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Abstract 
To advance datacenter capabilities beyond what commodity server designs can provide, we have 

designed and built a composable, reconfigurable fabric to accelerate large-scale software services. Each 

instantiation of the fabric consists of a 6x8 2-D torus of high-end field programmable gate arrays 

embedded into a half-rack of 48 servers. This reconfigurable fabric was deployed in a bed of 1,632 

servers and FPGAs in a production datacenter and successfully used to accelerate the ranking portion of 

the Bing web search engine by nearly a factor of two. 

1. Introduction 
The rate at which server performance improves has slowed considerably. This slowdown, due largely 

to power limitations, has severe implications for datacenter operators, who have traditionally relied on 

continuous performance and efficiency improvements in servers to make improved services 

economically viable. While specializing servers for specific scale workloads can provide efficiency gains, 

it is problematic for two reasons. First, homogeneity in the datacenter is highly desirable to reduce 

management issues and to provide a consistent platform for applications. Second, datacenter services 

evolve extremely rapidly, making non-programmable hardware features impractical. Thus, datacenter 

providers are faced with a conundrum: they need continued improvements in performance and 

efficiency, but cannot obtain those improvements from general-purpose systems. 

Reconfigurable chips, such as Field Programmable Gate Arrays (FPGAs), offer the potential for 

flexible acceleration of many workloads. However, as of this writing, FPGAs have not been widely 

deployed as compute accelerators in either datacenter infrastructure or in client devices. One challenge 

traditionally associated with FPGAs is the need to fit the accelerated function into the available 

reconfigurable area on one chip. FPGAs can be virtualized using run-time reconfiguration to support 

more functions than could fit into a single device. However, current reconfiguration times for standard 

FPGAs are too slow to make this approach practical. Multiple FPGAs provide scalable area, but cost 

more, consume more power, and are wasteful when unneeded. On the other hand, using a single small 

FPGA per server restricts the workloads that may be accelerated, and may make the associated gains 

too small to justify the cost. 

This paper describes a reconfigurable fabric (that we call Catapult for brevity) designed to balance 

these competing concerns. The Catapult fabric is embedded into each half-rack of 48 servers in the form 

of a small board with a medium-sized FPGA and local DRAM attached to each server. FPGAs are directly 

wired together in a 6x8 two-dimensional torus, allowing services to allocate groups of FPGAs to provide 

the necessary area to implement the desired functionality.  



We evaluate the Catapult fabric by offloading a significant fraction of the Microsoft Bing ranker onto 

groups of eight FPGAs to support each instance of this service. When a server wishes to score (rank) a 

document, it performs the software portion of the scoring, converts the document into a format 

suitable for FPGA evaluation, and then injects the document to its local FPGA. The document is routed 

on the inter-FPGA torus network to the FPGA at the head of the ranking pipeline. After running the 

document through the eight-FPGA pipeline, the computed score is routed back to the requesting server. 

Although we designed the fabric for general-purpose service acceleration, we used web search to drive 

its requirements, due to both the economic importance of search and its size and complexity. We set a 

performance target that would be a significant boost over software—2x throughput in the number of 

documents ranked per second per server, including portions of ranking which are not offloaded to the 

FPGA.  

One of the challenges of maintaining such a fabric in the datacenter is resilience. The fabric must 

stay substantially available in the presence of errors, failing hardware, reboots, and updates to the 

ranking algorithm. FPGAs can potentially corrupt their neighbors or crash their host servers during 

bitstream reconfiguration. We incorporated a failure handling protocol that can reconfigure groups of 

FPGAs or remap services robustly, recover from failures by remapping FPGAs, and report a vector of 

errors to the management software to diagnose problems.  

We tested the reconfigurable fabric, search workload, and failure handling service on a bed of 1,632 

servers equipped with FPGAs. The experiments show that large gains in search throughput and latency 

are achievable using the large-scale reconfigurable fabric. Compared to a pure software 

implementation, the Catapult fabric achieves a 95% improvement in throughput at each ranking server 

with an equivalent latency distribution—or at the same throughput, reduces tail latency by 29%. The 

system is able to run stably for long periods, with a failure handling service quickly reconfiguring the 

fabric upon errors or machine failures. The rest of this paper describes the Catapult architecture and our 

measurements in more detail. 

