
Extending Course-Grained Reconfigurable 

Arrays with Multi-Kernel Dataflow 

Robin Panda
*
, Aaron Wood

*
, Nathaniel McVicar

*
,Carl Ebeling

†
, Scott Hauck

*
 

*
Dept. of Electrical Engineering and 

†
Dept. of Computer Science and Engineering 

University of Washington, Seattle, WA  98195 

email: 
*
{robin, arw82, nmcvicar, hauck}@ee.washington.edu  

†
ebeling@cs.washington.edu 

Abstract—Coarse-Grained Reconfigurable Arrays (CGRAs) 

are a promising class of architectures for accelerating 

applications using a large number of parallel execution units 

for high throughput..  While the model allows for tools that 

can automatically parallelize a single task across many 

processing elements, all processing elements are required to 

perform in lock step.  This makes applications that involve 

multiple data streams, multiple tasks, or unpredictable 

schedules more difficult to program and inefficient in their use 

of resources.  These applications can often be decomposed into 

a set of communicating kernels, operating independently to 

achieve the overall computation.  Although competing 

accelerator architectures like Massively Parallel Processor 

Arrays (MPPAs) can make use of this communicating 

processes model, it generally requires the designer to 

decompose the design into as many kernels as there are 

processors to be used.  While this is excellent for executing 

unrelated tasks simultaneously, the amount of resources easily 

utilized for a single task is limited. 

We are developing a new CGRA architecture that enables 

execution of multiple kernels of computation simultaneously.  

This greatly extends the domain of applications that can be 

accelerated with CGRAs.  This new architecture poses two 

problems that we describe in this paper.  First, the tools must 

must handle the decomposition, scheduling placement and 

routing of multiple kernels.  Second, the CGRA must include 

new resources for coordinating and synchronizing the 

operation of multiple kernels.  

I. INTRODUCTION 

Field programmable gate arrays (FPGAs) have long been used 

for accelerating compute intensive applications.  FPGAs avoid the 

high development and fabrication costs of custom ASICs, and are 

far faster than a general purpose CPU for many parallel or 

pipelined applications.  The FPGA’s programmability comes at a 

cost, though.  The functionality of an FPGA is implemented using 

lookup tables to compute every simple Boolean function.  Signals 

between operations require large and complex routing switches 

and common arithmetic operations are programmed down to each 

individual bit instead of a word at a time.  These inefficiencies 

result in lower speed and higher power consumption compared to 

an ASIC implementation. 

The vast majority of most computations are multi-bit 

operations.  Coarse-grained configurable arrays (CGRAs) take 

advantage of this by sharing configuration data across word-wide 

operations, which mitigates much of the inefficiency of an FPGA.  

CGRAs use coarse-grained computation units like ALUs and 

multipliers instead of LUTs, and move data as words instead of 

bits,  Some support for configurable Boolean functions is usually 

included to allow for control functionality. 

Several different CGRAs have been developed, including 

MorphoSys [1], ADRES [2], VEAL [3], and Mosaic [4] which 

have a sea of ALUs connected with an word-based FPGA-like 

interconnect.  For better hardware usage, computation and routing 

resources are time-multiplexed.  Configurations are generated 

using FPGA-like placement and routing algorithms such as SPR 

[5] for automatic parallelization.  The move to word-width 

resources is assisted by moving the programming language from 

Hardware Description Languages (HDL) typically used for 

FPGAs to more C-like alternatives.  The FPGA-like tools and 

configuration of CGRAs can use the parallelism and pipelining in 

the algorithm to map a single task to several processing elements 

automatically.  However, the design is completely scheduled at 

compile time so they are poor at handling complex control flow 

and require predictability from their workflow.   

The traditional processors used in Massively Parallel 

Processor Arrays (MPPAs) are naturally much better for 

applications with more complex control structures.  MPPAs like 

ASAP2 [6] Ambric [7], and RAW [8] contain independent 

processors that communicate by passing messages.  Each is 

programmed by the user individually, with a traditional instruction 

set.  These processes use only memory local to each processor, 

and explicit communication over the network, instead of the large 

shared memory of a multicore CPU. These MPPAs are great for 

control and variable workloads, but the programmer is required to 

manually split a computation into 100’s of CPU-sized programs. 

