
AUTOMATIC CREATION OF DOMAIN-SPECIFIC RECONFIGURABLE CPLDS FOR SOC 

Mark Holland, Scott Hauck 

Department of Electrical Engineering 
University of Washington 
Seattle, WA 98195, USA 

mholland@ee.washington.edu, hauck@ee.washington.edu

ABSTRACT 

Many System-on-a-Chip devices would benefit from the 
inclusion of reprogrammable logic on the silicon die, as it 
can add general computing ability, provide run-time 
reconfigurability, or even be used for post-fabrication 
modifications. Also, by catering the logic to the SoC 
domain, additional area and delay gains can be achieved 
over current, more general reconfigurable fabrics. This 
paper presents tools that automate the creation of domain-
specific CPLDs for SoC, including an Architecture 
Generator for finding appropriate architectures and a 
Layout Generator for creating efficient layouts. By tailoring 
CPLDs to the domains that they are supporting, we provide 
results that beat representative fixed architectures by 5.6x to 
11.9x on average in terms of area-delay product. 

1. INTRODUCTION 

Reconfigurable logic fills a useful niche between the 
flexibility of a processor and the performance provided by 
custom hardware. This usefulness extends to the System-
on-a-Chip (SoC) realm, where reconfigurable logic can 
provide cost-free upgradeability, coprocessing hardware, 
and uncommitted testing resources. This flexibility, 
however, causes area, delay, and power penalties. As such, 
it would be useful to tailor the reconfigurable logic to a user 
specified domain in order to reduce the unneeded 
flexibility, thereby reducing the performance penalties that 
it suffers. The dilemma then becomes creating domain-
specific reconfigurable fabrics in a short enough time that 
they can be useful to SoC designers. 
 In the Totem project, we are automating the architecture 
generation process in order to reduce the amount of effort 
and time that goes into the process of designing domain-
specific reconfigurable logic. This paper presents the 
creation of domain-specific CPLD architectures, a project 
termed Totem-CPLD. CPLDs are reconfigurable 
architectures that typically use PLAs or PALs connected 
through a central crossbar. Totem-CPLD tailors CPLDs to a 
specific domain by altering the sizes of the functional units 
(PLAs) in terms of inputs, product terms, and outputs. This 

process creates domain-specific CPLD architectures that 
perform significantly better than “typical” CPLDs. 

2. BACKGROUND 

Wilton et al.  have explored the development of 
synthesizable programmable logic cores (PLCs) based on 
PLAs and LUTs [1], [2]. In their process, they develop and 
deliver an HDL description of the PLC to the SoC designer 
to be incorporated into the synthesis flow. Their soft cores 
provide easy integration into existing ASIC flows, but the 
standard cell hardware implementation of their cores will 
cause them to suffer performance penalties. 
 Before Totem-CPLD, we performed work in which we 
explored the feasibility of making domain-specific 
reconfigurable PLAs and PALs [3]. We found that we 
could increase performance by depopulating the AND- and 
OR-planes in the arrays. Depopulating the arrays in a PLA 
is very restrictive to future mappings, however, so we chose 
not to use PLA depopulation in Totem-CPLD. 
 In order to create CPLD architectures, we will be using 
a tool called PLAmap, which is currently the best academic 
technology-mapping algorithm for CPLDs [4]. PLAmap is 
a performance driven mapping algorithm whose goal is to 
minimize the delay/depth of the mapped circuit. It is run by 
providing a PLA size (inputs, product terms, outputs) and a 
circuit (in BLIF format) to be mapped, and it returns the 
number of PLAs required and depth of the mapping, along 
with the mapping itself. 

3. APPROACH – TOOL FLOW 

The tool flow for Totem-CPLD is as follows. To begin the 
process, the SoC designer provides us with a domain 
specification that contains the circuits that need to be 
supported. These circuits are fed into an Architecture 
Generator, which finds a CPLD architecture that provides 
good results for the selected domain, and outputs the 
architecture description and the area-delay product of the 
implementation. The architecture description is then sent to 
a Layout Generator which creates a full VLSI layout of the 
specified CPLD architecture. The layout is then returned to 
the designer as “IP” to be incorporated into the SoC device. 



