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ABSTRACT 

Coarse Grained Reconfigurable Arrays (CGRAs) are a 
promising class of architectures for accelerating 
applications using a large number of parallel execution units 
for high throughput.  While they are typically good at 
utilizing many processing elements for a single task with 
automatic parallelization, all processing elements are 
required to perform in lock step; this makes applications 
that involve multiple data streams, multiple tasks, or 
unpredictable schedules more difficult to program and use 
their resources inefficiently.  Other architectures like 
Massively Parallel Processor Arrays (MPPAs) are better 
suited for these applications and excel at executing 
unrelated tasks simultaneously, but the amount of resources 
easily utilized for a single task is limited. 
 We are developing a new architecture with the multi-
task flexibility of an MPPA and the automatic 
parallelization of a CGRA.  A key to the flexibility of 
MPPAs is the ability for subtasks to execute independently 
instead of in lock step with all other subtasks on the array.  
In this paper, we develop the special network and control 
circuitry to add support for this execution style in a CGRA 
with less than 2% area overhead.  Additionally, we also 
describe the CAD tool modifications and application 
developer guidelines for utilizing the resulting hybrid 
CGRA/MPPA architecture. 

1. INTRODUCTION 

Field programmable gate arrays (FPGAs) have long been 
used for accelerating compute intensive applications.  They 
do not have the development and validation difficulty or 
other costs of a custom ASIC, but are far faster than a 
general purpose CPU for most parallel or pipelined 
applications.  The FPGA’s programmability comes at a cost, 
though.  Look up tables (LUTs) must store each output per 
input combination in a logical operation.  Signals between 
operations require large and complex routing switches and 
common arithmetic operations are programmed down to 

each individual bit instead of a word at a time.  These 
inefficiencies result in lower speed and higher power 
consumption compared to an ASIC implementation. 
 Many common calculations involve multi-bit words of 
data.  If the individual bits share a configuration, this 
mitigates some of the inefficiencies of a FPGA.  A more 
word-oriented FPGA could even use ALUs instead of 
LUTs.  This further reduces area, power, and delay at the 
cost of flexibility in implementing non-datapath logic. 
 There are two main ways of designing a word-based 
array.  Coarse Grained Reconfigurable Arrays (CGRAs) 
like MorphoSys [1], ADRES [2], VEAL [3], and Mosaic [4] 
have a sea of ALUs connected with an word-based FPGA-
like interconnect.  For better hardware usage, multiple 
configurations are time-multiplexed; these are generated 
using FPGA-like placement and routing like SPR [5] for 
automatic parallelization.  Massively Parallel Processor 
Arrays (MPPAs) like ASAP2 [6] Ambric [7], and RAW [8] 
contain independent processors that communicate by 
passing messages.  Each is programmed individually, with a 
traditional instruction set, but using memory local to each 
processor and explicit communication over the network 

instead of the large shared memory of a multicore CPU. 
 The speedup of a completely-parallel algorithm, 
according to Amdahl’s law, reduces to the number of 
processing elements that are utilized [9].  The FPGA-like 
tools and configuration of CGRAs can use the parallelism 
and pipelining in the algorithm to map a single task to 
several processing elements automatically.  However, the 
design is completely scheduled at compile time so they are 
poor at handling control and require predictability from 
their workflow.  The traditional processors of MPPAs are 
great for control and variable workloads, but the 
programmer is required to manually split a computation into 
100’s of CPU-sized programs. 
 Our aim is to combine the benefits of each architecture 
to produce a hybrid with the control and workload 
flexibility of MPPAs, but with tasks automatically 
parallelized over multiple processing elements like in a 
CGRA.  One of the key contributors to the flexibility of 
MPPAs is that the operation of the otherwise independent 
processors is synchronized solely by their communication.  
CGRA operation is synchronized implicitly by all Supported by NSF grant #CCF-1116248 and DOE grant #DE-

FG02-08ER64676 



processing elements and communication resources 
executing to a fixed schedule produced at compile time. 
To create the hybrid architecture, an MPPA-like flow 
controlled communication was added to the Mosaic 
CGRA’s interconnect [10] for little additional area and 
energy in [11].  In this paper, we describe the new hardware 
and software modifications for the dataflow to actually 
control execution in our hybrid CGRA/MPPA architecture. 
 This paper is organized as follows: Section 2 describes 
the existing architecture classes.  Section 3 proposes the 
hybrid architecture and discusses some of the requirements 
for implementation.  Sections 4 and 5 present the new 
modifications to a CGRA developed in this research to add 
MPPA-like, data controlled, execution.  Section 6 discusses 
how the data controlled execution is complicated by the 
CGRA and how this affects applications and CAD tools.  
Finally, section 7 summarizes the best resulting solution. 

