
Chapel Hill Conference on Advanced Research in VLSI, pp. 383-402, March, 1995.

An Evaluation of Bipartitioning Techniques
Scott Hauck, Gaetano Borriello

Department of Computer Science and Engineering
University of Washington, Seattle, WA 98195

Abstract
Logic partitioning is an important issue in VLSI CAD, and has been an active area of
research for at least the last 25 years. Numerous approaches have been developed and
many different techniques have been combined for a wide range of applications. In this
paper, we examine many of the existing techniques for logic bipartitioning and present a
methodology for determining the best mix of approaches. The result is a novel
bipartitioning algorithm that includes both new and pre-existing techniques. Our
algorithm produces results that are at least 17% better than the state-of-the-art while also
being efficient in run time.

Introduction
Logic partitioning is one of the critical issues in CAD for digital logic. Effective

algorithms for partitioning circuits enable us to apply divide-and-conquer techniques to
simplify most of the steps in the mapping process. For example, standard-cell designs can
be broken up so that a placement tool need only consider a portion of the overall design at
any one time, yielding higher-quality results, using a possibly less efficient algorithm, in a
shorter period of time. Also, large designs must be broken up into pieces small enough to
fit into multiple devices. Traditionally, this problem was important for breaking up a
complex system into several custom ASICs. Now, with the increasing use of FPGA-based
emulators and prototyping systems, partitioning is becoming even more critical.

For all of these tasks, the goal is to minimize the communication between partitions while
ensuring that each partition is no larger than the capacity of the target device. While it is
possible to solve the case of unbounded partition sizes exactly [1], the case of balanced
partition sizes is NP-complete [2]. As a result numerous heuristics have been proposed.

In a 1988 survey of partitioning algorithms [3] Donath stated “there is a disappointing
lack of data comparing partitioning algorithms”, and “unfortunately, comparisons of the
available algorithms have not kept pace with their development, so we cannot always judge
the cost-effectiveness of the different methods”. This statement still holds true, with many
approaches but few overall comparisons. This paper addresses the bipartitioning problem
by comparing many of the existing techniques, along with some new optimizations. It
focuses primarily on those approaches that build on the Kernighan-Lin, Fiduccia-
Mattheyses (KLFM) algorithm [4, 5].

One of the surprising results to emerge from this study is that by appropriately applying
existing techniques an algorithm based upon KLFM can produce better results than the
current state-of-the-art. In table 1 we present the results of our algorithm (Optimized
KLFM), along with results of three of the best current methods (Paraboli [6], EIG1 [7], and
Network Flow [8]), on a set of standard benchmarks [9]. Note that the EIG1 algorithm is
meant to be used for ratio-cut partitioning, not mincut partitioning as presented here.

The results show that our algorithm produces significantly better solutions than the
current state-of-the-art bipartitioning algorithms, with the nearest competitor producing
results 21% worse than ours (thus, our algorithm is 17% better). Our algorithm is also fast,
taking at most 7 minutes on the largest examples. Note that bipartitioning with replication
has shown some promising results (all of the algorithms in the table do not use replication).

Kuznar et al [10, 11] has reported results only 7-10% worse than ours. However, these
results have no cap on the maximum partition size, while all other trials have a maximum
partition size of 55% of the logic. In fact, some of Kuznar et al’s runs have partitions of
size 60% or larger. As will be discussed, allowing a partitioner to use a larger maximum
partition size can greatly reduce the cutset size. Also, their work does not include primary
inputs connected to both partitions as part of the cutset, while the cutsizes reported for the
other approaches, including ours, do include such primary inputs in the cutset.

Mapping Basic KLFM Optimized KLFM EIG1 Paraboli Network Flow

s38584 243 52 76 55 47
s35932 136 46 105 62 49
s15850 105 46 215 91 67
s13207 105 62 241 91 74
s9234 65 45 227 74 70
Mean 118.8 49.8 156.5 73.1 60.3

Normalized 2.386 1.000 3.143 1.468 1.211
Table 1. Quality comparison of partitioning methods. Values for KLFM and
Optimized KLFM1 are the best of ten trials. The EIG1 and Paraboli results are
from [6] (though EIG1 was proposed in [7]), and the Network Flow results are
from [8]. All tests require partitions between 45% and 55% of the circuit size.