3.1. Architecture Generator 

The Architecture Generator is responsible for reading in 
circuits and finding a CPLD architecture that supports the 
circuits efficiently. Search algorithms are used to make 
calls to PLAmap, after which the results are analyzed 
according to area and delay models that we have developed. 
The algorithms then make a decision to either make further 
calls to PLAmap, or to exit and use the best CPLD 
architecture that has been found. PLAmap assumes full 
connectivity between the PLAs, and the Architecture 
Generator accommodates this by connecting all the PLAs 
through a full crossbar. 
 PLAs are specified by their number of inputs (IN), 
product terms (PT), and outputs (OUT), so the search space 
for the Architecture Generator is three-dimensional. 
Searching the entire 3-D space is not viable, as PLAmap 
can take on the order of hours for larger circuits, and our 
ultimate goal is to find a suitable CPLD architecture in a 
matter of hours or days. Clearly, minimizing the number of 
PLAmap calls is important to our runtime.  
 In order to gain some intuition about the search space, 
we ran five random LGSynth93 circuits through PLAmap 
and acquired a coarse representation of the 3-D space for 
each circuit. The first thing that we noticed by looking at 
these results was that the three PLA variables are related, as 
can be expected. In general, a ratio of 1 to 2 to .5 for the IN, 
PT, and OUT variables respectively was found to 
consistently provide good results, especially in the area of 
10-20-5 sized PLAs. 
 We also observed that the 3-D search space is generally 
well shaped, meaning that results tend to get better as you 
approach the optimal point.  This observation led us to the 
concept of breaking the 3-D space into three 1-D spaces, 
which can be searched sequentially and in much less time. 
Specifically, our algorithms start by searching for a good 
input size (while keeping a 1x-2x-.5x IN-PT-OUT 
relationship), next search for a good output size, and finish 
by searching for a good product term size. 
 Architectures are evaluated using the metric of area-
delay product. When reported for a domain, the area-delay 
product consists of the worst-case area implementation in 
the domain (since the reconfigurable CPLD must be large 
enough to hold each of the circuits), multiplied by the 
average delay of the domain. The area model for this 
calculation is derived from the actual sizing of the VLSI 
layout components that we created, and the delay model 
was acquired by performing an hspice static timing analysis 
of the components. 
3.1.1. Search Algorithms 
We developed four different Architecture Generation 
algorithms in order to find good CPLD architectures: Hill 
Descent, Successive Refinement, Choose N Regions, and 
Run M Points. All algorithms break up the 3-D search 
space into 1-D steps by searching for good input, output, 
and product term sizes, in that order. Additionally, the input 

step always uses PLAs with a 1x-2x-.5x IN-PT-OUT ratio, 
while the output and product term steps always alter ONLY 
the output and product term values respectively. Each 
variable is explored only in a range that provided 
reasonable results in preliminary testing: inputs between 4 
and 28, product terms between 10 and 90, and outputs 
between 1 and 25. 
3.1.1.1. Hill Descent 
The Hill Descent algorithm starts by running PLAmap on 
architectures with 10-20-5 and 12-24-6 PLAs. Whichever 
result is better, we continue to take results in that direction 
(i.e. smaller or larger PLAs), keeping the 1x-2x-.5x ratio 
intact and performing steps of IN = +/-2. We continue until 
a local optimum is reached, as determined by the first result 
that does not improve upon the last result. We then explore 
the PLAs with IN = +/-1 of the current local optimum. The 
best result is noted, and the input value is permanently 
locked at this value, thus ending the input step. 
 The output optimization step occurs next. The first data 
point in this step is the local optimum from the input step, 
and the second data point is acquired by running PLAmap 
on a PLA with one more output than the current optimum 
(IN and PT do not change). Again, we descend the hill by 
altering OUT by +/-1 until the first result that does not 
improve upon the previous result. At this point we lock the 
output value and proceed to the product term optimization 
step. The product term optimization step repeats the process 
from the previous two steps, varying the PT value by +/-2 
until the descent stops. At this point, the PT values +/-1 of 
the optimum are taken, and the best overall result seen is 
the output of the algorithm. 
 The Hill Descent algorithm has no method for avoiding 
local minima, as any minima will stop the current descent. 
Therefore it is somewhat difficult for this algorithm to find 
architectures that vary much in size from the 10-20-5 PLA 
starting point, but reasonable results are still obtained due to 
the fact that the 10-20-5 starting point is a relatively good 
point in the 3-D search space. 
3.1.1.2. Successive Refinement 
The successive refinement algorithm is intended to slowly 
disregard the most unsuitable PLA architectures, thereby 
ultimately deciding upon a good architecture by process of 
elimination. In the input optimization step (Figure 1), data 
points are initially taken for PLAs with input counts 
ranging from 4 (lower bound) to 28 (upper bound) with a 
step size of 8. So initially, 4-8-2, 12-24-6, 20-40-10, and 
28-56-14 PLAs are run (part a in Figure 1). The left and 
right edges are then examined, regions that do not contain 
local/global minima are trimmed from consideration 
(shaded region of part a), and the bounds are adjusted 
accordingly. The step size is then halved, and the above 
process is repeated (part b). This occurs until we have 
performed an exploration with a step size of 1. 
 For the output optimization step, the IN and PT values 
are locked at the best result found in the input step. The  