2. EXISTING ARCHITECTURES 

A generalized CGRA is composed of various word-width 
functional units, which can include ALUs, shifters, or other 
special-purpose processing elements, connected with a 
programmable, word-width interconnect.  It is often useful 
to include some LUTs and single bit communication 
channels to form a basic FPGA within the architecture for 
control and bitwise logic [10].  All memory is local, like in 
an FPGA, with no native coherency mechanisms for shared 
memory.  Block memories are typically explicitly managed 
by the application code, while registers required for timing 
and synchronization are managed by the CAD tools as 
necessary. 
 The configuration, consisting of the functional units’ 
opcodes and addresses requested from register banks, is sent 
to the functional units each cycle.  The interconnect is 
controlled in a similar manner.  Each word entering a 
switchbox fans out to multiplexers in all the other 
directions.  A phase counter cycles through the different 
routes in configuration memory, synchronized with the 
incoming data, to time-multiplex the interconnect. 
 There are two main ways to think about these 
configurations.  The most straightforward is as a set of 
predefined contexts, cycling after each clock cycle to 
simulate additional hardware, similar to a word-width 
version of a Tabula 3PLD [12].  The other is as an 
instruction word for the core of a clustered VLIW, but 
without the complex instruction processing components 
required for conditional branches.  After passing through 
the multiplexer, the bus is registered before being driven 
across the long wires to the next switchbox.  Resources like 
the configuration memory, decode, and clock gating are 
shared by all the wires in a bus. 
 The computing model of CGRAs is promising because 
tools such as SPR, can automatically spread a single 
computation across a large array of computation units from 
only a single program.  However, many common styles of 
computation run into problems with this model: 

• Multiple tasks sharing the hardware share a single static 
schedule.  Because CGRA tools generally take only a 
single computation and spread it across the entire array, 
we must combine all tasks into one integrated 
computation.  Thus, multiple independent tasks (such as 
processing on different streaming inputs), or multiple 
tasks for a single computation (such as the stages in an 
image-processing pipeline) must be combined into one 
loop.  This is time-consuming, inefficient, and hard to 
support.  On the other hand, this lockstep operation is 
what allows the architecture and CAD tools to be as 
efficient as they are. 

• They use predication for data-dependent execution.  
Individual tasks usually have data-dependent operation, 
such as the choices in an IF-THEN-ELSE construct, or 
different modes of processing at different times in a 
computation (such as the phases in K-Means clustering).  
Since a CGRA requires every operation to occur at 
exactly the same time and place in each iteration, CGRAs 
use predication to handle data-dependent operation.  This 
means that a large fraction of the issue slots in each 
iteration are consumed by operations that are simply 
predicated away. 

• All schedules run at once must be the same length.  
Computation pipelines often have some tasks that are 
more complex, and therefore have a longer recurrence 
loop that limits their natural computation rate.  In a 
CGRA, this is the Initiation Interval [13], or “II”.  Every 
task has a natural II, but a CGRA generally forces all 
tasks to use the same II, which is the maximum II of any 
task.  If communication rates were identical, this is not a 
big problem.  For computations with long tasks that are 
executed sporadically (such as PET [14]), or long tasks 
on lower-bandwidth paths in the computation, this 
imposes a significant performance penalty on the entire 
computation. 