In the rest of this paper we discuss the basic KLFM algorithm and compare numerous
optimizations to the basic algorithm. This includes methods for clustering and unclustering
circuits, initial partition creation, and extensions to the standard KLFM inner-loop.

Although the work described in this paper is applicable to many situations, it has been
biased by the fact that we are targeting multi-FPGA systems. One part of this is that the
time it takes to perform the partitioning is important, and is thus a primary concern in this
work. In tasks such as ASIC design, we can afford to allow the partitioner to run for hours
or days, since it will take weeks to create the final implementation. In contrast, a multi-
FPGA system is ready to use seconds after the mapping has been completed, and users
demand the highest turnaround time possible. Thus, there is significant interest in using an
efficient partitioning method, such as KLFM partitioning, as opposed to more brute-force
approaches such as simulated annealing, which can take multiple hours to complete.
Targeting our partitioning work towards multi-FPGA systems has several other impacts,
which will be discussed later in this paper.

Methodology
In our work we have integrated numerous concepts from the bipartitioning literature,

along with some novel techniques, to determine what features make sense to include in an
overall system. We are primarily interested in Kernighan-Lin, Fiduccia-Mattheyses based
algorithms, though we do include some of the Spectral partitioning approaches as well.
Note that there is one major omission from this study: the use of logic replication (i.e., the
duplication of nodes to reduce the cutset). This is primarily because of uncertainty in how
to limit the amount of replication allowed in the multi-FPGA partitioning problem. We
leave this aspect to future work.

The best way to perform this comparison would be to try every combination of
techniques on a fixed set of circuits, and determine the overall best algorithm.
Unfortunately, we consider such a large number of techniques that the possible

1 Optimized KLFM includes recursive connectivity clustering, per-run clustering on gate-level netlists, iterative
unclustering, random initialization, and fixed 3rd-level gains. Each of these techniques is described later in this
paper.

combinations reach into the thousands, even ignoring the ranges of numerical parameter
settings relevant to some of these algorithms. Instead, we use our experience with these
algorithms to try and choose the best possible set of techniques, and then try inserting into
this mix each technique that was not chosen. Where it seemed likely that there would be
some benefit of examining multiple techniques together and exploiting synergistic effects,
we also tested those sets of techniques. In the comparisons that follow we always use all the
features of the best mix of techniques found except where specifically stated otherwise.

Mapping s38584 s35932 s15850 s13207 s9234 s5378
Nodes (gates, latches, IOs) 22451 19880 11071 9445 6098 3225

Table 2. Sizes of example circuits.

The 6 largest circuits from the MCNC partitioning benchmark suite [9] are used as test
cases for this work (one of the largest, s38417, was not used because it was found to be
corrupted at the storage site). While these circuits have the advantage of allowing us to
compare with other existing algorithms, the examples are a bit small for today’s
partitioning tasks (the largest is less than 25,000 gates) and it is unclear how representative
they are for bipartitioning. We hope that in the future a standard benchmark suite of real
end-user circuits, with sizes ranging up to the hundreds of thousands of gates, will be
available to the community.

Basic Kernighan-Lin, Fiduccia-Mattheyses bipartitioning
One of the best-known, and most widely extended, bipartitioning algorithms is that of

Kernighan and Lin [4], especially the variant developed by Fiduccia and Mattheyses [5].
Pseudo-code for the algorithm is given in figure 1. It is an iterative-improvement
algorithm, in that it begins with an initial partition and iteratively modifies it to improve the
cutsize. The cutsize is the number of nets connected to nodes in both partitions, and is the
value to be minimized. The algorithm moves a node at a time, moving the node that causes
the greatest improvement, or the least degradation, in the cutsize. If we allowed the
algorithm to move any arbitrary node, it could decide to move the node just moved in the
previous iteration, returning to the previous state. Thus, the algorithm would be caught in
an infinite loop, making no improvement. To deal with this, we lock down a node after it is
moved, and never move a locked node. The algorithm continues moving nodes until no
unlocked node can be moved without violating the size constraints. It is only after the
algorithm has exhausted all possible nodes that it checks whether it has improved the cutset.
It looks back across all the intermediate states since the last check, finding the minimum
cutsize. This allows it to climb out of local minima, since it is allowed to try out bad
intermediate moves, hopefully finding a better later state. After it moves back to the best
intermediate state, it unlocks all nodes and continues. Once the algorithm fails to find a
better intermediate state between checks it finishes with the last chosen state.

