
ADDING DATAFLOW-DRIVEN EXECUTION CONTROL

TO A COARSE-GRAINED RECONFIGURABLE ARRAY

Robin Panda, Scott Hauck

Dept. of Electrical Engineering

University of Washington

Seattle, WA 98195

email: robin@ee.washington.edu, hauck@ee.washington.edu

ABSTRACT

Coarse Grained Reconfigurable Arrays (CGRAs) are a
promising class of architectures for accelerating
applications using a large number of parallel execution units
for high throughput. While they are typically good at
utilizing many processing elements for a single task with
automatic parallelization, all processing elements are
required to perform in lock step; this makes applications
that involve multiple data streams, multiple tasks, or
unpredictable schedules more difficult to program and use
their resources inefficiently. Other architectures like
Massively Parallel Processor Arrays (MPPAs) are better
suited for these applications and excel at executing
unrelated tasks simultaneously, but the amount of resources
easily utilized for a single task is limited.
 We are developing a new architecture with the multi-
task flexibility of an MPPA and the automatic
parallelization of a CGRA. A key to the flexibility of
MPPAs is the ability for subtasks to execute independently
instead of in lock step with all other subtasks on the array.
In this paper, we develop the special network and control
circuitry to add support for this execution style in a CGRA
with less than 2% area overhead. Additionally, we also
describe the CAD tool modifications and application
developer guidelines for utilizing the resulting hybrid
CGRA/MPPA architecture.

1. INTRODUCTION

Field programmable gate arrays (FPGAs) have long been
used for accelerating compute intensive applications. They
do not have the development and validation difficulty or
other costs of a custom ASIC, but are far faster than a
general purpose CPU for most parallel or pipelined
applications. The FPGA’s programmability comes at a cost,
though. Look up tables (LUTs) must store each output per
input combination in a logical operation. Signals between
operations require large and complex routing switches and
common arithmetic operations are programmed down to

each individual bit instead of a word at a time. These
inefficiencies result in lower speed and higher power
consumption compared to an ASIC implementation.
 Many common calculations involve multi-bit words of
data. If the individual bits share a configuration, this
mitigates some of the inefficiencies of a FPGA. A more
word-oriented FPGA could even use ALUs instead of
LUTs. This further reduces area, power, and delay at the
cost of flexibility in implementing non-datapath logic.
 There are two main ways of designing a word-based
array. Coarse Grained Reconfigurable Arrays (CGRAs)
like MorphoSys [1], ADRES [2], VEAL [3], and Mosaic [4]
have a sea of ALUs connected with an word-based FPGA-
like interconnect. For better hardware usage, multiple
configurations are time-multiplexed; these are generated
using FPGA-like placement and routing like SPR [5] for
automatic parallelization. Massively Parallel Processor
Arrays (MPPAs) like ASAP2 [6] Ambric [7], and RAW [8]
contain independent processors that communicate by
passing messages. Each is programmed individually, with a
traditional instruction set, but using memory local to each
processor and explicit communication over the network

instead of the large shared memory of a multicore CPU.
 The speedup of a completely-parallel algorithm,
according to Amdahl’s law, reduces to the number of
processing elements that are utilized [9]. The FPGA-like
tools and configuration of CGRAs can use the parallelism
and pipelining in the algorithm to map a single task to
several processing elements automatically. However, the
design is completely scheduled at compile time so they are
poor at handling control and require predictability from
their workflow. The traditional processors of MPPAs are
great for control and variable workloads, but the
programmer is required to manually split a computation into
100’s of CPU-sized programs.
 Our aim is to combine the benefits of each architecture
to produce a hybrid with the control and workload
flexibility of MPPAs, but with tasks automatically
parallelized over multiple processing elements like in a
CGRA. One of the key contributors to the flexibility of
MPPAs is that the operation of the otherwise independent
processors is synchronized solely by their communication.
CGRA operation is synchronized implicitly by all Supported by NSF grant #CCF-1116248 and DOE grant #DE-

FG02-08ER64676

processing elements and communication resources
executing to a fixed schedule produced at compile time.
To create the hybrid architecture, an MPPA-like flow
controlled communication was added to the Mosaic
CGRA’s interconnect [10] for little additional area and
energy in [11]. In this paper, we describe the new hardware
and software modifications for the dataflow to actually
control execution in our hybrid CGRA/MPPA architecture.
 This paper is organized as follows: Section 2 describes
the existing architecture classes. Section 3 proposes the
hybrid architecture and discusses some of the requirements
for implementation. Sections 4 and 5 present the new
modifications to a CGRA developed in this research to add
MPPA-like, data controlled, execution. Section 6 discusses
how the data controlled execution is complicated by the
CGRA and how this affects applications and CAD tools.
Finally, section 7 summarizes the best resulting solution.