The aim of our research is to extend CGRA architectures with 

some of the flexibility that is inherent in MPPA architectures. . 

This will provide some of the control and workload flexibility of 

MPPAs, but with individual tasks still automatically parallelized 

over multiple processing elements.  We use a CGRA’s lock-step 

operation for each independent task, allowing processing elements 

and communication resources to execute on a fixed schedule 

produced at compile time.  We synchronize between kernels via 

MPPA-style message passing, allowing processing regions to 

operate at their own rate, and possibly supporting branching and 

other data-driven control flow inside individual kernels. 

Creating the extended architecture requires several 

modifications over a basic CGRA.  The programming language 

must be extended to specify multiple kernels and describe their 

communication.  The mapping tools must allocate the kernels to 

regions of the CGRA so each kernel has its own region that can 

execute according to its own schedule.  Additionally, the tools 

must map the new inter-kernel communication.  Finally, the 

CGRA architecture must provide the additional resources that 

allows the configured regions to operate independently using 

different schedules.  Because inter-kernel communication does not 

occur according to a schedule, the hardware must now be able to 

Supported by NSF grant #CCF-1116248 and DOE grant #DE-FG02-

08ER64676 



detect when the communication is actually occurring, and have 

each kernel properly react to full and empty communication 

streams. 

II. PREVIOUS ARCHITECTURE 

A generalized CGRA, such as our base architecture Mosaic, is 

composed of various word-width functional units, which can 

include ALUs, shifters, or other special-purpose processing 

elements [9], connected with a programmable, word-width 

interconnect (Fig. 2).  It is often useful to include some LUTs and 

single bit communication channels to form a basic FPGA within 

the architecture for control and bitwise logic [10].  All memory is 

local, like in an FPGA, with no native coherency mechanisms for 

shared memory [4].  Block memories are typically explicitly 

managed by the application code, while registers required for 

timing and synchronization are managed by the CAD tools as 

necessary. 

 

Figure 1.  CGRA execution cluster components 

 

Figure 2.  CGRA showing two clusters in a grid interconnect 

The configuration, consisting of the functional units’ opcodes 

and addresses requested from register banks, is sent to the 

functional units each cycle.  The interconnect (Fig. 3) is controlled 

in a similar manner.  An incoming bus (A) fans out to multiplexers 

(B), (C), (D) in all other directions.  A phase counter cycles 

through the configurations in the configuration memory (E) to 

select the appropriate inputs to the multiplexer.  This loads the 

different routes in configuration memory, synchronized with the 

incoming data, to time-multiplex the interconnect.  After passing 

through the multiplexer (B), the bus is registered before being 

driven across the long wires to the next switchbox.  Resources like 

the configuration memory, decode, and clock gating are shared by 

all the wires in a bus. 

There are two main ways to think about these configurations.  

The most straightforward is as a set of predefined contexts, 

cycling after each clock cycle to simulate additional hardware, 

similar to a word-width version of a Tabula 3PLD [11].  The other 

is as an instruction word for the core of a clustered VLIW, but 

without the complex instruction processing components required 

for conditional branches. 

 

Figure 3.  Switchbox schematic 

An accelerator is useless if it is too difficult to program, so the 

programming mechanism is an important consideration.  

Traditionally, FPGAs are programmed using a hardware 

description language (HDL), but newer C-like methods have been 

developed.  The majority of word-width accelerators have 

programming languages that are like standard programming 

languages, usually with extra directives to specify 

communications, placement, or similar.  For example, the Macah 

language for Mosaic [12] has specific directives for specifying a 

kernel, its input and output streams, and helping extract 

parallelism.  The programmer can flag inner loops where the 

execution flow is always the same so the compiler can completely 

flatten it for extra pipeline parallelism. 