2. Catapult Hardware 
The acceleration of datacenter services imposes several stringent requirements on the design of a 

large-scale reconfigurable fabric. To succeed in the datacenter environment, an FPGA-based 

reconfigurable fabric must meet the following requirements: (1) preserve server homogeneity to avoid 

complex management of heterogeneous servers, (2) scale to very large workloads that may not fit into a 

single FPGA, (3) avoid consuming too much power, (4) avoid single points of failure, (5) provide positive 

return on investment (ROI), and (6) operate within the space and power confines of existing servers 

without hurting network performance or reliability. 

Integration. There are several ways to integrate FPGAs into the datacenter—they can be clustered 

into FPGA-only racks, or installed into a few specialized servers per rack. Both methods violate 

datacenter homogeneity and are vulnerable to single points of failure, where the failure of a single 

FPGA-enabled rack/server can take down many conventional servers. In addition, communication to 

these specialized servers has the potential to create bottlenecks in the existing network. Instead, this 

work proposes an organization where one FPGA and local DRAM is embedded into each server, 

retaining server homogeneity while keeping communication local between the CPU and the FPGA using 

PCIe. 



Scalability. On its own, integrating only one FPGA per server limits applications to those that can be 

mapped to a single FPGA. To overcome this limitation, a specialized network was built to facilitate FPGA-

to-FPGA communication without impacting the existing network. Figure 1 illustrates how the 48 FPGAs 

are organized at the rack level.  Each server has a single locally attached FPGA, and an inter-FPGA 

network allows services to be logically mapped across multiple FPGAs. A two-dimensional, 6x8 torus 

topology was selected, which balanced routability, resilience, and cabling complexity. Each inter-FPGA 

network link supports 20 Gb/s of bidirectional bandwidth at sub-microsecond latency, and consists only 

of passive copper cables, with no additional networking costs such as NICs or switches. 

FPGA Board Design. Figure 2 shows the FPGA board and the server it installs into [2]. It incorporates 

an Altera Stratix V D5 FPGA [1] that has considerable reconfigurable logic, on-chip memory blocks, and 

DSP units. The 8 GB of DRAM consists of two dual-rank DDR3-1600 ECC SO-DIMMs. The PCIe and inter-

FPGA network traces are routed to a mezzanine connector on the bottom of the board which plugs 

directly into the motherboard. To avoid changes to the server itself, the board was custom-designed to 

fit within a small 10cm x 9cm x 16mm slot occupying the rear of a 1U-1/2 wide server, which only 

offered sufficient power and cooling for a 25W PCIe peripheral. In addition, the FPGA is placed 

downstream of both CPUs’ exhausts, making it challenging to ensure the FPGA does not exceed thermal 

and power limits. 

Resiliency. At datacenter scales, providing resiliency is essential given that hardware failures occur 

frequently, while availability requirements are high. For instance, the fabric must stay available in the 

presence of errors, failing hardware, reboots, and updates to the algorithm. FPGAs can potentially 

corrupt their neighbors or crash the hosting servers if care is not taken during reconfiguration.  Our 

reconfigurable fabric further requires a protocol to reconfigure groups of FPGAs and remap services to 

recover from failures, and to report errors to the management software. 

Total Cost of Ownership. To balance the expected per-server performance gains versus the 

necessary increase in total cost of ownership (TCO), including both increased capital costs and operating 

expenses, aggressive power and cost goals were set to achieve a positive ROI. Given the sensitivity of 

cost numbers on elements such as production servers, exact dollar figures cannot be given; however, 

adding the FPGA card and network cost less than 30% in TCO, including a limit of 10% for total server 

power. 