One important feature of the algorithm is the bucket data structure used to find the best
node to move. The data structure has an array of lists, where each list contains nodes in the
same partition that cause the same change to the cutset when moved. Thus, all nodes in
partition 1 that increase the cutset by 5 when moved would be in the same list. When a
node is moved, all nets connected to it are updated. There are four important situations to
look for: 1) A net that was not in the cutset that now is. 2) A net that was in the cutset that
now is not. 3) A net that was firmly in the cutset that is now removable from the cutset. 4) A
net that was removable from the cutset that is now firmly in the cutset. A net is “firmly in
the cutset” when it is connected to two nodes, or a locked node, in each partition. All other
nets in the cutset are “removable from the cutset”, since they are connected to only one
node in one of the partitions, and that node is unlocked. Thus, the net can be removed

from the cutset by moving that node. Each of these four situations means that moving a
node connected to that net may have a different effect on the cutsize now than it would
have had if it was moved in the previous step. All nodes connected to one of these four
types of nets are examined and moved to a new list in the bucket data structure if necessary.

Create initial partitioning;
While cutsize is reduced {

Unlock all nodes;
While valid moves exist {

Use bucket data structures to find unlocked node in each partition that most
improves cutsize when moved to other partition;

Move whichever of the two nodes most improves cutsize while not exceeding
partition size bounds;

Lock moved node;
Update nets connected to moved nodes, and nodes connected to these nets;

} endwhile;
Backtrack to the point with minimum cutsize in move series just completed;

} endwhile;

Figure 1. The Fiduccia-Mattheyses variant of the Kernighan-Lin algorithm.

The basic KLFM algorithm can be extended in many ways. We can choose to partition
before or after technology-mapping. We can cluster circuit nodes together before
partitioning, both to speed up the algorithm’s run-time, and to give some better local
optimization properties to the KLFM’s primarily global viewpoint. We also have a choice
of initial partition creation methods, from completely random to more intelligent methods.
The main search loop can be augmented with more complex cost metrics, possibly adding
more lookahead to the choice of nodes to move. We can uncluster the circuit and reapply
partitioning, using the previous cut as the initial partitioning of the subsequent runs. In this
paper, we will consider each of these issues in turn, examining not only how the different
approaches to each step compare with one another, but also how they combine together to
form a complete partitioning solution.

Clustering and technology-mapping
One of the most common optimizations to the KLFM algorithm is clustering, which

groups together nodes in the circuit being partitioned. Nodes grouped together are
removed from the circuit, and the clusters take their place. Nets that were connected to a
grouped node are instead connected to the cluster containing that node. Clustering
algorithms are applied to the partitioning problem both to boost performance, and also to
improve quality. The performance gain is due to the fact that since many nodes are
replaced by a single cluster, the circuit to be clustered now has fewer nodes, and thus the
problem is simpler. Note that the clustering time can be significant, so we usually cluster
the circuit only once, and if several independent runs of the KLFM algorithm are
performed we use the same clustering for all runs. The ways in which clustering improves
quality are twofold. First of all, the KLFM algorithm is a global algorithm, optimizing for
macroscopic properties of the circuit. It may overlook more local, microscopic concerns.
An intelligent clustering algorithm will often focus on local information, grouping together
a few nodes based on local properties. Thus, a smart clustering algorithm can perform
good local optimization, complementing the global optimization properties of the KLFM
algorithm. Second, it has been shown that the KLFM algorithm performs much better when
the nodes in the circuit are connected to at least an average of 6 nets, while nodes in circuits
are typically connected to between 2.8 to 3.5 nets [12]. Clustering should in general
increase the number of nets connected to each node, and thus improve the KLFM
algorithm. Note that most algorithms (including the best KLFM version we found) will

partition the clustered circuit, and then use this as an initial split for another run of
partitioning, this time on the unclustered circuit. Several variations on this theme will be
discussed in a later section.