Extracting parallelism from this C-like code is not a trivial 

task.  A common step in this process is producing a dataflow graph 

(DFG).  The DFG contains all the operations as nodes, and the 

edges represent dependencies.  Some accelerators can execute this 

DFG directly [13], but most need more processing to convert it 

into instructions.  In the Scheduling, Placing, and Routing (SPR) 

tool for Mosaic [5] each operation is mapped to a functional unit 

in an appropriate context and the edges are used to configure the 

routing.  To maximize throughput and the amount of processing 

that can be accomplished, smaller loops are flattened to utilize 

additional processing elements.  The resulting dataflow graphs can 

be hundreds of cycles long. These are scheduled to the time-

multiplexed computation and routing resources using Iterative   

Modulo Scheduling [6], a technique for loop pipelining commonly 

used in VLIW compilers. In the case of CGRAs, this scheduling 

must be done in both time and space. 

In Iterative Modulo Scheduling a small number of instructions 

are iterated repeatedly to execute a much longer pipeline.  Table I 

shows how 6 instructions, where each is dependent on the 

previous one, could be scheduled across 3 execution units.  This 

schedule executes all 6 instructions in only 2 clock cycles; 

however, it does still take 6 instructions to complete one iteration 

(in bold).  The 2-cycle length of this schedule is known as the 

iteration initiation interval (II).  If instruction 6 in the table is the 

output stage, it follows that the schedule shown can only produce 

one value every other cycle because that instruction is only 

executed once per initiation interval.  Therefore, the schedule with 

the maximum throughput would be to fully pipeline the entire 

graph across the 6 processors and iterate one cycle repeatedly. 



Table I. Simulation configuration 

Phase Processor 1 Processor 2 Processor 3 

A Instruction 1 Instruction 3 Instruction 5 

B Instruction 2 Instruction 4 Instruction 6 

A Instruction 1 Instruction 3 Instruction 5 

B Instruction 2 Instruction 4 Instruction 6 

A Instruction 1 Instruction 3 Instruction 5 

B Instruction 2 Instruction 4 Instruction 6 

Arrow represents additional dependency 

However, in actual applications, one iteration of a loop often 

depends on the result of an instruction in a previous iteration.  If 

instruction 2 of one iteration depends on the result of instruction 4 

of the previous iteration, (as shown by the arrow) this schedule 

will not work because both instructions run at the same time.  This 

means our schedule must be at least 3 phases long.   This will 

allow instructions 3 and 4 to run and then provide the results to 

instruction 2 of the next iteration on the following cycle.  In this 

situation, we say that the recurrence II of the algorithm is 3, and 

this will be the optimal II for this dataflow graph. 

The computing model of CGRAs is promising because tools 

such as SPR, can automatically spread a single computation across 

a large array of computation units from only a single program.  

However, many common styles of computation run into problems 

with this model: 

• Multiple tasks sharing the hardware share a single static 

schedule.  Because CGRA tools generally take only a single 

computation and spread it across the entire array, we must 

combine all tasks into one integrated computation.  Thus, 

multiple independent tasks (such as processing on different 

streaming inputs), or multiple tasks for a single computation 

(such as the stages in an image-processing pipeline) must be 

combined into one loop.  This is time-consuming, inefficient, 

and hard to support.  On the other hand, this lockstep operation 

is what allows the architecture and CAD tools to be as efficient 

as they are. 

• They use predication for data-dependent execution.  Individual 
tasks usually have data-dependent operation, such as the 

choices in an IF-THEN-ELSE construct, or different modes of 

processing at different times in a computation (such as the 

phases in K-Means clustering).  Since a CGRA requires every 

operation to occur at exactly the same time and place in each 

iteration, CGRAs use predication to handle data-dependent 

operation.  This means that a large fraction of the issue slots in 

each iteration are consumed by operations that are simply 

predicated away. 

• All schedules run at once must be the same length.  

Computation pipelines often have some tasks that are more 

complex, and therefore have a longer recurrence loop that limits 

their natural computation rate.  Every task has a minimum 

achievable II, but a CGRA generally forces all tasks to use the 

same II, which is the maximum II of any task.  If 

communication rates were identical, this is not a big problem.  