C
os

t

4 282012
Input Size

C
os

t

12 282016
Input Size

24

 
Fig. 1.  A step in the input optimization of the Successive 

Refinement algorithm. At each iteration, shaded regions 
are trimmed (keeping the data point at their edge) and the 
step size halved. This continues to a step size of 1. 

output values are varied according to the above refinement 
algorithm, using an initial lower bound of 1, upper bound of 
25, and step size of 8. The recursion again continues until 
the results for a step size of 1 have been taken, at which 
point we lock the IN and OUT values. The product term 
optimization step next repeats this process for PT values 
between 2 and 90 and a step size of 8, after which the best 
result is returned as the best architecture found. 
 The Successive Refinement algorithm does not trim 
sub-optimal regions from the middle, and can therefore 
require more PLAmap runs than is necessary. However, 
several local optima are explored at maximum granularity, 
providing a good survey of the areas around the minima. 
3.1.1.3. Choose N Regions 
The Choose N Regions algorithm makes a wide sweep of 
each 1-D space, and then uses the results to choose N 
regions to explore at a finer granularity. A region consists 
of the space between two data points. 
 Like the Successive Refinement algorithm, the input 
optimization step of the Choose N Regions algorithm is 
initiated by taking data points for PLAs with inputs ranging 
from 4 to 28, but now with a step size of 4. N regions are 
then chosen for further exploration (N=2 was 
experimentally found to be a good value). A region consists 
of a data point on the left side, a data point on the right side, 
and the unexplored space between them. The N best regions 
are the N regions with the best primary result, using the 
secondary result to break ties (see Figure 2). These N 
regions are retained, the step size is halved, and we iterate, 
repeating until we’ve explored with a step size of 1. 
 For the output optimization step, we lock the input and 
product term values from the result found in the input step. 
The output value ranges from 1 to 25, with a step size of 4, 
and the process is repeated. For the product term step, the 
input and output values from the best result are locked, and 
the PT values are ranged from 2 to 90 with a step size of 8. 
After the product term step has completed its step size of 1, 
the best overall result is returned. 
 The Choose N Regions algorithm has the advantage of 
retaining multiple regions of consideration for N>2, and for 
N=2 it fully explores to the left and right of the best 
available point. It also can disregard old minima that get 
replaced by new, better results. 

Co
st

4 282012
Input Size

24168

A

B

C

 
Fig. 2.  Choose N Regions algorithm. Region B is the best, 

because it has the best primary point (along with A) and 
the best secondary point. Region A is 2nd best, region C is 
3rd best. 