2. EXISTING ARCHITECTURES

A generalized CGRA is composed of various word-width
functional units, which can include ALUs, shifters, or other
special-purpose processing elements, connected with a
programmable, word-width interconnect. It is often useful
to include some LUTs and single bit communication
channels to form a basic FPGA within the architecture for
control and bitwise logic [10]. All memory is local, like in
an FPGA, with no native coherency mechanisms for shared
memory. Block memories are typically explicitly managed
by the application code, while registers required for timing
and synchronization are managed by the CAD tools as
necessary.
 The configuration, consisting of the functional units’
opcodes and addresses requested from register banks, is sent
to the functional units each cycle. The interconnect is
controlled in a similar manner. Each word entering a
switchbox fans out to multiplexers in all the other
directions. A phase counter cycles through the different
routes in configuration memory, synchronized with the
incoming data, to time-multiplex the interconnect.
 There are two main ways to think about these
configurations. The most straightforward is as a set of
predefined contexts, cycling after each clock cycle to
simulate additional hardware, similar to a word-width
version of a Tabula 3PLD [12]. The other is as an
instruction word for the core of a clustered VLIW, but
without the complex instruction processing components
required for conditional branches. After passing through
the multiplexer, the bus is registered before being driven
across the long wires to the next switchbox. Resources like
the configuration memory, decode, and clock gating are
shared by all the wires in a bus.
 The computing model of CGRAs is promising because
tools such as SPR, can automatically spread a single
computation across a large array of computation units from
only a single program. However, many common styles of
computation run into problems with this model:

• Multiple tasks sharing the hardware share a single static
schedule. Because CGRA tools generally take only a
single computation and spread it across the entire array,
we must combine all tasks into one integrated
computation. Thus, multiple independent tasks (such as
processing on different streaming inputs), or multiple
tasks for a single computation (such as the stages in an
image-processing pipeline) must be combined into one
loop. This is time-consuming, inefficient, and hard to
support. On the other hand, this lockstep operation is
what allows the architecture and CAD tools to be as
efficient as they are.

• They use predication for data-dependent execution.
Individual tasks usually have data-dependent operation,
such as the choices in an IF-THEN-ELSE construct, or
different modes of processing at different times in a
computation (such as the phases in K-Means clustering).
Since a CGRA requires every operation to occur at
exactly the same time and place in each iteration, CGRAs
use predication to handle data-dependent operation. This
means that a large fraction of the issue slots in each
iteration are consumed by operations that are simply
predicated away.

• All schedules run at once must be the same length.
Computation pipelines often have some tasks that are
more complex, and therefore have a longer recurrence
loop that limits their natural computation rate. In a
CGRA, this is the Initiation Interval [13], or “II”. Every
task has a natural II, but a CGRA generally forces all
tasks to use the same II, which is the maximum II of any
task. If communication rates were identical, this is not a
big problem. For computations with long tasks that are
executed sporadically (such as PET [14]), or long tasks
on lower-bandwidth paths in the computation, this
imposes a significant performance penalty on the entire
computation.

In the Massively Parallel Processor Array (MPPA), the
hundreds of ALUs from the CGRA are replaced with small
processors with full branching capability independent of
other functional units. This makes it relatively inexpensive
to handle small control tasks on chip, because predication is
not required. The processors are individually programmed,
often in a traditional language. However, since the
processors and network are no longer executing in a lock-
step manner, this complicates the coordination of the
architecture. The interconnect multiplexers can no longer
select based simply on clock cycle, and all memory blocks
are coupled tightly with an individual processor or have a
dedicated processor to sequence data.
 MPPAs are dynamically synchronized by using
communication channels with flow control between the
processors. This flow control identifies when a valid data
word is on the channel downstream and provides
backpressure upstream. It is straightforward to understand
that processors should stall until they see valid data arrive.
However, if the process transmitting data can transmit faster
than the receiver can receive, signals from full buffers

prevent the sender from sending when the receiver is not
ready. In this manner, the data synchronizes processing
instead of a global program counter.
 While some MPPA architectures such as RAW have
included full dynamic communication routing, RAW
required additional networks to avoid deadlock. More
recent architectures, such as ASAP2 and Ambric, configure
all their routing statically at compile time. Because the
processors themselves are configured at compile time this
does not result in a significant loss in flexibility. In an
architecture with hundreds of processors, some of them can
be programmed by the user to act as soft-routers for the
remaining cases [15].