For computations with long tasks that are executed sporadically 

(such as PET [14]), or long tasks on lower-bandwidth paths in 

the computation, this imposes a significant performance penalty 

on the entire computation. 

III. MPPAS 

One can think of a Massively Parallel Processor Array 

(MPPA) as a CGRA where the hundreds of ALUs of the CGRA 

are replaced with small processors with full branching capability 

independent of other functional units.  This makes it relatively 

inexpensive to handle small control tasks on chip, because 

predication is not required.  The processors are individually 

programmed, often in a traditional language.  However, since the 

processors and network are no longer executing in a lock-step 

manner, this complicates the coordination of the architecture.  The 

interconnect multiplexers can no longer select based simply on 

clock cycle, and all memory blocks are coupled tightly with an 

individual processor or have a dedicated processor to sequence 

data. 

MPPAs are dynamically synchronized by using 

communication channels with flow control between the 

processors.  This flow control identifies when a valid data word is 

on the channel downstream and provides backpressure upstream.  

It is straightforward to understand that processors should stall until 

they see valid data arrive.  However, if the process transmitting 

data can transmit faster than the receiver can receive, signals from 

full buffers prevent the sender from sending when the receiver is 

not ready.  In this manner, the data synchronizes processing 

instead of a global program counter.  This can be accomplished 

with a handshake adding two signals.  One simply acts like an 

additional data bit, but represents whether or not the other 32 bits 

are valid data.  The other goes in the opposite direction and 

indicates if the receiving processor or interconnect stage is ready 

to consume data. 

The Ambric MPPA has such a network with routing, 

configured at compile time, that is used for the duration of 

execution.  This network passes data between special sets of 

registers.  These are wired together through a programmable 

interconnect (not shown) that appears, logically as shown in Fig. 

4.  A sequence of words, A, B, C, D, and E are being sent in the 

channel.  When the receiver is no longer able to receive, it 

deasserts ready and the next register upstream retains its data.  

Because the ready will take time to propagate upstream, each 

register will need to store additional data when stalling.  In this 

case, the special register set is storing both A and B while the 

deassertion of ready propagates backwards.  

 

Figure 4.  Dedicated register channel logical view 

While some MPPA architectures such as RAW have included 

full dynamic communication routing, RAW required additional 

networks to avoid deadlock.  More recent architectures, such as 

ASAP2 and Ambric, configure all their routing statically at 

compile time.  Because the processors themselves are also 

configured at compile time this does not result in a significant loss 

in flexibility.  In an architecture with hundreds of processors, 

some of them can be programmed by the user to act as soft-routers 

for the remaining cases [15]. 



 

Figure 5.  Block diagram for PET thresholding computation on an MPPA 

Because an MPPA has multiple, independent processors 

loosely synchronized through communication channels, they avoid 

most of the previously mentioned problems with a CGRA.  Each 

processor can have its own schedule, so different computations 

can have different schedule lengths, and independent tasks do not 

need to be combined into a single program.  In addition, since the 

processors have true program counters, they can use branching for 

IF-THEN-ELSE constructs, and looping for supporting different 

modes.  However, MPPAs have their own challenges: 

• MPPAs require the programmer to manually split 

computations into processor-sized chunk.  CGRAs leverage 

their system-wide synchronous behavior to provide tools that 

can automatically spread a computation across numerous 

processors.  Thus, tools like SPR can take a single task and 

efficiently spread it across tens to hundreds of CPUs.  MPPAs, 

with their more loosely coupled CPUs, do not provide the 

same functionality or tools, and instead force the application 

developer to write programs for each individual processor in 

the system.  This is a huge task.  For example, in [14], 

mapping a simple running sum threshold test to the Ambric 

MPPA required manually breaking the short loop into 8 

processors and 4 FIFOs, all manually specified (Fig. 5).  This 

implementation still took 6 clock cycles per input where a 

CGRA only needs one or two. 

• MPPAs generally keep most computations and results local to 

a single processor.  Although there are abundant resources 

connecting the individual processors together, communication 

between two processors in an MPPA is still noticeably more 

expensive than between CGRA ALUs operating in lockstep.  