In the Massively Parallel Processor Array (MPPA), the 
hundreds of ALUs from the CGRA are replaced with small 
processors with full branching capability independent of 
other functional units.  This makes it relatively inexpensive 
to handle small control tasks on chip, because predication is 
not required.  The processors are individually programmed, 
often in a traditional language.  However, since the 
processors and network are no longer executing in a lock-
step manner, this complicates the coordination of the 
architecture.  The interconnect multiplexers can no longer 
select based simply on clock cycle, and all memory blocks 
are coupled tightly with an individual processor or have a 
dedicated processor to sequence data. 
 MPPAs are dynamically synchronized by using 
communication channels with flow control between the 
processors.  This flow control identifies when a valid data 
word is on the channel downstream and provides 
backpressure upstream.  It is straightforward to understand 
that processors should stall until they see valid data arrive.  
However, if the process transmitting data can transmit faster 
than the receiver can receive, signals from full buffers 



prevent the sender from sending when the receiver is not 
ready.  In this manner, the data synchronizes processing 
instead of a global program counter. 
 While some MPPA architectures such as RAW have 
included full dynamic communication routing, RAW 
required additional networks to avoid deadlock.  More 
recent architectures, such as ASAP2 and Ambric, configure 
all their routing statically at compile time.  Because the 
processors themselves are configured at compile time this 
does not result in a significant loss in flexibility.  In an 
architecture with hundreds of processors, some of them can 
be programmed by the user to act as soft-routers for the 
remaining cases [15]. 

 
Fig. 1.  Block diagram for running sum on an MPPA 

 Because an MPPA has multiple, independent processors 
loosely synchronized through communication channels, 
they avoid most of the previously mentioned problems with 
a CGRA.  Each processor can have its own schedule, so 
different computations can have different schedule lengths, 
and independent tasks do not need to be combined into a 
single program.  In addition, since the processors have true 
program counters, they can use branching for IF-THEN-
ELSE constructs, and looping for supporting different 
modes.  However, MPPAs have their own challenges: 

• MPPAs require the programmer to split computations 
into processor-sized chunk manually.  CGRAs leverage 
their system wide-synchronous behavior to provide tools 
that can automatically spread a computation across 
numerous processors.  Thus, tools like SPR can take a 
single task and efficiently spread it across tens to 
hundreds of CPUs.  MPPAs, with their more loosely 
coupled CPUs, do not provide the same functionality or 
tools, and instead force the application developer to 
write programs for each individual processor in the 
system.  This is a huge task.  For example, in [14], 
mapping a simple running sum threshold test to the 
Ambric MPPA required manually breaking the short 
loop into 8 processors and 4 FIFOs, all manually 
specified as shown in Fig. 1.  This still took 6 clock 
cycles per input where a CGRA only needs one or two. 

• MPPAs generally keep most computations and results 
local to a single processor.  Although there are abundant 
resources connecting the individual processors together, 
communication between two processors in an MPPA is 
still noticeably more expensive than between CGRA 
ALUs operating in lockstep.  This limits the achievable 
pipeline parallelism for a given task; thus many 

processors are lightly loaded while the processor with 
the most complicated task runs constantly [16]. 

3. MULTIKERNEL HYBRID 

CGRAs prove to be quite good at utilizing many processing 
elements for a single kernel of execution.  They are 
inefficient for control and handling multiple tasks in an 
application.  MPPAs are great for control and a large 
number of tasks and/or applications, but are less efficient 
for individual pipelined tasks that are more difficult to 
spread across MPPA hardware.  Our hybrid breaks a CGRA 
into a few regions, called control domains, each executing 
different tasks on different schedules, but with each task 
still spread over its maximum utilizable area for high 
throughput.  Broken down in a logical manner, each task is 
easier to understand than in its single kernel counterpart and 
can be composed by different programmers.  Data is only 
routed to relevant control domains, so the amount of 
hardware wasted by predication is significantly reduced 
over the CGRA. 
 A CGRA requires architectural and tool modifications to 
execute different, yet related tasks simultaneously.  Within a 
control domain, routing and computation should still 
operate according to compiler-determined schedules for 
efficiency.  Communication between control domains must 
be dynamically flow-controlled like in an MPPA and not 
scheduled.  Details on how resources in a control domain 
are used to implement flow-controlled communication 
between unrelated control domains are described in [11]. 
 We assume that the dynamic communication itself is 
possible and that there are two bits in the interface; one tells 
the sender the receiver is ready to receive and one tells the 
receiver that the sender has data.  When read data is 
required from this network and none is available, or there is 
no room to write data when a send is scheduled, control 
domains must respond appropriately.  In most cases, no 
useful computation can be done and the best reaction is to 
simply stall and wait for the situation to resolve.  In the 
remainder of this paper, we develop novel methods to 
support stalling individual control domains effectively on an 
architecture like Mosaic. 