Datacenter Deployment. To test this architecture on a number of datacenter services at scale, we 

manufactured and deployed the fabric in a production datacenter. The deployment consisted of 34 

populated pods of machines in 17 racks, for a total of 1,632 machines. Each server uses an Intel Xeon 2-

socket EP motherboard, 12-core Sandy Bridge CPUs, 64 GB of DRAM, and two SSDs in addition to four 

HDDs. The machines have a 10 Gb network card connected to a 48-port top-of-rack switch, which in turn 

connects to a set of level-two switches. The daughtercards and cable assemblies were both tested at 

manufacture and again at system integration. At deployment, we discovered that 7 cards (0.4%) had a 

hardware failure, and that one of the 3,264 links (0.03%) in the cable assemblies was defective. Since 

then, over several months of operation, we have seen no additional hardware failures. 

3. Application Case Study 
To drive the requirements of our hardware platform, we ported a significant fraction of Bing’s 

ranking engine onto the Catapult fabric. We programmed the FPGA portion of the ranking engine by 



hand in Verilog, and partitioned it across seven FPGAs plus one spare for redundancy. Thus, the engine 

maps to rings of eight FPGAs on one dimension of the torus. 

Our implementation produces results that are identical to software (even reproducing known 

bugs), with the exception of uncontrollable incompatibilities, such as floating-point rounding artifacts 

caused by out-of-order operations. Although there were opportunities for further FPGA-specific 

optimizations, we decided against implementing them in favor of maintaining consistency with 

software. 

Bing search has a number of stages, many outside the scope of our accelerated ranking service. 

As search queries arrive at the datacenter, they are checked to see if they hit in a front-end cache 

service. If a request misses in the cache, it is routed to a top-level aggregator (TLA) that coordinates the 

processing of the query and aggregates the final result. The TLA sends the same query (through mid-

level aggregators) to a large number of machines performing a selection service that finds documents 

(web pages) that match the query, and narrows them down to a relatively small number per machine. 

Each selected document and its query is sent to a separate machine running the ranking service (the 

portion that we accelerate with FPGAs)  that produces a score for that document-query. The scores and 

document IDs are returned to the TLA that sorts them, generates appropriate captions, and returns the 

results. 

The ranking service is performed as follows. When a document-query pair arrives at a ranking 

service server, the server retrieves the document and its metadata, which together is called a 

metastream, from the local solid-state drive. The document is processed into several sections, creating 

several metastreams. A “hit vector", which describes the locations of query words in each metastream, 

is computed. It consists of a tuple for each word in the metastream that matches a query term. Each 

tuple describes the relative offset from the previous tuple (or start of stream), the matching query term, 

and a number of other properties. 

Many “features”, such as the number of times each query word occurs in the document, are 

then computed. Synthetic features, called free-form expressions (FFEs) are computed by arithmetically 

combining computed features. All the features are sent to a machine-learned model that generates a 

score. That score determines the document’s position in the overall ranked list of documents returned 

to the user. 

We implemented most of the feature computations, all of the free-form expressions, and all of 

the machine-learned model on FPGAs. What remains in software is the SSD lookup, the hit vector 

computation, and a small number of software-computed features. 

3.1 Software Interface 
While the ranking service processes document-queries, transmitting a compressed form of the 

document saves considerable bandwidth. Each encoded document-query request sent to the fabric 

contains three sections: (i) a header with basic request parameters, (ii) the set of software-computed 

features, and (iii) the hit vector of query match locations for each document’s metastreams. 

The header contains a number of necessary additional fields, including the location and length 

of the hit vector as well as the software-computed features, document length, and number of query 

terms. The software-computed features section contains one or more pairs of {feature id, feature value} 



tuples for features which are either not yet implemented on the FPGA, or do not make sense to 

implement in hardware (such as document features which are independent of the query and are stored 

within the document.) 

To save bandwidth, software computed features and hit vector tuples are encoded in three 

different sizes using two, four, or six bytes depending on the query term. These streams and tuples are 

processed by the feature extraction stage to produce the dynamic features. These, combined with the 

precomputed software features, are forwarded to subsequent pipeline stages. 

Due to our DMA interface and given that the latency of Feature Extraction is proportional to 

tuple count, we truncate compressed documents to 64KB. This represents the only deviation of the 

accelerated ranker from the pure software implementation, but the effect on search relevance is 

extremely small. Figure 3 shows a CDF of all document sizes in a 210K doc sample collected from real-

world traces. As shown, nearly all of the compressed documents are under 64KB (only 300 require 

truncation). On average, documents are 6.5KB, with the 99th percentile at 53KB. 