This limits the achievable pipeline parallelism for a given task; 

thus many processors are lightly loaded while the processor 

with the most complicated task runs constantly [16]. 

IV. MULTIKERNEL HYBRID 

CGRAs prove to be quite good at utilizing many processing 

elements for a single kernel of execution, but are inefficient for 

control and handling multiple tasks in an application.  MPPAs are 

great for control and a large number of tasks and/or applications, 

but are less efficient for individual pipelined tasks that are more 

difficult to spread across multiple processing units.  Our goal is to 

merge the benefits of these two technologies.  Our devices is a 2D 

computing surface, like a CGRA or MPPA, that can be split (on a 

per-mapping basis) into multiple communicating kernels.  Each 

individual kernel computes in the CGRA model, where multiple 

processors operate in lockstep performing a unified modulo 

schedule, created by SPR.  For control-dominated kernels we can 

create a 1-processor region, and compile the kernel to it using 

standard VLIW techniques [17], making use of branching and 

other standard control flow operations.  Between the kernels we 

communicate via MPPA-style messages, with flow control to 

ensure that writes to full streams, or reads from empty streams, 

stalls that kernel until the condition is resolved.  Users of the 

system write multi-kernel computations in Macah, and they are 

automatically translated to implementations on the hybrid device. 

Achieving this vision requires innovation on multiple fronts.  

The control domain size and placement must have some flexibility 

to maximize the utilization of the compute resources for designs 

with wildly different kernel complexities.  The CGRA model 

requires architectural and tool modifications to execute different, 

yet related tasks simultaneously.  Within a control domain, routing 

and computation should still operate according to compiler-

determined schedules for efficiency.  Communication between 

control domains must be dynamically flow-controlled like in an 

MPPA and not scheduled.  In the sections that follow we discuss 

several of these challenges, and the techniques we are developing 

to address them. 

A. Language and compiler modification 

The Macah language must be modified so that multiple 

kernels can be specified along with their communication patterns.  

Fig. 6 shows an example of 3 kernels communicating. Kernel A 

handles input data and sends outputs to kernel B and C, and B also 

sends to C, who sends out the final answer.  Since our original 

Macah language already had a single kernel that communicated 

with the external environment via streams, it was relatively simple 

to extend this model to have multiple kernels connected by 

explicit streams.  The new compiler takes multi-kernel code and it 

emits a separate DFG for each kernel to downstream tools.  These 

modifications are detailed in [18]. 

 

Figure 6.  Control domain communication pattern 

B. Architecture for dynamic communication 

The hardware must be augmented to handle dataflow 

communication within the CGRA.  Instead of communicating 

according to a schedule, the interconnect must be able to handle 

excess or insufficient data and signal producers and consumers 

accordingly.  In keeping with the configurable nature of the 

device, as little special-purpose hardware as possible should be 

added. 

Specific details on how resources in a control domain are used 

to implement flow-controlled communication between unrelated 

control domains are described in [19].  Several solutions were 

evaluated for area and energy as a function of utilization.  Most 

types of dataflow control from existing MPPAs were considered, 

including several ways of building distributed FIFOs out of 

existing interconnect components. 

All solutions involved the addition of at least two bits, one 

indicating the presence of data and one in the reverse direction 

indicating if the receiver would be able to consume data on the 

following clock.  Because these communication channels needed 

to remain independent of the execution of any control domains 

they passed through, the channels were scheduled for all time-

slots. 

Because it is very difficult to write code that results in a 1-

cycle-long schedule, it is rare to encounter a kernel that can send 

or receive on every clock.  If the maximum bandwidth required is 



one word every-other clock or less, then half-bandwidth channels 

are sufficient.  These ½ bandwidth channels can be implemented 

using little more than the word-wide channel and two 1-bit 

channels that already exist in the interconnect.  For longer 

channels, and at high channel utilization, the best solution is 

creating small, dedicated FIFOs at the receiver and using credits 

accounted at the sender for backpressure.  However, we have 

found that for most designs our floorplanner (discussed below) 

can place communicating kernels next to each other, making 

typical inter-kernel streams very short.  Overall, the added 

expense of providing ½ bandwidth channels amounts to only a 

0.16% increase in full-chip area-energy product, a trivial cost. 