3.1.1.4. Run M Points 
The Run M Points algorithm is very similar to the Run N 
Regions algorithm. Each step is set up in the exact same 
manner (limits and step sizes), but the best regions are 
explored differently. Instead of choosing the best N regions 
and exploring deeper, the Run M Points algorithm always 
chooses the best data point and explores around it. It does 
this until it has explored exactly M points for a 1-D step, 
and then it proceeds to the next step. 
 While the Choose N Regions algorithm explores N 
possible optima in parallel (akin to breadth first search), the 
Run M Points algorithm can be seen as exploring the 
optima one at a time (depth first). It will explore the best 
optimum until it runs out of granularity, then will turn to the 
second best optimum, and so on. In this way it also 
considers multiple possible optima, as determined by the 
value chosen for M. Experiments showed that a value of 
M=15 works well for this algorithm. 
3.1.2. Algorithm Add-Ons 
The above algorithms comprise the bulk of the Architecture 
Generator, but some additional routines have been deemed 
necessary in order to obtain more robust results. 
3.1.2.1. Radial Search 
The 3-D search space for this problem is relatively well 
shaped, but there are many local optima that might prevent 
the above algorithms from finding the global optimum. One 
way to look outside of these local optima is to search the 3-
D space within some radius of the current optimum. So for 
a radius R search around an X-Y-Z architecture, we would 
vary IN from X-R to X+R, PT from Y-R to Y+R, and OUT 
from Z-R to Z+R, testing all architectures in this 3-D 
subspace. We chose to run radial searches of R = 3 at the 
end of each basic algorithm in order to look for results that 
our algorithms missed. Because of large run times, 
however, radial searches are more for algorithm evaluation 
than for use in a production system. 
3.1.2.2. Algorithm Iteration 
The Architecture Generator algorithms all assume that the 
PLAs should be in a 1x-2x-.5x relationship in terms of 
inputs, product terms, and outputs. This is just a rough 
guideline, however, and is very rarely the optimal ratio for a 
given domain. Thus, an interesting idea is to run the basic 
algorithms and then look at the resulting PLA to obtain a 



new IN-PT-OUT relationship. A second iteration of the 
algorithm can be run with this new IN-PT-OUT 
relationship, exploring the 3-D search space using a 
relationship that the domain has already been shown to 
prefer. For example, if the first iteration chose a 10-30-8 
architecture, then the IN-PT-OUT relationship for the next 
iteration would be 1x-3x-.8x. A second iteration has been 
carried out for all of the algorithms on each domain. 
3.1.2.3. Small PLA Inflexibility 
The initial step of each algorithm locks the input value at a 
value that it deems to be appropriate by testing a wide range 
of PLA sizes. During the course of algorithm development, 
we found that domains that migrate to small input values 
during the input step (i.e. a 4-8-2 PLA) are left with very 
little flexibility for the corresponding output and product 
term steps. The PLAs become strictly input limited, and 
very few ranges of outputs or product terms will result in 
reasonable results. When this occurs, the final result of the 
algorithm tends to be very poor. 
 To alleviate this, we have added a modification to all of 
the algorithms. Now, if the input step chooses a PLA with 4 
or fewer inputs, the output step will be run both with the 
PLA found in the input step (4-8-2 or smaller) and with a 
10-20-5 PLA. Both of these branches are propagated to the 
product term step, and the best overall result of the two 
branches is taken. We found that this process alleviated the 
problem of being trapped in small PLA sizes, and it 
provided better results in all applicable cases. 

3.2. Layout Generator 

The Layout Generator takes the architectures description 
from the Architecture Generator and turns it into a full 
VLSI layout. It does this by tiling pre-made, highly 
optimized layout cells into a full CPLD layout. The Layout 
Generator runs in Cadence’s layoutPlus environment, and 
uses a SKILL routine that was written by Shawn Phillips 
[5]. The layouts are designed in the TSMC .18µ process. 
 Figure 3 displays a small CPLD that was created using 
the Layout Generator. For clarity’s sake, the encoding logic 
required for programming the RAM bits is not shown, but 
would appear along the left and bottom of the laid out 
CPLD. Pre-made cells exist for every part of the PLA and 
crossbar, as well as the logic used for programming the 
RAM cells. The Layout Generator simply puts together the 
pre-made layout pieces as specified by the architecture 
description that the Architecture Generator provides. The 
PLAs are implemented in pseudo-nMOS in order to provide 
a compact layout at the cost of power dissipation. 

4. METHODOLOGY 

PLAmap restricts us to the use of 2-bounded BLIF format 
circuits.  Many BLIF circuits were obtained from the 

Table 1.  The domains used in our work. 
Domain Circuits Inputs Outputs Gates
Combinational 21 5-178 1-123 8-2350
Sequential 13 4-35 1-23 77-552
Floating Point 12 22-67 22-57 24-9895
Arithmetic 10 28-34 16-33 302-4392
Encryption 6 261-452 132-387 4876-23637

 
Fig. 3.  A small CPLD with eight 7-8-4 PLAs (top and 

bottom) and a crossbar. 