For each request, the pipeline produces a single score (a 4B float) representing how relevant the 

document is to the query. The score travels back up the pipeline through the dedicated network to the 

FPGA that injected the request. A PCIe DMA transfer moves the score, query ID, and performance 

counters back to the host. 

3.2 Macropipeline 
The processing pipeline is divided into macropipeline stages, with the goal of each 

macropipeline stage not exceeding 8μs, and a target frequency of 200MHz per stage. This means that 

each stage has 1,600 FPGA clock cycles or less to complete processing. Figure 4 shows how we allocate 

functions to FPGAs in the eight-node group: one FPGA for feature extraction, two for free-form 

expressions, one for a compression stage that increases the efficiency of the scoring engines, and three 

to hold the machine-learned scoring models. The eighth FPGA is a spare which allows the Service 

Manager to rotate the ring upon a machine failure and keep the ranking pipeline alive. 

3.3 Queue Manager and Model Reload 
So far the pipeline descriptions assumed a single set of features, free form expressions and 

machine-learned scorer. In practice, however, there are many different sets of features, free forms, and 

scorers. We call these different sets models. Different models are selected based on each query, and can 

vary for language (e.g. Spanish, English, Chinese), query type, or for trying out experimental models. 

When a ranking request comes in, it specifies which model should be used to score the query. 

The query and document are forwarded to the head of the processing pipeline and placed in a queue in 

DRAM which contains all queries using that model. The Queue Manager (QM) takes documents from 

each queue and sends them down the processing pipeline. When the queue is empty or when a timeout 

is reached, QM will switch to the next queue. When a new queue (i.e. queries that use a different 

model) is selected, QM sends a Model Reload command down the pipeline, which will cause each stage 

to load the instructions and data needed to evaluate the query with the specified model. 

Model Reload is a relatively expensive operation. In the worst case, it requires all of the 

embedded M20K RAMs to be reloaded with new contents from DRAM. On each board’s D5 FPGA, there 

are 2,014 M20K RAM blocks, each with 20Kb capacity. Using the high-capacity DRAM configuration at 



DDR3-1333 speeds, Model Reload can take up to 250μs. This is an order of magnitude slower than 

processing a single document, so the queue manager’s role in minimizing model reloads among queries 

is crucial to achieving high performance. However, while model reload is slow relative to document 

processing, it is fast relative to FPGA configuration or partial reconfiguration, which ranges from 

milliseconds to seconds for the D5 FPGA. Actual reload times vary both by stage and by model. In 

practice model reload takes much less than 250μs because not all embedded memories in the design 

need to be reloaded, and not all models utilize all of the processing blocks on the FPGAs. 

3.4 Feature Extraction 
The first stage of the scoring acceleration pipeline, Feature Extraction (FE), calculates numeric 

scores for a variety of “features” based on the query and document combination. There are potentially 

thousands of unique features calculated for each document, as each feature calculation produces a 

result for every stream in the request.  Furthermore, some features produce a result per query term as 

well. Our FPGA accelerator offers a significant advantage over software because each of the feature 

extraction engines can run in parallel, working on the same input stream. This is effectively a form of 

Multiple Instruction Single Data (MISD) computation. 

We currently implement 43 unique feature extraction state machines, with up to 4,484 features 

calculated and used by downstream FFE stages in the pipeline. Each state machine reads the stream of 

tuples one at a time and performs a local calculation. For some features that have similar computations, 

a single state machine is responsible for calculating values for multiple features. As an example, the 

NumberOfOccurences feature simply counts up how many times each term in the query appears in each 

stream in the document. At the end of a stream, the state machine outputs all non-zero feature values— 

for NumberOfOccurences, this could be up to the number of terms in the query. 