 
Fig. 2.  Control domain communication pattern 

 As an example, CGRA regions communicate as shown 
in Fig. 2: Control domain A sends data to domains B and C, 
and B also sends to C.  B cannot work until A provides the 
data to it.  Similarly, anything executed in C before A and B 
have provided appropriate inputs is useless at best and often 



results in improper functionality.  Therefore, tasks must be 
aware of the data dependency. 
 The device is configurably split into CGRA regions of 
varying sizes for different applications, each of which stalls 
independently.  While our goals could be accomplished by 
designing an array of CGRAs that communicate using 
dataflow communication, this would fall prey to resource 
fragmentation.  Two floorplans from example applications 
written in the Multi-Kernel Macah language [17] are shown 
in Fig. 3 from [18]; each color is a separate CGRA region.  
Within a region, SPR is used to handle data routing and 
instruction scheduling and placement just like a normal 
CGRA. 

   
 a  b 

Fig. 3.  Floorplans for a: Bayer filter and                           

b: discrete wavelet transform 

 The development of this novel hybrid device gives rise 
to a research question that, as far as we know, has not been 
addressed before: How do we effectively stall an entire 
CGRA region of such a hybrid device?  Unlike an MPPA, 
which stalls a single processor at a time, we must support 
coordinating the stalling of many ALUs simultaneously so 
all schedules remain synchronized.  To support stalls in a 
hybrid CGRA/MPPA, we need to answer the following 
open research questions: 

1. What is the most efficient mechanism for stalling an 
individual processor and its interconnect resources, 
without disrupting inter-task communications? 

2. How do we coordinate the simultaneous stalling of 
multiple processors within the chip, particularly when 
the task size and shape is configurable? 

3. How do we tolerate the potentially long stall latencies 
from when a communication channel initiates a stall to 
when the entire task actually does halt operation? 

In the rest of this paper, we address each of these open 
research questions, developing a novel mix of hardware, 
software, and application approaches to provide stall 
support for hybrid MPPA/CGRA systems.  As such, we 

provide an efficient and effective mechanism to aid in 
harnessing the best of both computation styles. 

4. STALL MECHANISM 

The first question our research must answer is how to stall 
execution on a single processing element, including a 
processor and its associated interconnect resources.  For 
this, we assume that each end of a dynamic communication 
channel has a streaming communication port (black circles 

in Fig. 2) to interface with the control domain and buffer 
data to or from the channel.  Fig. 4, zooms to the top right 
corner of control domain C to show a read port on top and a 
write port on the bottom.  

 
Fig. 4.  Stream port interfaces 

 Each read or write port takes a predicate from within the 
control domain that indicates whether the kernel actually 
wishes to perform the scheduled communication that cycle.  
Stalls occur when an active port’s predicate is true, and 
there is no data in the buffer for reads, or there is a full 
buffer for writes.  In these cases, the stream port indicates to 
the control domain that it should stall and not proceed to the 
next instruction.  If any stream port within a control domain 
signals a stall, the entire control domain halts at the exact 
same place in the schedule.  Therefore, we also need a 
network to aggregate all stall signals from the ports and 
deliver it to the mechanism that stalls the control domain. 
 Because the entire state of a clock domain is held in 
registers in the interconnect and processing elements, and 
the domain’s own memories, disabling the clock appears to 
be an excellent way to stall.  Handshaking within the 
control domain would require each register in the 
interconnect to be replaced with FIFOs and complicate 
instruction sequencing.  By hooking into the clock tree 
itself, we support stalls for control domains of various sizes 
by stopping the clock on different levels of the clock tree.  
Fig. 5 shows a flattened clock distribution tree to four 
processing elements, with some stall trigger network 
(discussed in section 5) wired into the different levels.  
When we activate the stall trigger and it stops the clock on 
the lowest level, this halts the clock for a single processing 
element.  Moving up a level, we stop the clock for two 
elements, while if we activate at the highest level, all four 
processing elements are frozen.  In an actual H-tree 
implementation, this stops a two by two region of 
processors.  While this implementation is convenient, it 
restricts control domains to powers-of-two dimensions. 