Fig. 1. Block diagram for running sum on an MPPA

 Because an MPPA has multiple, independent processors
loosely synchronized through communication channels,
they avoid most of the previously mentioned problems with
a CGRA. Each processor can have its own schedule, so
different computations can have different schedule lengths,
and independent tasks do not need to be combined into a
single program. In addition, since the processors have true
program counters, they can use branching for IF-THEN-
ELSE constructs, and looping for supporting different
modes. However, MPPAs have their own challenges:

• MPPAs require the programmer to split computations
into processor-sized chunk manually. CGRAs leverage
their system wide-synchronous behavior to provide tools
that can automatically spread a computation across
numerous processors. Thus, tools like SPR can take a
single task and efficiently spread it across tens to
hundreds of CPUs. MPPAs, with their more loosely
coupled CPUs, do not provide the same functionality or
tools, and instead force the application developer to
write programs for each individual processor in the
system. This is a huge task. For example, in [14],
mapping a simple running sum threshold test to the
Ambric MPPA required manually breaking the short
loop into 8 processors and 4 FIFOs, all manually
specified as shown in Fig. 1. This still took 6 clock
cycles per input where a CGRA only needs one or two.

• MPPAs generally keep most computations and results
local to a single processor. Although there are abundant
resources connecting the individual processors together,
communication between two processors in an MPPA is
still noticeably more expensive than between CGRA
ALUs operating in lockstep. This limits the achievable
pipeline parallelism for a given task; thus many

processors are lightly loaded while the processor with
the most complicated task runs constantly [16].

3. MULTIKERNEL HYBRID

CGRAs prove to be quite good at utilizing many processing
elements for a single kernel of execution. They are
inefficient for control and handling multiple tasks in an
application. MPPAs are great for control and a large
number of tasks and/or applications, but are less efficient
for individual pipelined tasks that are more difficult to
spread across MPPA hardware. Our hybrid breaks a CGRA
into a few regions, called control domains, each executing
different tasks on different schedules, but with each task
still spread over its maximum utilizable area for high
throughput. Broken down in a logical manner, each task is
easier to understand than in its single kernel counterpart and
can be composed by different programmers. Data is only
routed to relevant control domains, so the amount of
hardware wasted by predication is significantly reduced
over the CGRA.
 A CGRA requires architectural and tool modifications to
execute different, yet related tasks simultaneously. Within a
control domain, routing and computation should still
operate according to compiler-determined schedules for
efficiency. Communication between control domains must
be dynamically flow-controlled like in an MPPA and not
scheduled. Details on how resources in a control domain
are used to implement flow-controlled communication
between unrelated control domains are described in [11].
 We assume that the dynamic communication itself is
possible and that there are two bits in the interface; one tells
the sender the receiver is ready to receive and one tells the
receiver that the sender has data. When read data is
required from this network and none is available, or there is
no room to write data when a send is scheduled, control
domains must respond appropriately. In most cases, no
useful computation can be done and the best reaction is to
simply stall and wait for the situation to resolve. In the
remainder of this paper, we develop novel methods to
support stalling individual control domains effectively on an
architecture like Mosaic.

Fig. 2. Control domain communication pattern

 As an example, CGRA regions communicate as shown
in Fig. 2: Control domain A sends data to domains B and C,
and B also sends to C. B cannot work until A provides the
data to it. Similarly, anything executed in C before A and B
have provided appropriate inputs is useless at best and often

results in improper functionality. Therefore, tasks must be
aware of the data dependency.
 The device is configurably split into CGRA regions of
varying sizes for different applications, each of which stalls
independently. While our goals could be accomplished by
designing an array of CGRAs that communicate using
dataflow communication, this would fall prey to resource
fragmentation. Two floorplans from example applications
written in the Multi-Kernel Macah language [17] are shown
in Fig. 3 from [18]; each color is a separate CGRA region.
Within a region, SPR is used to handle data routing and
instruction scheduling and placement just like a normal
CGRA.

 a b

Fig. 3. Floorplans for a: Bayer filter and

b: discrete wavelet transform

 The development of this novel hybrid device gives rise
to a research question that, as far as we know, has not been
addressed before: How do we effectively stall an entire
CGRA region of such a hybrid device? Unlike an MPPA,
which stalls a single processor at a time, we must support
coordinating the stalling of many ALUs simultaneously so
all schedules remain synchronized. To support stalls in a
hybrid CGRA/MPPA, we need to answer the following
open research questions:

1. What is the most efficient mechanism for stalling an
individual processor and its interconnect resources,
without disrupting inter-task communications?