C. Dataflow-controlled execution 

Individual control domains must be able to modify their execution 

according to the signaling from the communication channel.  If 

there is no data available for a read in the next instruction, the 

control domain should stop executing (stall) until the data is 

available.  Similarly, if a channel fills up with too much data, the 

control domain should stall until space frees up in the FIFO.  As 

an example, in Fig. 6, B cannot work until A provides the data to 

it.  Similarly, anything executed in C before A and B have 

provided appropriate inputs is useless at best and often results in 

improper functionality. 

We design each end of a dynamic communication channel to 

have a streaming communication port (black circles in Fig. 6) to 

interface with the control domain and buffer data to or from the 

channel.  Fig. 7 zooms in to the top right corner of control domain 

C to show a read port and a write port.  Each read or write port 

takes a predicate from within the control domain that indicates 

whether the kernel actually wishes to perform the scheduled 

communication that cycle.  Stalls occur when an active port’s 

predicate is true, and there is no data in the buffer for reads, or 

there is a full buffer for writes.  In these cases, the stream port 

indicates to the control domain that it should stall and not proceed 

to the next instruction.  If any stream port within a control domain 

signals a stall, the entire control domain halts at the exact same 

place in the schedule.  Therefore, we also need a network to 

aggregate all stall signals from the ports and deliver it to the 

mechanism that actually stalls the control domain. 

 

Figure 7.  Stream port interfaces 

Implementation details for these mechanisms are covered in 

[20].  Rather than build a new configurable clock-gating network, 

the stalls are implemented by stopping the phase counter and 

adding an additional stall configuration in the configuration 

memory.  This configuration instructs registers to hold their value 

and disables writes to register files, which gates their clocks and 

effectively freezes the control domain.  This increase area by 

0.86% and increases energy by a maximum of 3.7%, which is 

significantly less than that used by a configurable clock gating 

network. 

All processors in a control domain must remain on the same 

phase or data will be lost.  This means that the stalls must be 

coordinated to trigger on the same clock cycle, regardless of stall 

source.  Accomplishing this requires a new network.  As this 

network will always be used, there is nothing to gain by building it 

from existing configurable components.  However, by making this 

network programmed by SPR, only two single-bit communication 

links are required between processors (one in each direction).  The 

logic for implementing this function is only a handful of program 

bits, some ORs and a small shift register for each processor.  This 

amounts to an area overhead of only 0.75%. 

The latency of this stall propagation is not negligible, 

especially for a kernel spread over 10’s to 100’s of processing 

units.  Thus, there will be a noticeable latency from when a stall 

condition is detected to when it can actually take effect.  However, 

we have developed techniques to detect the stall in advance of the 

communication that actually triggers it.  This includes saving 

space in outgoing FIFOs via a “high-water mark” to maintain 

space for writes occurring during the stall latency, and separating 

the empty stream check from the data usage in reads.  Better 

operation can also be supported by adding maximum read and 

write frequencies determined by the CAD tools.  This 

transformations make the prediction operations into standard 

operations, which can allow the modulo scheduling algorithms in 

SPR to automatically hide much of these latencies. 

D. Resource assignment 

New floorplanning/global placement tools [21] re required to 

assign specific chip resources to each kernel in the computation.  

This operation is broken into two phases: an optimal resource 

assignment algorithm that sizes the regions assigned to each 

kernel to maximize throughput, and a simulated-annealling based 

global placer to break the computing surface into contiguous 

regions for each kernel. 

For resource assignment we start by allocating each kernel its 

minimum resources, dictated by the number of non-time-

multiplexed elements (memory capacity and the like), as well as 

the maximum time multiplexing allowed by the architecture.  We 

then seek the bottleneck in the system by computing the steady-

state operating rate of the mapping.  This employs per-stream 

reading and writing rates, which establishes a limit on the 

performance of interconnected kernels, and transitively on the 

entire connected computation.   Once the bottleneck is identified, 

exactly enough resources are added to speed up those kernel(s), 

and we iterate back to finding the new bottlenecks.  This continues 

until either all the resources in the system are assigned, or the 

minimum II of some bottleneck kernel is reached, indicating the 

maximum possible performance has been achieved.  We have 

demonstrated that this simple procedure takes less than a second 

on realistic examples, and produces optimal results.  