LGSynth93 benchmark suite, but other circuits were 
obtained in HDL formats.  The HDLs were loaded into 
Altera’s Quartus 2 program, which (thanks to a mod 
provided by Altera) is able to dump the designs into a BLIF 
format. SIS was then used to 2-bound the BLIFs. 
 We created five domains of circuits for our major 
testing. The combinational and sequential domains consist 
of files gathered from LGSynth93, and are simply grouped 
for their combinational or sequential characteristics.  The 
remaining three domains consist of floating point, 
arithmetic, and encryption files respectively. These were all 
HDL files, accumulated from OpenCores.org, Altera 
software developers, Quartus 2 megafunctions, and floating 
point libraries. 
 The floating point domain consists floating point 
multipliers, adders, and dividers, as well as an LNS divider, 
an LNS multiplier, LNS and floating point square root 
calculators, and a floating point to fixed-point format 
converter. These files were all obtained from [6] and [7]. 
 The arithmetic domain consists of different multiplier 
and divider implementations, as well as a square root 
calculator and an adder/subtractor. The encryption domain 
consists of the Cast, Crypton05, Magenta, Mars, Rijndael, 
and Twofish encryption algorithms (all without memories), 
competitors from the advanced encryption standard 
competition [8]. Table 1 shows the number of circuits and 
ranges of inputs, outputs, and gates for each domain. 
 The domain-specific CPLD architectures are compared 
to results obtained by implementing the domains in fixed 
CPLD architectures. We have chosen three different fixed 
architectures to which to compare our results, all of which 
will use a full crossbar to connect the PLA units in order to 
conform to our area and delay models. 



 A 1991 analysis of PLA sizing in reprogrammable 
architectures by Kouloheris and El Gamal [9] showed that 
CPLDs should have PLAs with 8-10 inputs, 12-13 product 
terms, and 3-4 outputs. To model this, the first architecture 
to which we will compare uses 10-12-4 PLAs. 
 Secondly, our own initial analysis using several 
LGSynth93 circuits showed that 10-20-5 PLAs tended to 
show good performance. We will use this as our second 
fixed architecture. Third, we will compare against a Xilinx 
CoolRunner-like architecture. The CoolRunner uses 36-48-
16 PLAs, so we will compare our domain-specific results to 
a fixed CPLD architecture that uses 36-48-16 PLAs.  
 Note that we are NOT making a direct comparison to 
Xilinx’s CPLDs or any other existing CPLD architecture. 
By implementing everything using our own physical 
layouts, we intend to remove the designer from the cost 
equation and simply show the advantages obtained by 
making domain-specific architectures. 

5. RESULTS 

The Choose N Regions and Run M Points algorithms both 
have a user-supplied variable. In the Choose N Regions 
algorithm we must choose how many regions get explored 
each iteration, while in the Run M Points algorithm we 
need to determine how many overall PLAmap runs get 
executed in each of the three steps. By running the 
algorithms on simple “dummy” domains compiled from 
LGSynth93, we found that no significant gains are achieved 
above values of N=2 and M=15 for the Choose N Regions 
and Run M Points algorithms respectively. As such, N=2 
and M=15 will be used for all results. 
 Next, we took our five main domains and ran each of 
our algorithms on each domain. Additionally, we mapped 
each domain to the fixed architectures described above. 
These results are shown in Table 2. All area*delay results 
are normalized to the values obtained for the Successive 
Refinement algorithm, and the columns labeled “Runs” 
show how many architectures each algorithm tested for 
each domain. The bottom row shows the geometric mean 
for area*delay, and the average for runs. 
 From Table 2 it is apparent that domain-specific CPLD 
architectures are a win over fixed architectures. For each of 
the five domains that we considered, the algorithms that we 
developed always came up with a better CPLD architecture 
than any of the fixed architectures.  On average, the fixed 
architectures perform 5.1x to 10.9x worse than the domain-
specific architectures found by the Successive Refinement 
algorithm in terms of area*delay. 
 The Successive Refinement, Choose N Regions, and 
Run M Points algorithms tend to choose the same 
architectures. The simple Hill Descent algorithm, however, 
only matched these results for one of the five domains. 
With respect to runtime, the Hill Descent algorithm took 
3.5x to 5.1x fewer runs than the other algorithms.  