 
Fig. 5.  Triggering stalls using the clock tree 

 Unfortunately, we cannot just stop all clocks in a region.  
The stream ports and the logic required for buffering and 



generating the stall signals within the communication 
channel interface itself cannot stall; if they stall, they are not 
able to detect the conditions to unstall.  Running an 
additional ungated global clock tree and keeping it 
synchronized with the configurable, gateable control 
domain tree is troublesome to implement.  Note that the 
flow controlled interconnect implementations discussed in 
[11] potentially steal registers, multiplexers and drivers 
from control domains that are unrelated to the sender and 
receiver.  These resources should not stall when the 
unrelated domain stalls and so now we need a 
programmable clock select to choose between gated and 
free running clocks.  With all of the duplication of clock 
gating and clock trees, this will be an expensive proposition.  
Using the models, benchmarks, and architecture from and 
assuming our original clock tree was as in, [19], this would 
result in an increase in area by 1.6% and used as much as 
11% of the total execution energy if we never actually have 
to stall.  
 The other solution is to use the time multiplexing 
capability to generate no-ops for all functional units and 
routes.  In the Mosaic CGRA, the interconnect contains 
feedback paths that automatically sustain a value and gate 
the clocks in the corresponding pipelining registers for 
reducing activity (and power) when a bus is unused.  
Similarly, there are configuration bits specifically for 
enabling the clocking of the registers within the functional 
units themselves [10] for temporary storage.  Therefore, a 
configuration already exists that freezes all register data, 
disables memory writes and disables the stream ports, 
everything we need for a stall. 
 As previously mentioned, each processing element has a 
counter that cycles through all of the time-multiplexed 
configurations.  We hijack these during a stall to select our 
own special stall configuration that was not part of the 
regular schedule; we could freeze the control domain 
without directly interfacing with all the components like in 
the configurable clock gating.  The stall signal only has to 
control some logic associated with the phase counters.  
When creating this configuration at compile time, any 
resources that operate disregarding stalls simply receive the 
same configuration they have for every other phase so they 
execute normally while stalled. 
 To build this mechanism, we need stall signaling to 
freeze the counters at the existing value so execution can 
resume from the right instruction after the stall.  They then 
output a special phase number (a reserved phase ID of all 
1’s) to select our stall configuration from the existing 
configuration memories as shown by the black 
configuration on the components in Fig. 6.  This 
configuration gates the relevant clocks for each individual 
register, without adding new, configurable clock trees, so it 
is more energy efficient than the clock gating methodology.  
There are at most a few counters per processing element.  

Therefore, the main modification is practically free in terms 
of logic area, compared to building a stall network and 
configurable clock tree.  However, configuration memory is 

not a trivial resource.  Assuming the architecture in [4] 
supports a maximum II of 8, the total area overhead is 
0.86% and it could increase our full-chip energy by a 
maximum of 3.7% (stalling once per II).  However, we 
would hope a well-developed application stalls rarely, so 
this is our preferred stall mechanism because it uses only 
52% of the area and 33% of the energy of the clock gating 
method. 

 
Fig. 6.  Phase counter stalling (clock & data not shown) 

5. TRIGGER NETWORK 

As discussed in the previous section, we can stall an 
individual processor in the system efficiently via our no-op 
generation technique.  Now we must develop a mechanism 
to coordinate the stall of an entire region simultaneously.  
We need a network to combine the stall signals from all 
stream ports in a control domain, and deliver them to all the 
phase counters and stream ports at the same time so that the 
control domain remains synchronized. 
 The stall trigger network faces several challenges: 

• Since an individual CGRA region may be large, we 
cannot expect the stall signal to reach every processor in 
one clock cycle, but must instead pipeline the stall signal 
so that it occurs at the correct time. 

• Multiple stall sources exist, one for each read and write 
port for this task. 

• Since region size and shape is configurable, the stall 
trigger network must be configurable. 

• Stall latency can be a major performance limiter, so 
stalls should happen as quickly as possible.  Specifically, 
small tasks should not be forced to have as long a stall 
latency as larger tasks. 