Resource assignment determines the number of processing 

elements to assign to each kernel, but not their actual position on 

the chip.  For that, we use a simulated-annealing based global 

placement phase.  The heuristic attempts to minimize two cost 

functions to optimize processor assignment for this step.  A 

bounding box is drawn around all the resources for any pair of 

control domains that communicate with one-another for one cost 

representing the inter-kernel communication.  A similar box is 

used for each individual control domain (or the perimeter of the 



domain if larger).  This represents the intra-kernel costs of the 

current placement 

Two floorplans from example applications are shown in Fig. 

8; each color is a separate CGRA region and each square is a 

processor.  Within a region, SPR is used to handle data routing, 

instruction scheduling, and detailed placement, just like a normal 

CGRA. 

   
 a  b 

Figure 8.  Floorplans for a: Bayer filter and b: discrete wavelet transform 

V. CONCLUSION 

While MPPAs and CGRAs each have their strengths, the 

details of their operations hold them back from supporting 

important styles of operation.  In this paper we have presented a 

novel architecture and computation model.  We use multiple 

communicating kernels like an MPPA, allowing for differing 

communication rates and IIs to be balanced to achieve the best 

possible overall performance.  However, instead of requiring a 

user to program at the individual processor level, difficult for a 

streaming computation run on hundreds or thousands of 

processors, we use CGRA techniques to spread computation-

heavy kernels across multiple processors. 

As part of this paper we have mentioned many of the 

challenges that must be faced to create such a system, and 

presented approaches to solve these issues.  We are currently 

developing the Mosaic 2.0 architecture, which should bring this 

computation substrate to future stream processing applications.  

We believe it can provide very power-efficient computation, with 

better area and power consumption than multicore systems (with 

overly complex dynamic scheduling support), FPGAs (with their 

bit-oriented inefficiencies), and MPPAs (which have difficulty 

spreading computations across multiple processors). 

REFERENCES 

[1]  H. Singh, M.-H. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh and E. 
Chaves Filho, "MorphoSys: An Integrated Reconfigurable System for 

Data-Parallel and Computation-Intensive Applications," Computers, 

IEEE Transactions on, vol. 49, no. 5, pp. 465 -481, May 2000.  

[2]  B. Mei, S. Vernalde, D. Verkest, H. De Man and R. Lauwereins, 

"ADRES: An Architecture with Tightly Coupled VLIW Processor and 

Coarse-Grained Reconfigurable Matrix," in Field Programmable 
Logic and Applications (FPL), 2010 International Conference on, 

2003.  

[3]  N. Clark, A. Hormati and S. Mahlke, "VEAL: Virtualized Execution 
Accelerator for Loops," in ISCA '08: Proceedings of the 35th 

International Symposium on Computer Architecture, Washington, 

DC, USA, 2008.  

[4]  B. Van Essen, R. Panda, A. Wood, C. Ebeling and S. Hauck, 

"Managing Short-Lived and Long-Lived Values in Coarse-Grained 

Reconfigurable Arrays," in Field Programmable Logic and 
Applications (FPL), 2010 International Conference on, 2010.  

[5]  S. Friedman, A. Carroll, B. Van Essen, B. Ylvisaker, C. Ebeling and 

S. Hauck, "SPR: An Architecture-Adaptive CGRA Mapping Tool," in 
FPGA '09: Proceeding of the ACM/SIGDA International Symposium 

on Field Programmable Gate Arrays, New York, NY, USA, 2009.  

[6]  D. Truong, W. Cheng, T. Mohsenin, Z. Yu, A. Jacobson, G. Landge, 
M. Meeuwsen, C. Watnik, A. Tran, Z. Xiao, E. Work, J. Webb, P. 