To support a large collection of state machines working in parallel on the same input data at a 

high clock rate, we organize the blocks into a tree-like hierarchy and replicate the input stream several 

times. Figure 5 shows the logical organization of the FE hierarchy. Input data (the hit-vector) is fed into a 

Stream Processing state machine which produces a series of control and data messages that the various 

feature state machines process. Each state machine processes the stream a rate of 1-2 clock cycles per 

token. When a state machine finishes its computation, it emits one or more feature index and values 

that are fed into the Feature Gathering Network that coalesces the results from the 43 state machines 

into a single output stream for the downstream FFE stages. Inputs to FE are double-buffered to increase 

throughput. 

3.5 Free Form Expressions 
Free Form Expressions (FFEs) are mathematical combinations of the features extracted during 

the Feature Extraction stage. FFEs give developers a way to create hybrid features that are not 

conveniently specified as feature extraction state machines. There are typically thousands of FFEs, 

ranging from very simple (such as adding two features) to large and complex (thousands of operations 

including conditional execution and complex floating point operators such as ln, pow, and fpdiv). FFEs 

vary greatly across different models, so it is impractical to synthesize customized datapaths for each 

expression. 

One potential solution is to tile many off-the-shelf soft processor cores (e.g., Nios II), but these 

single-threaded cores are not efficient at processing thousands of threads with long latency floating 



point operations in the desired amount of time per macropipeline stage (8μs). Instead, we developed a 

custom multicore processor with massive multithreading and long-latency operations in mind. The 

result is the FFE processor shown in Figure 6. As we will describe in more detail, the FFE 

microarchitecture is highly area-efficient, allowing us to instantiate 60 cores on a single D5 FPGA. 

There are three key characteristics of the custom FFE processor that makes it capable of 

executing all of the expressions within the required deadline. First, each core supports 4 simultaneous 

threads that arbitrate for functional units on a cycle-by-cycle basis. While one thread is stalled on a long 

operation such as fpdiv or ln, other threads continue to make progress. All functional units are fully-

pipelined, so any unit can accept a new operation on each cycle. 

Second, rather than fair thread scheduling, threads are statically prioritized using a priority 

encoder. The assembler maps the expressions with the longest expected latency to Thread Slot 0 on all 

cores, then fills in Slot 1 on all cores, and so forth. Once all cores have one thread in each thread slot, 

the remaining threads are appended to the end of previously-mapped threads, starting again at Thread 

Slot 0. 

Third, the longest latency expressions are split across multiple FPGAs. An upstream FFE unit can 

perform part of the computation and produce an intermediate result called a metafeature. These 

metafeatures are sent to the downstream FFEs like any other feature, effectively replacing that part of 

the expressions with a simple feature read. 

Because complex floating point instructions consume a large amount of FPGA area, multiple 

cores (typically 6) are clustered together to share a single complex block. Arbitration for the block is fair 

with round-robin priority. The complex block consists of units for ln, fpdiv, exp, and float-to-int. Pow, 

intdiv, and mod are all translated into multiple instructions by the compiler to eliminate the need for 

expensive, dedicated units. In addition, the complex block contains the feature storage tile (FST). The 

FST is double-buffered, allowing one document to be loaded while another is processed. 

3.6 Document Scoring 
The last stage of the pipeline is a machine learned model evaluator which takes the features and 

free form expressions as inputs and produces single floating-point score. This score is sent back to the 

Search software, and all of the resulting scores for the query are sorted and returned to the user in 

sorted order as the sorted search results. 

4. Evaluation 
We evaluate the Catapult fabric by deploying and measuring the Bing ranking engine described 

in Section 3 on a bed of 1,632 servers with FPGAs, of which 672 run the ranking service.  We compare 

the average and tail latency distributions of Bing’s production-level ranker running with and without 

FPGAs on that bed. Figure 7 illustrates how the FPGA-accelerated ranker substantially reduces the end-

to-end scoring latency relative to software for a range of representative injection rates per server used 

in production. For example, given a target injection rate of 1.0 per server, the FPGA reduces the worst-

case latency by 29% in the 95th percentile distribution. The improvement in FPGA scoring latency 

increases further at higher injection rates, because the variability of software latency increases at higher 

loads (due to contention in the CPU’s memory hierarchy) while the FPGA’s performance remains stable.  