 
Fig. 7.  Single control domain 

 To demonstrate the impact of multiple stall sources, 
consider the zoomed in view of a single control domain 
shown in Fig. 7.  Coordinates for the 12 processors have 
been labeled across the top and left side.  While a dedicated 
stall network could be faster, assume it takes one clock 
cycle for a trigger to get from one processor to its 
neighbors, like regular data.  If the stream port at A2 has no 



data and tries to read, the stall controller at A2 is aware of 
the need to stall before the controller at D0 and waits for the 
stall signal to propagate to D0 before stalling.  This ensures 
all processing elements stall simultaneously.  This delay can 
be configured and coordinated in a couple ways. 
 In this paper, we present two new mechanisms we have 
developed for stall triggering.  First, we can have a peer-to-
peer mechanism, where nearest-neighbor communication is 
used to distribute out the stall signal, something like the 
ripples on a pond.  The second mechanism chooses one of 
the processor’s stall controllers as master, which reduces the 
amount of communication needed, and thus reduces power. 

 
Fig. 8.  Peer-to-peer stall trigger propagation 

 One way to send stall signals is to determine the latency 

dynamically and communicate this value along with the 
trigger.  Fig. 8 shows the earliest stall for each processor in 
our control domain for a stall triggered at a port in A2 in 6 
time snapshots from left to right, and top to bottom.  A2 has 
a stall latency of 6 so it is configured to wait 5 cycles for 
stalls it triggers, as shown in the upper left.  It sends the 
trigger to B2 telling B2 to wait 4 cycles then both count 
down.  B2 then tells C2 to wait 3 cycles.  This proceeds 
through D2 and D1 similarly, reaching 0 cycles upon 
arriving at D0.  At this time, all processing elements are at 0 
and begin the stall. 

 

Fig. 9.  Stall vector handling. ℗ represents a program bit 

 While the nearest-neighbor countdown is simple to 
understand, we must handle stalls from multiple sources and 
their associated un-stalls also.  To handle this general case, 
we use a bit-vector.  An example for D1, in the 5th snapshot 
above, is shown in Fig. 9.  Instead of counting down, this 
bit-vector is shifted to the right and the processor stalls if 
the LSB in the stored value is a 1.  Assume our stalls are 
only to take 1 cycle.  D1 receives 000010, representing 
stall-in-1 and unstall-in-2, from the west and south (C1 and 
D2).  If a port in D0 begins to initiate a stall at the same 
time, it sends 100000, representing stall-in-5 (from the 
north).  D1 ANDs these with programming bits that indicate 

which neighbors are in the same control domain so that the 
data from the East is ignored.  The results all get ORed with 
the previously stored value shifted and the locally generated 
stall signal (which has its latency programmed by the 
mask).  Here, D1 stores 100010 for this pattern and sends 
that to its neighbors.  If the LSB is a 1, the processor stalls; 
so in this case, it stalls on the following cycle. 
 A less expensive way is to designate one controller as 
the master when configuring the array.  This central 
controller should be centrally located for minimum latency, 
such as C1 in our example.  Single bit stall triggers pass 
through neighboring processors in a pattern configured at 
compile time, are ORed together, and sent to the next 
processor on the way to C1.  C1 sends the coordinated stall 
back out in the opposite of the incoming pattern on a single 
bit return network.  Because this path is known, each 
processor simply waits a configured amount of time before 
stalling or unstalling.  This is similar to the bitmapped peer-
to-peer method, but bitmaps are computed within each stall 
controller; the communication is serial. 
 All trigger controllers are statically configured to delay a 
fixed amount because the final trigger always propagates 
along the same path.  Since C1 has the first controller to 
know about any stalls, it always waits 3 cycles for the 
remainder of the trigger propagation.  One cycle later, B1, 
C0, C2 and D1 are notified and wait 2 cycles.  On the next 
cycle, the remainder, except for A0 and A2, are notified and 
wait 1 cycle for the final two controllers to be notified.  If 
the initial trigger came from A2, this propagation is A2 > 
B2 > C2 > C1 > C2 > B2 > A2 for 6 cycles of latency from 
this network. 
 The stall networks use different amounts of resources.  
The bitmapped peer-to-peer stall trigger controller requires 
a number of communication bits equal to the maximum 
supported stall latency, to each neighboring controller.  The 
centralized network only requires one bit in each direction.  
Using the models from [11], we calculated the percent 
increase in full-chip area from adding these networks for a 
maximum supported latency of 9 cycles.  The central 
network has a full-chip area overhead of only 0.75% while 
the peer-to-peer network increased area by 2.20%.  The 
internal logic is quite similar; the main difference is the long 
wires and large drivers between neighboring processors so 
the peer-to-peer method could have up to 4.5X the energy 
overhead of the central network. 