Mejia and B. Baas, "A 167-Processor Computational Platform in 65 
nm CMOS," Solid-State Circuits, IEEE Journal of, vol. 44, no. 4, pp. 

1130 -1144, April 2009.  

[7]  Ambric, Inc, Am2000 Family Architecture Reference, 2008.  

[8]  M. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, 

H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. 

Seneski, N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe and 
A. Agarwal, "The Raw Microprocessor: A Computational Fabric for 

Software Circuits and General-Purpose Programs," Micro, IEEE, vol. 

22, no. 2, pp. 25 - 35, Mar/Apr 2002.  

[9]  B. C. Van Essen, R. Panda, A. Wood, C. Ebeling and S. Hauck, 

"Energy-efficient specialization of functional units in a coarse-

grained reconfigurable array," in Proceedings of the 19th 
ACM/SIGDA international symposium on Field programmable gate 

arrays, New York, NY, USA, 2011.  

[10] B. Van Essen, A. Wood, A. Carroll, S. Friedman, R. Panda, B. 
Ylvisaker, C. Ebeling and S. Hauck, "Static versus scheduled 

interconnect in Coarse-Grained Reconfigurable Arrays," in Field 

Programmable Logic and Applications, 2009. FPL 2009. 
International Conference on, 2009.  

[11] T. R. Halfhill, "Tabula's Time Machine," Microprocessor Report, 

Mar. 29 2010.  

[12] B. Ylvisaker, A. Carroll, S. Friedman, B. Van Essen, C. Ebeling, D. 

Grossman and S. Hauck, "Macah: A "C-Level" Language for 

Programming Kernels on Coprocessor Accelerators," Dept. Elect. 
Eng., Univ. of Washington, Seattle, WA, Tech. Rep., 2008. 

[13] D. Burger, S. Keckler, K. McKinley, M. Dahlin, L. John, C. Lin, C. 

Moore, J. Burrill, R. McDonald and W. Yoder, "Scaling to the end of 
silicon with EDGE architectures," Computer, vol. 37, no. 7, pp. 44-

55, July 2004.  

[14] M. Haselman, N. Johnson-Williams, C. Jerde, M. Kim, S. Hauck, T. 
Lewellen and R. Miyaoka, "FPGA vs. MPPA for Positron Emission 

Tomography pulse processing," in Field-Programmable Technology, 

2009. (FPT 2009) International Conference on, 2009.  

[15] R. Panda, J. Xu and S. Hauck, "Software Managed Distributed 

Memories in MPPAs," in Field Programmable Logic and 

Applications (FPL), 2010 International Conference on, 2010.  

[16] Z. Yu and B. Baas, "High Performance, Energy Efficiency, and 

Scalability With GALS Chip Multiprocessors," Very Large Scale 

Integration (VLSI) Systems, IEEE Transactions on, vol. 17, no. 1, pp. 
66 -79, Jan. 2009.  

[17] N. McVicar, "Architecture and Compiler Support for a VLIW 

Execution Model on a Coarse-Grained Reconfigurable Array," M.S. 
thesis, Dept. Elect. Eng., University of Washington, Seattle, 2011. 

[18] A. Knight, "Multi-Kernel Macah Support and Applications," M.S. 

thesis, Dept. Elect. Eng., University of Washington, Seattle, 2010. 

[19] R. Panda and S. Hauck, "Dynamic Communication in a Coarse 

Grained Reconfigurable Array," in Field-Programmable Custom 

Computing Machines (FCCM), 2011 IEEE 19th Annual International 
Symposium on, 2011.  

[20] R. Panda, C. Ebeling and S. Hauck, "Adding Dataflow-Driven 
Execution Control to a Coarse-Grained Reconfigurable Array," 

Submitted to: Field Programmable Logic and Applications, 2012. 

FPL 2012. International Conference on, 2012.  

[21] A. Wood, A. Knight, B. Ylvisaker and S. Hauck, "Multi-Kernel 

Floorplanning for Enhanced CGRAs," Submitted to: Field 

Programmable Logic and Applications, 2012. FPL 2012. 
International Conference on, 2012.  

 

 


