms, we can 

achieve a speedup of 8x with a quality loss of just 1.1x in critical path delays. However, 

the combinations vary very widely, from speed-ups up to 8x, and up to 4.5x quality 

degradation. Also, compared to the Xilinx CAD tool, if we allow 1.15x degradation in 

quality, we can achieve 3x speedup in total runtime.  Compared against the VPR-based 

Annealer, and Original Pathfinder (two of the most successful research CAD tools), we 

can achieve a factor of 5x speedup if we allow a factor of 2.5x degradation in quality, and 

a factor of 2.2x speedup if we allow 1.8x degradation in quality. 

5.4 Effect of FPGA sizes on the algorithms 

The results obtained so far assume the user to be resource constrained, in that all the 

benchmarks were fitted into the smallest real FPGA possible. However, if the user were 

to have no such constraint, the algorithms will have more freedom in dealing with 

congestion and hence might result in a better quality of solutions. In order to investigate 

this dependence of algorithms on the amount of FPGA resources utilized, we ran a set of 

place and route algorithms on three benchmarks for five different FPGA sizes. This set of 

algorithms was chosen from the dominant set from the previous section. Hence, they 

contain all router combinations with Annealer as the placer, and the combination of 

Force-directed placement and Original Pathfinder. The set of FPGAs used correspond to 

three real FPGAs, while two of the sizes correspond to hypothetical FPGAs one step 

immediately above and below the originally targeted FPGA. Figure 9 illustrates the 

results obtained in graph form. The vertical axis of the graph represents the critical path 

delays obtained, and the horizontal axis represents the runtimes for placement and 

routing. The results were normalized with average values across the algorithms and a 

geometric mean of these normalized values are represented in the graph. Each point in 

the graph denotes the mean result of all the algorithms used for a particular FPGA size. 

The percentages next to these points denote the amount of resources occupied in the 

FPGA.  
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Figure 9: Effect of Resource Usage on the performance of algorithms. 

We did not observe any appreciable deviance in the behavior of individual algorithms as 

opposed to the mean behavior that is represented in the graph. While the runtimes of the 

algorithms keep increasing with size, which is to be expected with the increase in 

available resources, the quality of the solutions keep increasing too. However, for the 

lowest size, both the quality and the runtimes are adversely affected due to an increase in 

congestion. 

Unfortunately, these results indicate that one cannot simply throw more resources at the 

problem to increase the performance of the CAD tools – adding more space in the FPGA 

slows the runtimes, even though (or perhaps precisely because) the placement and routing 

are less constrained. Thus, performance improvements come from algorithm changes, not 

the easing of FPGA resource constraints. 

6 Conclusions and future work 

The results we obtained demonstrate that the CAD algorithms are dispersed widely in the 

quality vs. runtimes tradeoff spectrum, from a speedup of 8x to 4.5x quality degradation. 

However, compared to the slowest combination of algorithms (Scatter and Original 

Pathfinder), the fastest combination (Annealer and Simple Router) produces only 1.2x 

degradation in the quality of the solution with 8x speedup in total runtime. 
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Apart from implementing a variety of placement and routing algorithms, we developed 

tradeoff-oriented algorithms for both placement and routing. These algorithms can be 

tuned to obtain different tradeoffs by varying a single parameter. This tuning helps in 

broadening the applicability of individual algorithms. For example, Force-directed placer 

can be tuned to run 9x faster with only 1.3x quality degradation. 

Achieving the best results requires varying different algorithms as well as varying the 

tuning parameters of these algorithms. Also, for the best results, both place and route 

times need to be considered since a faster (but lower quality) placement can slow down 

the router. In fact, using Annealing algorithm for placement in combination with other 

routers gives the best quality solutions for a given run-time. Thus, the advantages of a 

faster, but lower-quality, placement must be balanced against the runtime and quality 

degradations this will cause in the router. 

In order to take advantage of these opportunities, it is critical to develop methodologies 

for automatically choosing the best combination of placer and router, as well as the 

correct tuning parameter setting, to get the desired result in the best time. In our future 

work we will seek to quantify the tradeoffs involved, and automatically seek the best 

combination of CAD algorithms on a problem-by-problem basis. Most importantly, we 

will seek to meet requirements on the critical path delay set by the user or the available 

resources, while performing placement and routing as quickly as possible. 
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