Figure 8 shows the measured improvement in scoring throughput while bounding the latency at 

the 95th percentile distribution. For the points labeled on the x-axis at 1.0 (which represent the 

maximum latency tolerated by Bing at the 95th percentile), the FPGA achieves a 95% gain in scoring 

throughput relative to software. 

Given that FPGAs can be used to improve both latency and throughput, Bing could reap the 

benefits in two ways: (1) for equivalent ranking capacity, fewer servers can be purchased (in the target 

above, by nearly a factor of two), or (2) new capabilities and features can be added to the software 

and/or hardware stack without exceeding the maximum allowed latency. 

5. Related Work 
Many other groups have worked on incorporating FPGAs into CPU systems to accelerate 

workloads in large-scale systems.  

One challenge to developing a hybrid computing system is the integration of server-class CPUs 

with FPGAs. One approach is to plug the FPGA directly onto the native system bus, for example, in 

systems using AMD’s HyperTransport [23, 10], or Intel’s Front Side Bus [18] and QuickPath Interconnect 

(QPI) [15]. While integrating the FPGA directly onto the processor bus would reduce DMA latency, this 

latency is not the bottleneck in our application and would not significantly improve overall performance. 

In addition, attaching the FPGA to QPI would require replacing one CPU with an FPGA, severely 

impacting the overall utility of the server for applications which cannot use the FPGA.  

IBM’s Coherence Attach Processor Interface (CAPI) [26] and Convey’s Hybrid-core Memory 

Interconnect (HCMI) [8] both enable advanced memory sharing with coherence between the FPGA and 

CPU. Since our ranking application only requires simple memory sharing, these mechanisms are not yet 

necessary but may be valuable for future applications.  

Instead of incorporating FPGAs into the server, several groups have created network-attached 

FPGA appliances that operate over Ethernet or Infiniband. The Convey HC-2 [8], Maxeler MPC series 

[21], BeeCube BEE4 [5] and SRC MAPstation [25] are all examples of commercial FPGA acceleration 

appliances. While the appliance model appears to be an easy way to integrate FPGAs into the 

datacenter, it breaks homogeneity and reduces overall datacenter flexibility. In addition, many-to-one 

network communication can result in dropped packets, making the bounds on latencies much harder to 

guarantee. Finally, the appliance creates a single point of failure that can disable many servers, thus 

reducing overall reliability. For these reasons, we distribute FPGAs across all servers.  

Several large systems have also been built with distributed FPGAs, including the Cray XD-1 [9], 

Novo-G [12], and QP [22]. These systems integrate the FPGA with the CPU, but the FPGA-to-FPGA 

communication must be routed through the CPU. Maxwell [4] is the most similar to our design, as it 

directly connects FPGAs in a 2-D torus using InfiniBand cables, although the FPGAs do not implement 

routing logic. These systems are targeted to HPC rather than datacenter workloads, but they show the 

viability of FPGA acceleration in large systems. However, datacenters require greater flexibility within 

tighter cost, power, and failure tolerance constraints than specialized HPC machines, so many of the 

design decisions made for these systems do not apply directly to the Catapult fabric.  

FPGAs have been used to implement and accelerate important datacenter applications such as 

Memcached [17, 6] compression/decompression [14, 19], K-means clustering [11, 13], and web search. 



Pinaka [29] and Vanderbauwhede, et. al [27] used FPGAs to accelerate search, but focused primarily on 

the Selection stage of web search, which selects which documents should be ranked. Our application 

focuses on the Ranking stage, which takes candidate documents chosen in the Selection stage as the 

input.  

The FFE stage is a soft processor core, one of many available for FPGAs, including MicroBlaze 

[28] and Nios II [2]. Unlike other soft cores, FFE is designed to run a large number of threads, interleaved 

on a cycle-by-cycle basis.  

The Shell/Role design is aimed at abstracting away the board-level details from the application 

developer. Several other projects have explored similar directions, including VirtualRC [16], CoRAM [7], 

BORPH [24], and LEAP [1]. 