2. How do we coordinate the simultaneous stalling of
multiple processors within the chip, particularly when
the task size and shape is configurable?

3. How do we tolerate the potentially long stall latencies
from when a communication channel initiates a stall to
when the entire task actually does halt operation?

In the rest of this paper, we address each of these open
research questions, developing a novel mix of hardware,
software, and application approaches to provide stall
support for hybrid MPPA/CGRA systems. As such, we

provide an efficient and effective mechanism to aid in
harnessing the best of both computation styles.

4. STALL MECHANISM

The first question our research must answer is how to stall
execution on a single processing element, including a
processor and its associated interconnect resources. For
this, we assume that each end of a dynamic communication
channel has a streaming communication port (black circles

in Fig. 2) to interface with the control domain and buffer
data to or from the channel. Fig. 4, zooms to the top right
corner of control domain C to show a read port on top and a
write port on the bottom.

Fig. 4. Stream port interfaces

 Each read or write port takes a predicate from within the
control domain that indicates whether the kernel actually
wishes to perform the scheduled communication that cycle.
Stalls occur when an active port’s predicate is true, and
there is no data in the buffer for reads, or there is a full
buffer for writes. In these cases, the stream port indicates to
the control domain that it should stall and not proceed to the
next instruction. If any stream port within a control domain
signals a stall, the entire control domain halts at the exact
same place in the schedule. Therefore, we also need a
network to aggregate all stall signals from the ports and
deliver it to the mechanism that stalls the control domain.
 Because the entire state of a clock domain is held in
registers in the interconnect and processing elements, and
the domain’s own memories, disabling the clock appears to
be an excellent way to stall. Handshaking within the
control domain would require each register in the
interconnect to be replaced with FIFOs and complicate
instruction sequencing. By hooking into the clock tree
itself, we support stalls for control domains of various sizes
by stopping the clock on different levels of the clock tree.
Fig. 5 shows a flattened clock distribution tree to four
processing elements, with some stall trigger network
(discussed in section 5) wired into the different levels.
When we activate the stall trigger and it stops the clock on
the lowest level, this halts the clock for a single processing
element. Moving up a level, we stop the clock for two
elements, while if we activate at the highest level, all four
processing elements are frozen. In an actual H-tree
implementation, this stops a two by two region of
processors. While this implementation is convenient, it
restricts control domains to powers-of-two dimensions.

Fig. 5. Triggering stalls using the clock tree

 Unfortunately, we cannot just stop all clocks in a region.
The stream ports and the logic required for buffering and

generating the stall signals within the communication
channel interface itself cannot stall; if they stall, they are not
able to detect the conditions to unstall. Running an
additional ungated global clock tree and keeping it
synchronized with the configurable, gateable control
domain tree is troublesome to implement. Note that the
flow controlled interconnect implementations discussed in
[11] potentially steal registers, multiplexers and drivers
from control domains that are unrelated to the sender and
receiver. These resources should not stall when the
unrelated domain stalls and so now we need a
programmable clock select to choose between gated and
free running clocks. With all of the duplication of clock
gating and clock trees, this will be an expensive proposition.
Using the models, benchmarks, and architecture from and
assuming our original clock tree was as in, [19], this would
result in an increase in area by 1.6% and used as much as
11% of the total execution energy if we never actually have
to stall.
 The other solution is to use the time multiplexing
capability to generate no-ops for all functional units and
routes. In the Mosaic CGRA, the interconnect contains
feedback paths that automatically sustain a value and gate
the clocks in the corresponding pipelining registers for
reducing activity (and power) when a bus is unused.
Similarly, there are configuration bits specifically for
enabling the clocking of the registers within the functional
units themselves [10] for temporary storage. Therefore, a
configuration already exists that freezes all register data,
disables memory writes and disables the stream ports,
everything we need for a stall.
 As previously mentioned, each processing element has a
counter that cycles through all of the time-multiplexed
configurations. We hijack these during a stall to select our
own special stall configuration that was not part of the
regular schedule; we could freeze the control domain
without directly interfacing with all the components like in
the configurable clock gating. The stall signal only has to
control some logic associated with the phase counters.
When creating this configuration at compile time, any
resources that operate disregarding stalls simply receive the
same configuration they have for every other phase so they
execute normally while stalled.
 To build this mechanism, we need stall signaling to
freeze the counters at the existing value so execution can
resume from the right instruction after the stall. They then
output a special phase number (a reserved phase ID of all
1’s) to select our stall configuration from the existing
configuration memories as shown by the black
configuration on the components in Fig. 6. This
configuration gates the relevant clocks for each individual
register, without adding new, configurable clock trees, so it
is more energy efficient than the clock gating methodology.
There are at most a few counters per processing element.