 The Successive Refinement, Choose N Regions, and 
Run M Points algorithms all chose 4-8-2 PLAs for the 
floating point and arithmetic domains in the first step, 
causing them to be stuck in small PLA architectures.  The 
“Small PLA Inflexibility” algorithm add-on was applied to 
these instances to remove them from their sub optimal 
areas. This caused a slight increase in the number of runs 
that were needed for these algorithms, most notably in the 
Choose N Regions and Run M Points results. 
 Each base algorithm was also run with the second 
iteration and radial search add-ons described above. Table 3 
displays the best architectures found by the base algorithms 
compared to the best results found using these add-ons. If 
multiple algorithms found the same result, the algorithm 
that used the fewest runs is reported. 
 As Table 3 shows, running a second iteration of the 
algorithms was able to improve the area-delay product by 
up to .11x, with a mean area*delay gain of .04x and a mean 
runtime cost of 2.0x.  The R=3 radial search add-on was 
able to reduce the area-delay product by up to .18x, with a 
.11x mean improvement. The runtime cost for the radius=3 
add-on is about 8.5x when compared to the base algorithms.  
 Table 3 shows that running a second iteration can be as 
effective as running a radial search, and it requires much 
less time. Also note that our base algorithms are performing 
reasonably well, as in all cases they are within .18x of the 
best results we can easily find. 
 Table 3 shows that multiple algorithms provide high 
quality results. Considering the 2nd iteration column, the 
Run M Points algorithm actually matches the Choose N 
Regions algorithm for all but one of the data points (the 
other is only .7% worse) with only a few more runs 
required for each domain.  We have chosen the Run M 
Points algorithm with a 2nd iteration as our best algorithm. 

5.1. Benefits of Domain-Specific Devices 

Table 2 shows that our base algorithms find domain-
specific architectures that outperform representative fixed 
architectures by 5.1x to 10.9x.  Using our best algorithm, 
this rises to 5.6x to 11.9x.  These are not necessarily the 
best fixed architectures for our set of domains, though. In 
fact, we have found the architectures that each domain 
prefers (in Table 3), so it makes sense that these 
architectures might work well as fixed architectures. Table 
4 shows the area-delay performance of each domain 
mapped to the architectures found using our best algorithm.  
Results are normalized to the domain-specific architecture 
results. The new fixed architectures still perform 1.8x to 
2.5x worse than the domain-specific architectures, even 
though we have hand selected them to go well with our 
domains. This shows that even if you pick the best possible 
fixed architecture, there is a bound as to how close you can 
come to domain-specific results – in this case, domain-
specific beats fixed by at least 1.8x. 



Table 2.  Architecture results for domain-specific and fixed architectures. Results are normalized to the Choose N 
Regions algorithm. Geometric mean is used for area-delay results.  

10-12-4 10-20-5 36-48-16
Arch A*D Runs Arch A*D Runs Arch A*D Runs Arch A*D Runs A*D A*D A*D

Combinational 12-25-4 2.16 13 12-71-4 1.00 90 12-71-4 1.00 40 12-70-4 1.01 52 9.52 4.13 9.46
Sequential 14-27-5 1.18 14 14-38-5 1.00 78 14-38-5 1.00 39 14-38-5 1.00 50 2.65 2.34 2.26
Floating Point 9-26-4 4.50 15 10-24-2 1.00 82 10-24-2 1.00 67 10-24-2 1.00 85 13.02 8.04 28.21
Arithmetic 10-22-2 1.00 14 10-22-2 1.00 76 10-22-2 1.00 67 10-22-2 1.00 85 46.71 18.73 46.49
Encryption 10-20-2 1.47 13 16-67-4 1.00 38 10-25-2 1.47 39 10-25-2 1.47 51 3.10 2.33 5.38
Geo. Mean 1.76 13.8 1.00 69.8 1.08 48.7 1.08 62.6 8.62 5.08 10.86

Succ. Refinement Choose N Regions Run M PointsHill DescentDomain
Algorithms Fixed Architectures

 
Table 3.  Best base algorithm results compared to best results after a 2nd iteration and radius=3 search. (HD=Hill 
Descent, SR=Successive Refinement, CN=Choose N Regions, RM=Run M Points). 

Alg Arch A*D Runs Alg Arch A*D Runs Alg Arch A*D Runs
Combinational CN 12-71-4 1.00 40 CN 12-71-4 1.00 60 CN 9-72-4 0.85 377
Sequential CN 14-38-5 1.00 39 CN 14-38-4 0.99 77 CN 14-37-6 0.96 377
Floating Point CN 10-24-2 1.00 67 CN 8-18-2 0.89 105 CN 8-21-2 0.90 307
Arithmetic HD 10-22-2 1.00 14 CN 10-22-2 1.00 87 HD 7-20-2 0.82 250
Encryption SR 16-67-4 1.00 38 SR 15-68-4 0.92 75 SR 15-68-4 0.92 375
G Mean / Avg 1.00 39.6 0.96 80.8 0.89 337.2

Domain Best Base Algorithm Best with 2nd Iteration Best with Rad.=3 Search

Table 4.  Results of running each domain on the best 
domain-specific architectures found. 