6. Conclusions 
FPGAs show promise for accelerating many computational tasks, but they have not yet become 

mainstream in commodity systems. Unlike GPUs, FPGAs' traditional applications, such as rapid ASIC 

prototyping and line-rate switching, are unneeded in high-volume client devices and servers. However, 

FPGAs are now powerful computing devices in their own right, suitable for use as fine-grained 

accelerators. This paper described a large-scale reconfigurable fabric intended for accelerating 

datacenter services. Our goal in building the Catapult fabric was to understand what problems must be 

solved to operate FPGAs at scale, and whether significant performance improvements are achievable for 

large-scale production workloads.  

When we first began this investigation, we considered both FPGAs and GPUs as possible 

alternatives. Both classes of devices can support copious parallelism, as both have hundreds to 

thousands of arithmetic units available on each chip. We decided not to incorporate GPUs because the 

current power requirements of high-end GPUs are too high for conventional datacenter servers, but also 

because it was unclear that some latency-sensitive ranking stages (such as feature extraction) would 

map well to GPUs. 

Our study has shown that FPGAs can indeed be used to accelerate large-scale services robustly 

in the datacenter. We have demonstrated that a significant portion of a complex datacenter service can 

be efficiently mapped to FPGAs using a low-latency interconnect to support computations that must 

span multiple FPGAs. Special care must be taken when reconfiguring FPGAs, or rebooting machines, so 

that they do not crash the host server or corrupt their neighbors. We implemented and tested a high-

level protocol for ensuring safety when reconfiguring one or more chips. With this protocol and the 

appropriate fault handling mechanisms, we showed that a medium-scale deployment of FPGAs can 

increase ranking throughput in a production search infrastructure by 95% at comparable latency to a 

software-only solution. The added FPGA compute boards only increased power consumption by 10% 

and did not exceed our 30% limit in the total cost of ownership of an individual server, yielding a 

significant overall improvement in system efficiency.  

We conclude that distributed reconfigurable fabrics are a viable path forward as increases in 

server performance level off, and will be crucial at the end of Moore’s Law for continued cost and 

capability improvements. Reconfigurability is a critical means by which hardware acceleration can keep 

pace with the rapid rate of change in datacenter services.  



A major challenge in the long term is programmability. FPGA development still requires 

extensive hand-coding in RTL and manual tuning. Yet we believe that incorporating domain-specific 

languages such as Scala or OpenCL, FPGA-targeted C-to-gates tools such as AutoESL or Impulse C, and 

libraries of reusable components and design patterns, will be sufficient to permit high-value services to 

be productively targeted to FPGAs for now. Longer term, more integrated development tools will be 

necessary to increase the programmability of these fabrics beyond teams of specialists working with 

large-scale service developers. Within ten to fifteen years, well past the end of Moore’s Law, 

compilation to a combination of hardware and software will be commonplace. Reconfigurable systems, 

such as the Catapult fabric presented here, will be necessary to support these hybrid computation 

models. 
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Figures 
 

 

Figure 1:  The logical mapping of the torus network, and the physical wiring on a pod of 2 x 24 servers 

 



 

Figure 2: (a) A block diagram of the FPGA board. (b) A picture of the manufactured board. (c) A diagram 

of the 1~U, half-width server that hosts the FPGA board. The air flows from the left to the right, leaving 

the FPGA in the exhaust of both CPUs. 

 
 

 
Figure 3: Cumulative distribution of compressed document sizes. Nearly all compressed documents are 

64 kB or less. 

 



 

Figure 4: Mapping of ranking roles to FPGAs on the reconfigurable fabric. 

 



 

Figure 5: The first stage of the ranking pipeline.  A compressed document is streamed into the Stream 
Processing FSM, split into control and data tokens, and issued in parallel to the 43 unique feature state 

machines.  Generated feature and value pairs are collected by the Feature Gathering Network and 
forward on to the next pipeline stage. 

 

 

Figure 6: FFE Placed-and-Routed on FPGA. 

 



 

Figure 7: The FPGA ranker achieves lower average and tail latencies relative to software as the injection 
rate increases. 

 

 

 

Figure 8: The points on the x-axis at 1.0 show the maximum sustained throughputs on both the FPGA 

and software while satisfying Bing's target for latency at the 95th percentile. 

 