Therefore, the main modification is practically free in terms
of logic area, compared to building a stall network and
configurable clock tree. However, configuration memory is

not a trivial resource. Assuming the architecture in [4]
supports a maximum II of 8, the total area overhead is
0.86% and it could increase our full-chip energy by a
maximum of 3.7% (stalling once per II). However, we
would hope a well-developed application stalls rarely, so
this is our preferred stall mechanism because it uses only
52% of the area and 33% of the energy of the clock gating
method.

Fig. 6. Phase counter stalling (clock & data not shown)

5. TRIGGER NETWORK

As discussed in the previous section, we can stall an
individual processor in the system efficiently via our no-op
generation technique. Now we must develop a mechanism
to coordinate the stall of an entire region simultaneously.
We need a network to combine the stall signals from all
stream ports in a control domain, and deliver them to all the
phase counters and stream ports at the same time so that the
control domain remains synchronized.
 The stall trigger network faces several challenges:

• Since an individual CGRA region may be large, we
cannot expect the stall signal to reach every processor in
one clock cycle, but must instead pipeline the stall signal
so that it occurs at the correct time.

• Multiple stall sources exist, one for each read and write
port for this task.

• Since region size and shape is configurable, the stall
trigger network must be configurable.

• Stall latency can be a major performance limiter, so
stalls should happen as quickly as possible. Specifically,
small tasks should not be forced to have as long a stall
latency as larger tasks.

Fig. 7. Single control domain

 To demonstrate the impact of multiple stall sources,
consider the zoomed in view of a single control domain
shown in Fig. 7. Coordinates for the 12 processors have
been labeled across the top and left side. While a dedicated
stall network could be faster, assume it takes one clock
cycle for a trigger to get from one processor to its
neighbors, like regular data. If the stream port at A2 has no

data and tries to read, the stall controller at A2 is aware of
the need to stall before the controller at D0 and waits for the
stall signal to propagate to D0 before stalling. This ensures
all processing elements stall simultaneously. This delay can
be configured and coordinated in a couple ways.
 In this paper, we present two new mechanisms we have
developed for stall triggering. First, we can have a peer-to-
peer mechanism, where nearest-neighbor communication is
used to distribute out the stall signal, something like the
ripples on a pond. The second mechanism chooses one of
the processor’s stall controllers as master, which reduces the
amount of communication needed, and thus reduces power.

Fig. 8. Peer-to-peer stall trigger propagation

 One way to send stall signals is to determine the latency

dynamically and communicate this value along with the
trigger. Fig. 8 shows the earliest stall for each processor in
our control domain for a stall triggered at a port in A2 in 6
time snapshots from left to right, and top to bottom. A2 has
a stall latency of 6 so it is configured to wait 5 cycles for
stalls it triggers, as shown in the upper left. It sends the
trigger to B2 telling B2 to wait 4 cycles then both count
down. B2 then tells C2 to wait 3 cycles. This proceeds
through D2 and D1 similarly, reaching 0 cycles upon
arriving at D0. At this time, all processing elements are at 0
and begin the stall.

Fig. 9. Stall vector handling. ℗ represents a program bit

 While the nearest-neighbor countdown is simple to
understand, we must handle stalls from multiple sources and
their associated un-stalls also. To handle this general case,
we use a bit-vector. An example for D1, in the 5th snapshot
above, is shown in Fig. 9. Instead of counting down, this
bit-vector is shifted to the right and the processor stalls if
the LSB in the stored value is a 1. Assume our stalls are
only to take 1 cycle. D1 receives 000010, representing
stall-in-1 and unstall-in-2, from the west and south (C1 and
D2). If a port in D0 begins to initiate a stall at the same
time, it sends 100000, representing stall-in-5 (from the
north). D1 ANDs these with programming bits that indicate