Domain Best 12-70-4 14-38-4 8-18-2 10-22-2 8-32-2
Combinational 1.00 1.00 2.74 3.61 4.38 2.83
Sequential 1.00 2.22 1.00 3.61 2.85 4.13
Floating Point 1.00 3.90 4.24 1.00 1.14 1.02
Arithmetic 1.00 6.21 6.80 1.82 1.00 1.80
Encryption 1.00 1.20 1.28 1.01 1.39 1.00
Geo. Mean 1.00 2.30 2.52 1.89 1.82 1.85  

6. CONCLUSION 

We have presented a tool flow for creating domain-specific 
CPLDs for SoC, including an Architecture Generator which 
finds domain-specific CPLD architectures by using any of 
four search algorithms.  Analysis of the different algorithms 
and possible add-ons displayed that the Run M Points 
algorithm with a second iteration is our best algorithm. 
 Using this algorithm, we created domain-specific 
architectures that outperform representative fixed 
architectures by 5.6x to 11.9x in area*delay. Even choosing 
the best fixed architectures available, our domains specific 
architectures were still 1.8x to 2.5x better. 
 This paper also presented a Layout Generator which 
takes pre-made layout units and tiles them to make full 
VLSI CPLD layouts in the TSMC .18µ process. 

7. ACKNOWLEDGEMENTS 

Mike Hutton and Swati Pathak at Altera were essential to 
this work, providing the BLIF dumper for Quartus 2 and 
many useful circuits. Ken Eguro provided the encryption 
circuits, and Steve Wilton provided a vital VQM to BLIF 
converter. Deming Chen provided assistance with PLAmap. 
 Mark Holland was supported by an NSF Fellowship, 
and Scott Hauck by a Sloan Fellowship.  This research was 
supported by a grant from NSF. 

8. REFERENCES 

[1] A. Yan, S. Wilton, “Product Term Embedded Synthesizable 
Logic Cores'', IEEE International Conference on Field-
Programmable Technology, 2003, pp. 162-169. 

[2] N. Kafafi, K. Bozman, S.J.E. Wilton, “Architectures and 
Algorithms for Synthesizable Embedded Programmable 
Logic Cores'', ACM/SIGDA 11th International Symposium 
on Field-Programmable Gate Arrays, 2003, pp. 3-11. 

[3] M. Holland, S. Hauck, “Automatic Creation of 
Reconfigurable PALs/PLAs for SoC”, 14th International 
Conference on Field-Programmable Logic and Applications, 
2004, pp. 536-545. 

[4] D. Chen, J. Cong, M. Ercegovac, Z. Huang, “Performance-
Driven Mapping for CPLD Architectures”, ACM/SIGDA 
9th International Symposium on Field-Programmable Gate 
Arrays, 2001, pp. 39-47. 

[5] S. Phillips, “Automating Layout of Reconfigurable 
Subsystems for Systems-on-a-Chip”, PhD Thesis, University 
of Washington, Dept. of EE, 2004. 

[6] ENS Lyon. A VHDL Library of Parametrisable Floating-
Point and LNS Operators for FPGA. September 4, 2003. 
<http://perso.ens-lyon.fr/jeremie.detrey/FPLibrary/> 

[7] M. Leeser. Variable Precision Floating Point Modules. 
<http://www.ece.neu.edu/groups/rpl/projects/floatingpoint/> 

[8] U.S. Department of Commerce. National Institute of 
Standards and Technology. FIPS PUB 197, Advanced 
Encryption Standard (AES), November 2001. 

[9] J. Kouloheris, A. El Gamal, “FPGA Performance vs. Cell 
Granularity”, IEEE Proceedings of the Custom Integrated 
Circuits Conference, 1991, pp. 6.2/1-6.2/4. 

[10] M. Holland, “Automatic Creation of Product-Term Based 
Reconfigurable Architectures for System-on-a-Chip”, PhD 
Thesis, University of Washington, Dept. of EE, 2005. 