The simplest clustering method is to randomly combine connected nodes. The idea here
is not to add any local optimization to the KLFM algorithm, but instead to simply exploit
KLFM’s better results when the nodes in the circuit have greater connectivity. A maximum
random matching of the circuit graph [13] can be formed by randomly picking pairs of
connected nodes to cluster, and then reclustering as necessary to form the maximum
number of disjoint pairs. Unfortunately, this is complex and time-consuming, possibly
requiring O(n3) time [14]. We chose to test a simpler algorithm (referred to here as random
clustering), that should generate similar results while being more efficient and easier to
implement. Each node is examined in random order and clustered with one of its
neighbors (note that a node connected to a neighbor by N nets is N times as likely to be
clustered with that neighbor). A node that was previously the target of a clustering is not
used as a source of a clustering, but an unclustered node can choose to join a grouping with
a node already clustered. Note that with random clustering a new clustering is generated
for each run of the KLFM algorithm.

Numerous more intelligent clustering algorithms exist. K-L clustering [15] (not to be
confused with KL, the Kernighan-Lin algorithm) is a method that looks for multiple
independent short paths between nodes, expecting that these nodes should be placed into
the same partition. Otherwise, each of these paths will have a net in the cutset, degrading the
partition quality. In its most general form, the algorithm requires that two nodes be
connected by k independent paths (i.e. paths cannot share any nets), of lengths at most l1..lk

respectively, to be clustered together. Checking for K-L connectedness can be very time-
consuming, especially for longer paths. The biggest problem is high-fanout nets, which are
quite common in digital circuits. If we are looking for potential nodes to cluster, and the
source node of the search is connected to a clock or reset line, most of the nodes in the
system are potential candidates, and a huge number of paths need to be checked. However,
since huge-fanout nets are the most likely to be cut in any partitioning, we can accelerate
the algorithm by ignoring all nets with fanout greater than some constant. Also, if lk = 1,
then the potential cluster-mates are limited to the direct neighbors of a node (though
transitive clustering is possible, with A & C clustered together with B because both A & C
are K-L connected with node B, while A & C are not K-L connected). In our study of K-L
clustering we ignored all nets with fanout greater than 10, and used k = 2, l1 = 1, l2 = 3 .
The values of maximum considered fanout and l1 were chosen to give reasonable
computation times. While [15] recommends k = 3, l1 = 1, l2 = 3, l3 = 3, we have found that
this yielded few clustering opportunities (this will be discussed later), and the parameters we
chose gave the greatest clustering opportunities with reasonable run-time. Using l2 = 4
would increase the clustering opportunities, but would also greatly increase run-time.

A much more efficient clustering algorithm, related to K-L clustering, has been proposed
[16] (referred to here as bandwidth clustering). In this method, each net e in the circuit
provides a bandwidth of 1/(|e|-1) between all nodes connected to it, where |e| is the number
of nodes or clusters connected to that net. All pairs of nodes that have a total bandwidth
between them of more than 1.0 are clustered. Thus, nodes must be directly connected by at
least two 2-terminal nets to be clustered, or a larger number of higher-fanout nets. This
clustering is similar to k-l clustering with k = 2, l1 = 1, l2 = 1, though it requires greater
connectivity if the connecting nets have greater than 2 terminals. Transitive clustering is
allowed, so if the bandwidth between A&C is zero, they may still be clustered together if
A&B and B&C each have a bandwidth of greater than 1.0 between them. There is an

additional phase (carried out after all passes of recursive clustering, discussed below) that
attempts to balance cluster sizes.

A clustering algorithm similar to bandwidth clustering, but which does not put an
absolute lower bound on the necessary amount of bandwidth between the nodes, and which
also considers the fanout of the nodes involved, has also been tested. It is based upon work
done by Schuler and Ulrich [17], with several modifications. We will refer to it as
connectivity clustering. Like random clustering, each node is examined in a random order
and clustered with one of its neighbors. If a node has already been clustered it will not be
the source of a new clustering attempt, though a node can choose to group with a
previously formed cluster. Nodes are combined with the neighbor with which they have the
greatest connectivity. Connectivity is defined in equation 1. Bandwidthij is the total
bandwidth between the nodes (as defined in bandwidth clustering), where each n-terminal
net contributes 1/(n-1) bandwidth between each pair of nodes to which it is connected.
Fanouti is the number of nets node i is connected to. In this method nodes are more likely
to be clustered if they are connected by many nets (the bandwidthij in the numerator), if the
nodes are small (the sizei & sizej in the denominator), and if most of the nodes’ bandwidth
is only between those two nodes (the fanouti - bandwidthi & fanoutj - bandwidthj terms in
the denominator). While most of these goals seem intuitively correct for clustering, the size
limits is to avoid large nodes (or subsequent large clusters in recursive clustering, defined
below) attracting all neighbors into a single huge cluster. Allowing larger nodes to form
huge clusters early in the clustering will adversely affect the circuit partitioning.