which neighbors are in the same control domain so that the
data from the East is ignored. The results all get ORed with
the previously stored value shifted and the locally generated
stall signal (which has its latency programmed by the
mask). Here, D1 stores 100010 for this pattern and sends
that to its neighbors. If the LSB is a 1, the processor stalls;
so in this case, it stalls on the following cycle.
 A less expensive way is to designate one controller as
the master when configuring the array. This central
controller should be centrally located for minimum latency,
such as C1 in our example. Single bit stall triggers pass
through neighboring processors in a pattern configured at
compile time, are ORed together, and sent to the next
processor on the way to C1. C1 sends the coordinated stall
back out in the opposite of the incoming pattern on a single
bit return network. Because this path is known, each
processor simply waits a configured amount of time before
stalling or unstalling. This is similar to the bitmapped peer-
to-peer method, but bitmaps are computed within each stall
controller; the communication is serial.
 All trigger controllers are statically configured to delay a
fixed amount because the final trigger always propagates
along the same path. Since C1 has the first controller to
know about any stalls, it always waits 3 cycles for the
remainder of the trigger propagation. One cycle later, B1,
C0, C2 and D1 are notified and wait 2 cycles. On the next
cycle, the remainder, except for A0 and A2, are notified and
wait 1 cycle for the final two controllers to be notified. If
the initial trigger came from A2, this propagation is A2 >
B2 > C2 > C1 > C2 > B2 > A2 for 6 cycles of latency from
this network.
 The stall networks use different amounts of resources.
The bitmapped peer-to-peer stall trigger controller requires
a number of communication bits equal to the maximum
supported stall latency, to each neighboring controller. The
centralized network only requires one bit in each direction.
Using the models from [11], we calculated the percent
increase in full-chip area from adding these networks for a
maximum supported latency of 9 cycles. The central
network has a full-chip area overhead of only 0.75% while
the peer-to-peer network increased area by 2.20%. The
internal logic is quite similar; the main difference is the long
wires and large drivers between neighboring processors so
the peer-to-peer method could have up to 4.5X the energy
overhead of the central network.

6. LATENCY TOLERANCE

The new mechanisms for stalling individual processors, and
coordinating the stalling of an entire CGRA region within a
hybrid device, cope with regions of very different sizes and
shapes. Each has a latency between detecting the need for a
stall and the individual processors actually halting execution
that must be tolerated somehow. Execution must be
stopped before data loss occurs. If we attempt a send or
receive and the resulting stall can only happen some number
of cycles in the future, the stall signal must be triggered

new�..� � mask ∗ port	stall

clock	gate � 	 stored�

to	neighbors � stored

stored��� � N�N℗ � E�E℗ �

																								W�W℗ � S�S℗ 	�

																								new� � stored�

before the read or write actually fails. In this section, we
will explore what happens within the stream ports to handle
this latency and what this means to the CAD tools like SPR
and the application developer.
 A send FIFO with infinite capacity never needs to stall
because data cannot be lost. With a more realistic buffer,
we must stall before the buffer is full. To accommodate a
stall latency of L clock cycles, the stall signal must be
triggered L cycles before the buffer becomes full. This
requires a prediction of the FIFO state L cycles from now.
If the current number of words available in the FIFO is C,
then the lower bound on the FIFO status L cycles from now,
with no other information, is C - L. If C – L <= 0. In this
situation, the FIFO could fill within L cycles so the stream
port triggers a stall in advance, to be safe. This is
straightforward to do; we simply add the logic shown in
Fig. 10 a. While this prediction is acceptable for low values
of L, it forces L words of memory to be empty at all times,
except possibly during a stall.

 a b c

Fig. 10. Latency offset calculators for, a: latency only,

b: CAD estimate, and c: precheck methods

 A more accurate prediction is more efficient for larger
control domains with high latencies. It is unlikely for a
send to occur every clock cycle. To execute a send, the
kernel sends the data value to the port including a predicate
bit that specifies the input should be sent. The CAD tool
schedules these operations. Therefore, it can count the
possible sends per II. This ratio is used to determine the
maximum number of sends that could occur in L cycles for
this particular stream port in this specific program, which is
programmed into the stream port as shown in Fig. 10 b.
 However, some of these sends are predicated away,
wasting a spot in the FIFO. Utilizing the entire FIFO is
preferable for overall area and energy efficiency, but
requires an actual count of the pending sends and not just an
upper bound. Fig. 11 shows the schedule on the right for
the pseudocode on the left. The CAD tools can deliver the
send predicate to the stream port L cycles (2 in the example)
in advance as a pre-send check. When the stream port
receives this pre-check, it increments a counter to account
for the pending send (Fig. 10 c). When the send actually
occurs (predicate is true), the counter decrements. In this
way, the counter always knows how many spaces must be
available in the FIFO for the sends that will actually be
done in the next L cycles.
 This is usually easy for the CAD tools. If the predicate
is not available until the same time as the data, CAD tools
must use programmable registers or memory to delay the
data for L cycles until it is appropriate to deliver to the
stream port. In the worst-case for sends, this uses only as

much extra storage as would have been wasted with the
“sends per II” estimate. Modulo Scheduling such as that in
SPR can generally hide this latency since the actual stream
writes should not be in a loop carry dependency.