6. LATENCY TOLERANCE 

The new mechanisms for stalling individual processors, and 
coordinating the stalling of an entire CGRA region within a 
hybrid device, cope with regions of very different sizes and 
shapes.  Each has a latency between detecting the need for a 
stall and the individual processors actually halting execution 
that must be tolerated somehow.  Execution must be 
stopped before data loss occurs.  If we attempt a send or 
receive and the resulting stall can only happen some number 
of cycles in the future, the stall signal must be triggered 

new�..� � mask ∗ port	stall 

clock	gate � 	 stored� 

to	neighbors � stored 

stored��� � N�N℗ � E�E℗ �
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before the read or write actually fails.  In this section, we 
will explore what happens within the stream ports to handle 
this latency and what this means to the CAD tools like SPR 
and the application developer. 
 A send FIFO with infinite capacity never needs to stall 
because data cannot be lost.  With a more realistic buffer, 
we must stall before the buffer is full.  To accommodate a 
stall latency of L clock cycles, the stall signal must be 
triggered L cycles before the buffer becomes full.  This 
requires a prediction of the FIFO state L cycles from now.  
If the current number of words available in the FIFO is C, 
then the lower bound on the FIFO status L cycles from now, 
with no other information, is C - L.  If C – L <= 0.  In this 
situation, the FIFO could fill within L cycles so the stream 
port triggers a stall in advance, to be safe.  This is 
straightforward to do; we simply add the logic shown in 
Fig. 10 a.  While this prediction is acceptable for low values 
of L, it forces L words of memory to be empty at all times, 
except possibly during a stall. 

 
 a b c 

Fig. 10.  Latency offset calculators for, a: latency only,      

b: CAD estimate, and c: precheck methods 

 A more accurate prediction is more efficient for larger 
control domains with high latencies.  It is unlikely for a 
send to occur every clock cycle.  To execute a send, the 
kernel sends the data value to the port including a predicate 
bit that specifies the input should be sent.  The CAD tool 
schedules these operations.  Therefore, it can count the 
possible sends per II.  This ratio is used to determine the 
maximum number of sends that could occur in L cycles for 
this particular stream port in this specific program, which is 
programmed into the stream port as shown in Fig. 10 b. 
 However, some of these sends are predicated away, 
wasting a spot in the FIFO.  Utilizing the entire FIFO is 
preferable for overall area and energy efficiency, but 
requires an actual count of the pending sends and not just an 
upper bound.  Fig. 11 shows the schedule on the right for 
the pseudocode on the left.  The CAD tools can deliver the 
send predicate to the stream port L cycles (2 in the example) 
in advance as a pre-send check.  When the stream port 
receives this pre-check, it increments a counter to account 
for the pending send (Fig. 10 c).  When the send actually 
occurs (predicate is true), the counter decrements.  In this 
way, the counter always knows how many spaces must be 
available in the FIFO for the sends that will actually be 
done in the next L cycles. 
 This is usually easy for the CAD tools.  If the predicate 
is not available until the same time as the data, CAD tools 
must use programmable registers or memory to delay the 
data for L cycles until it is appropriate to deliver to the 
stream port.  In the worst-case for sends, this uses only as 

much extra storage as would have been wasted with the 
“sends per II” estimate.  Modulo Scheduling such as that in 
SPR can generally hide this latency since the actual stream 
writes should not be in a loop carry dependency. 

 

Fig. 11.  An early buffer check for the code on the left 

 At first glance, a receive is the exact opposite of a send.  
The kernel requests data from a FIFO with a predicate and 
then uses the data present on the interface from the stream 
port to compute.  Instead of consuming a memory location 
and creating data like in a send, it creates a newly empty 
memory location and consumes data.  However, there is a 
crucial difference.  To guarantee operation when sending, 
we ensure that the FIFO is sufficiently empty; it is quite 
easy to over-provision the FIFO.  For receives, the 
equivalent is to use our precheck to ensure that the FIFO is 
sufficiently full, but there is no way to overprovision a 
FIFO to have extra data. 
 Receives classify into three different styles of 
communication, each with a somewhat different method of 
tolerating the stall latency: 
1. High-bandwidth communication:  The common case is a 

high rate send, like sending image sequences for 
processing.  In this case, we can require a buffer to have 
enough data present to equal the estimate of reads in the 
stall latency.  Although there is a short initial delay to fill 
the buffer, these transfers work the same way as sends 
after that.  The end of the stream can be padded to allow 
the computation to finish. 