connectivity ij =
bandwidthij

sizei∗size j ∗ fanouti − bandwidthij()∗ fanout j − bandwidthij() (1)

While all the clustering techniques described so far have been bottom-up, using local
characteristics to determine which nodes should be clustered together, it is possible to
perform top-down clustering as well. A method proposed by Yeh, Cheng, and Lin [18]
(referred to here as shortest-path clustering) iteratively applies a partitioning method to the
circuit until all pieces are small enough to be considered clusters. At each step it considers
an individual group at a time, where a group contains all nodes that have always been on the
same side of the cuts in all prior partitionings. The algorithm then iteratively chooses a
random source and sink node, finds the shortest path between those nodes, and increases the
flow on these edges by 0.1. The flow is a number used in computing net lengths, where the
current net length is exp(10*flow). Before each partitioning, all flows are set to zero. When
the flow on a net reaches 1.0, the net is part of the cutset. Once there is no uncut path
between the random pairs of nodes chosen in the current iteration, the algorithm is finished
with the current partitioning. In this way, the algorithm proceeds by performing a large
number of 2-terminal net routings on the circuit graph, with random source and sink for
each route, until it exhausts the resources in the system. Note that the original algorithm
limits the number of subpartitions of any one group. Since this is not an important issue
for our purposes, it was not included in our implementation. There are several alterations
that can be made to this algorithm to boost performance, details of which can be found
elsewhere [19]. Once the algorithm splits up a group into subpartitions, the sizes of the new
groups are checked to determine if they should be further subdivided. For our purposes,
the maximum allowable cluster size is equal to (total circuit size)/100, which is half the
maximum partition size variation.

Before describing the last clustering method, it is necessary to discuss how to calculate
the size of a logic node in the circuit being clustered. For our application (multi-FPGA
systems), we are targeting FPGAs such as the Xilinx 3000 series [20], where all logic is

implemented by lookup-tables (LUTs). A LUT is a logic block that can implement any
function of N variables, where N is typically 4 or 5. Since we will be partitioning circuits
before technology-mapping (the reasons for this will be discussed later), we cannot simply
count the number of LUTs used, since several of the gates in the circuit may be combined
into a single LUT. An important issue with a LUT-based implementation is that we can
combine an M-input function with a P-input function that generates one of the M inputs
into an (M+P-1)-input function. The reason that it is an (M+P-1)-input function, and not
an (M+P)-input function, is that the output of the P-input function no longer needs to be an
input of the function since it is computed inside the LUT. A 1-input function (inverter or
buffer) requires no extra inputs on a LUT. We can therefore say a logic node of P inputs
uses up P-1 inputs of a LUT, and thus the size of a P-input function is (P-1), with a
minimum size of 0. Any I/O nodes (i.e. external inputs and outputs) have a cost of 0. This
is because if size keeps an I/O node out of a partition in which it has neighbors (i.e., nodes
connected to the same net as the I/O node), a new I/O must be added to each partition to
communicate the signal across the cut. Thus, moving an I/O node to a partition in which it
has a neighbor never uses extra logic capacity. Although latches should also have a size of
0, since most FPGAs have more than sufficient latch resources, for simplicity we treat them
identically to combinational logic nodes.

Mapping Random K-L Bandwidth Connectivity Shortest-Path No Presweep

s38584 177 88 112 57 50 59
s35932 73 86 277 47 45 70
s15850 70 90 124 60 59 65
s13207 109 94 87 73 72 79
s9234 63 79 56 52 51 65
s5378 84 78 88 68 67 66
Mean 89.7 85.6 108.7 58.8 56.5 67.1

Table 3a. Quality comparison of clustering methods. Values are minimum
cutsizes for ten runs using the specified clustering algorithm, plus the best
KLFM partitioning and unclustering techniques. Source mappings are not
technology-mapped. The “No Presweep” column is connectivity clustering
applied without first presweeping. All other columns include presweeping.