Fig. 11. An early buffer check for the code on the left

 At first glance, a receive is the exact opposite of a send.
The kernel requests data from a FIFO with a predicate and
then uses the data present on the interface from the stream
port to compute. Instead of consuming a memory location
and creating data like in a send, it creates a newly empty
memory location and consumes data. However, there is a
crucial difference. To guarantee operation when sending,
we ensure that the FIFO is sufficiently empty; it is quite
easy to over-provision the FIFO. For receives, the
equivalent is to use our precheck to ensure that the FIFO is
sufficiently full, but there is no way to overprovision a
FIFO to have extra data.
 Receives classify into three different styles of
communication, each with a somewhat different method of
tolerating the stall latency:
1. High-bandwidth communication: The common case is a

high rate send, like sending image sequences for
processing. In this case, we can require a buffer to have
enough data present to equal the estimate of reads in the
stall latency. Although there is a short initial delay to fill
the buffer, these transfers work the same way as sends
after that. The end of the stream can be padded to allow
the computation to finish.

2. Unpredictable low-bandwidth communication
(interrupts): It makes no sense to stall when there is no
input because continued operation is desired. The
programmer should utilize a non-blocking type of read
that never stalls the machine to poll these inputs and

handle the presence or lack of data within their code.
3. Regularly scheduled, low-bandwidth communications:

An example of this is a stream that sends a decryption
key to a decryption kernel, which uses it to process a
regular high-rate stream. These often have dependency
cycles (explicit in the coding, or implicit due to
hardware limitations) that are exacerbated by our latency
needs and suffers deadlock if not handled properly.

Styles 1 and 2 are easily supported; style 3 causes problems.
In Fig. 2, A, B and C can form this troublesome network. A
does some basic processing and passes some of the results
to B, and the remainder to C. B takes its data and uses it to
recover a decryption key, which it sends to C to begin
decrypting the data from A. If the stall latency of C is 10
cycles, the basic estimation method requires 10 keys in the
buffer before execution can proceed. A sends data to C
until its buffer fills, while C is stalled waiting for 9 more

if (A>0){

 temp = A + B

 temp2 = temp * 4

 send temp2}

Cycle ALU Inst Port Action

0 A > 0?

1 + check

2 *

3 send

keys. This stalls A so no more data is sent to B, which stalls
due to a lack of data, and no new keys will be made. Notice
that the channels’ backpressure has formed a cycle to cause
deadlock though no such cycle appears in Fig. 2.
 The CAD tools will always estimate at least one read
per II because that is the extent of the schedule. This means
that the amount of buffering required is only reduced by a
factor of II. This could still be too high to allow for proper
operation. Therefore, the best way to handle this is by
having the CAD tools route an early copy of the read
predicate as a “precheck” to only check for input when it
will be necessary soon as shown in Fig. 10 c. This will
eliminate deadlocks that could be caused by the stall
latency, though it may result in a few wasted clock cycles.
Adding these is inexpensive, with an area overhead of only
0.025%.

7. CONCLUSIONS

A hybrid CGRA/MPPA system combines the automatic
parallelization and compilation support of CGRAs, with the
multi-task support of MPPAs, to deliver high performance
and low power implementations of streaming computations.
This requires the ability to stall a configurably sized region
of statically-scheduled processors simultaneously, so that
they can remain in lockstep, yet stay synchronized with
unpredictable external dataflow and events. To solve this
problem we split the problem into three components: How
do we stall one processor without disrupting inter-task
communication? How do we coordinate the simultaneous
stalling of multiple processors in the chip? How do we
tolerate the resulting long stall latencies?
 Stalling individual processors using traditional clock
gating methods would increase our area by 1.6% and
increase energy use by 11%. We developed a mechanism
that adds only 0.86% area and only increases energy by
3.7% at most. This mechanism uses the existing
configurability in the CGRA with only small changes to the
phase counter and an additional configuration. Stall
coordination must handle stall and unstall inputs from
multiple stream ports everywhere in the control domain to
trigger simultaneously. By pre-programming these routes
and stall latencies, coordination only requires two new
single-bit signals. The resulting coordination hardware only
adds 0.75% area to the architecture.
 Finally, we developed mechanisms and strategies to
handle potentially long stall delays. Modifications to SPR
during scheduling allow cheap hardware stall predictors
(0.025% full-chip area) to start the stall triggers early
enough to ensure proper operation and efficient storage
usage. In most cases, the latency is completely hidden to
the application. Combined, these techniques provide a
simple but effective mechanism for stalling arbitrarily sized
CGRA regions within an overall MPPA system with
hardware overhead of only 1.6%.