2. Unpredictable low-bandwidth communication 
(interrupts):  It makes no sense to stall when there is no 
input because continued operation is desired.  The 
programmer should utilize a non-blocking type of read 
that never stalls the machine to poll these inputs and 

handle the presence or lack of data within their code. 
3. Regularly scheduled, low-bandwidth communications:  

An example of this is a stream that sends a decryption 
key to a decryption kernel, which uses it to process a 
regular high-rate stream.  These often have dependency 
cycles (explicit in the coding, or implicit due to 
hardware limitations) that are exacerbated by our latency 
needs and suffers deadlock if not handled properly. 

Styles 1 and 2 are easily supported; style 3 causes problems.  
In Fig. 2, A, B and C can form this troublesome network.  A 
does some basic processing and passes some of the results 
to B, and the remainder to C.  B takes its data and uses it to 
recover a decryption key, which it sends to C to begin 
decrypting the data from A.  If the stall latency of C is 10 
cycles, the basic estimation method requires 10 keys in the 
buffer before execution can proceed.  A sends data to C 
until its buffer fills, while C is stalled waiting for 9 more 

if (A>0){ 

  temp = A + B 

  temp2 = temp * 4 

  send temp2} 

Cycle ALU Inst Port Action 

0 A > 0?  

1 + check 

2 *  

3  send 



keys.  This stalls A so no more data is sent to B, which stalls 
due to a lack of data, and no new keys will be made.  Notice 
that the channels’ backpressure has formed a cycle to cause 
deadlock though no such cycle appears in Fig. 2. 
 The CAD tools will always estimate at least one read 
per II because that is the extent of the schedule.  This means 
that the amount of buffering required is only reduced by a 
factor of II.  This could still be too high to allow for proper 
operation.  Therefore, the best way to handle this is by 
having the CAD tools route an early copy of the read 
predicate as a “precheck” to only check for input when it 
will be necessary soon as shown in Fig. 10 c.  This will 
eliminate deadlocks that could be caused by the stall 
latency, though it may result in a few wasted clock cycles.  
Adding these is inexpensive, with an area overhead of only 
0.025%. 

7. CONCLUSIONS 

A hybrid CGRA/MPPA system combines the automatic 
parallelization and compilation support of CGRAs, with the 
multi-task support of MPPAs, to deliver high performance 
and low power implementations of streaming computations.  
This requires the ability to stall a configurably sized region 
of statically-scheduled processors simultaneously, so that 
they can remain in lockstep, yet stay synchronized with 
unpredictable external dataflow and events.  To solve this 
problem we split the problem into three components: How 
do we stall one processor without disrupting inter-task 
communication?  How do we coordinate the simultaneous 
stalling of multiple processors in the chip?  How do we 
tolerate the resulting long stall latencies? 
 Stalling individual processors using traditional clock 
gating methods would increase our area by 1.6% and 
increase energy use by 11%.  We developed a mechanism 
that adds only 0.86% area and only increases energy by 
3.7% at most.  This mechanism uses the existing 
configurability in the CGRA with only small changes to the 
phase counter and an additional configuration.  Stall 
coordination must handle stall and unstall inputs from 
multiple stream ports everywhere in the control domain to 
trigger simultaneously.  By pre-programming these routes 
and stall latencies, coordination only requires two new 
single-bit signals.  The resulting coordination hardware only 
adds 0.75% area to the architecture. 
 Finally, we developed mechanisms and strategies to 
handle potentially long stall delays.  Modifications to SPR 
during scheduling allow cheap hardware stall predictors 
(0.025% full-chip area) to start the stall triggers early 
enough to ensure proper operation and efficient storage 
usage.  In most cases, the latency is completely hidden to 
the application.  Combined, these techniques provide a 
simple but effective mechanism for stalling arbitrarily sized 
CGRA regions within an overall MPPA system with 
hardware overhead of only 1.6%. 
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