8. REFERENCES

[1] H. Singh, M.-H. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh and E. Chaves
Filho, "MorphoSys: An Integrated Reconfigurable System for Data-Parallel
and Computation-Intensive Applications," Computers, IEEE Transactions
on, vol. 49, no. 5, pp. 465 -481, May 2000.

[2] B. Mei, S. Vernalde, D. Verkest, H. De Man and R. Lauwereins, "ADRES:
An Architecture with Tightly Coupled VLIW Processor and Coarse-
Grained Reconfigurable Matrix," in Field Programmable Logic and
Applications (FPL), 2010 International Conference on, 2003.

[3] N. Clark, A. Hormati and S. Mahlke, "VEAL: Virtualized Execution
Accelerator for Loops," in ISCA '08: Proceedings of the 35th International
Symposium on Computer Architecture, Washington, DC, USA, 2008.

[4] B. Van Essen, R. Panda, A. Wood, C. Ebeling and S. Hauck, "Managing
Short-Lived and Long-Lived Values in Coarse-Grained Reconfigurable
Arrays," in Field Programmable Logic and Applications (FPL), 2010
International Conference on, 2010.

[5] S. Friedman, A. Carroll, B. Van Essen, B. Ylvisaker, C. Ebeling and S.
Hauck, "SPR: An Architecture-Adaptive CGRA Mapping Tool," in FPGA
'09: Proceeding of the ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, New York, NY, USA, 2009.

[6] D. Truong, W. Cheng, T. Mohsenin, Z. Yu, A. Jacobson, G. Landge, M.
Meeuwsen, C. Watnik, A. Tran, Z. Xiao, E. Work, J. Webb, P. Mejia and B.
Baas, "A 167-Processor Computational Platform in 65 nm CMOS," Solid-
State Circuits, IEEE Journal of, vol. 44, no. 4, pp. 1130 -1144, April 2009.

[7] Ambric, Inc, Am2000 Family Architecture Reference, 2008.

[8] M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H.
Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N.
Shnidman, V. Strumpen, M. Frank, S. Amarasinghe and A. Agarwal, "The
Raw Microprocessor: A Computational Fabric for Software Circuits and
General-Purpose Programs," Micro, IEEE, vol. 22, no. 2, pp. 25 - 35,
Mar/Apr 2002.

[9] M. Hill and M. Marty, "Amdahl's Law in the Multicore Era," Computer,
vol. 41, no. 7, pp. 33 -38, July 2008.

[10] B. Van Essen, A. Wood, A. Carroll, S. Friedman, R. Panda, B. Ylvisaker, C.
Ebeling and S. Hauck, "Static versus scheduled interconnect in Coarse-
Grained Reconfigurable Arrays," in Field Programmable Logic and
Applications, 2009. FPL 2009. International Conference on, 2009.

[11] R. Panda and S. Hauck, "Dynamic Communication in a Coarse Grained
Reconfigurable Array," in Field-Programmable Custom Computing
Machines (FCCM), 2011 IEEE 19th Annual International Symposium on,
2011.

[12] T. R. Halfhill, "Tabula's Time Machine," Microprocessor Report, Mar. 29
2010.

[13] B. Ramakrishna Rau, "Iterative Modulo Scheduling: An Algorithm for
Software Pipelining Loops," in In Proceedings of the 27th Annual
International Symposium on Microarchitecture, 1994.

[14] M. Haselman, N. Johnson-Williams, C. Jerde, M. Kim, S. Hauck, T.
Lewellen and R. Miyaoka, "FPGA vs. MPPA for Positron Emission
Tomography pulse processing," in Field-Programmable Technology, 2009.
(FPT 2009) International Conference on, 2009.

[15] R. Panda, J. Xu and S. Hauck, "Software Managed Distributed Memories
in MPPAs," in Field Programmable Logic and Applications (FPL), 2010
International Conference on, 2010.

[16] Z. Yu and B. Baas, "A Low-Area Multi-Link Interconnect Architecture for
GALS Chip Multiprocessors," Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 18, no. 5, pp. 750 -762, May 2010.

[17] A. Knight, "Multi-Kernel Macah Support and Applications," M.S. thesis,
Dept. Elect. Eng., University of Washington, Seattle, 2010.

[18] A. Wood, B. Ylvisaker, A. Knight and S. Hauck, "Multi-Kernel
Floorplanning for Enhanced CGRAs," Dept. Elect. Eng., Univ. of
Washington, Seattle, WA, Tech. Rep., 2011.

[19] J. Oh and M. Pedram, "Gated Clock Routing Minimizing the Switched
Capacitance," in Design, Automation and Test in Europe, 1998.,
Proceedings, 1998.