Mapping Random K-L Bandwidth Connectivity Shortest-Path No Presweep

s38584 2157 2041 2631 1981 4715 2183
s35932 3014 1247 2123 2100 3252 2114
s15850 780 500 871 643 1354 713
s13207 648 428 629 549 1279 696
s9234 326 266 460 333 669 416
s5378 120 147 223 181 447 189
Mean 710.4 526.5 824.4 667.6 1412.5 751.5

Table 3b. Performance comparison of clustering methods. Values are total
CPU seconds on a SPARC-IPX for ten runs using the specified algorithm, plus
the best KLFM partitioning and unclustering techniques.

The last clustering technique we explored is not a complete clustering solution, but
instead a preprocessor (called presweeping) that can be used before any other clustering
approach. The idea is that there are some nodes that should always be in the same partition.
Specifically, one of these nodes has a size of zero, and that node can always be moved to
the other node’s partition without increasing the cut size. The most obvious case is an I/O
node from the original circuit which is connected to some other node N. This I/O node will
have a size of zero, a fanout of one, and moving the I/O node to node N’s partition can only
decrease the cut size (the cut size may not actually decrease, since another node connected

to the net between N and the I/O node may still be in that other partition). Another
situation is a node R, with a fanout of two, which is connected to some node S by a 2-
terminal net. Again, node R will have a size of zero, and can be moved to S’s partition
without increasing the cutsize. The presweeping algorithm goes through the circuit looking
for such situations, and clusters together the involved nodes (R & S, or N and the I/O node).
Note that presweeping can be very beneficial to some clustering algorithms, such as K-L
and Bandwidth, since such algorithms may be unable to cluster the pairs found by
presweeping. For example, an I/O node with a fanout of one will never be clustered by the
K-L clustering algorithm. Since the presweeping clustering should never hurt a
partitioning, presweeping will always be performed in this study unless otherwise stated.

Results for the various clustering algorithms are presented in tables 3a and 3b. The
shortest-path clustering algorithm generates the best results, with connectivity clustering
performing only about 4% worse. In terms of performance, the shortest-path algorithm
takes more than twice as long as the connectivity clustering algorithm. This is because
clustering with the shortest-path algorithm takes more than 15 times as long as the
connectivity approach. Shortest-path clustering would thus be even worse compared to
connectivity clustering if the partitioner does not share clustering between runs, which is
sometimes a good idea. Because of this significant increase in run-time, with only a small
increase in quality, we use the connectivity algorithm for all of our other comparisons. We
can also see that presweeping is a good idea, since connectivity clustering without
presweeping does about 14% worse in cutsize, while taking about 13% longer.

One surprising result is that K-L clustering does only slightly better than random
clustering, and Bandwidth clustering actually does considerably worse. The reason for this
is that these clustering algorithms seem to require technology-mapping, and the
comparisons in the tables are for non-technology-mapped circuits. Technology-mapping
for Xilinx FPGAs is the process of grouping together logic nodes to best fill a CLB (an
element capable of implementing any 5-input function, or two 4-input functions). Thus, it
combines several basic gates into a single CLB. The reason that K-L and Bandwidth
clustering perform poorly on non-technology-mapped (gate-level) circuits is that there are
very few clustering opportunities for these algorithms. Imagine a sum-of-products
implementation of a circuit. In general, any specific AND gate in the circuit will be
connected to two or three input signals and some OR gates. Any AND gates connected to
several of the same inputs will in general be replaced by a single AND gate. The OR gates
are connected to other AND gates, but will almost never be connected to the same AND
gate twice. The one possibility, an OR gate connected to an AND gate’s output as well as
producing one of that AND gate’s inputs, is a combinational cycle, and usually not allowed.
Thus, there will be almost no possibility of finding clusters with Bandwidth clustering, and
few K-L clustering opportunities. While many gate-level circuits will not be simple sum-of-
products circuits, we have found that there are still very few clustering opportunities for the
K-L and Bandwidth algorithms.

Unfortunately, it turns out that technology-mapping before partitioning is an extremely
poor idea. In table 4, columns 2 through 4 shows results for applying the various clustering
algorithms to the Xilinx 3000 technology-mapped versions of the files being tested (note
that only four of the examples are used, because the other examples were small enough that
the size of a single CLB was larger than the allowed partition size variation). Column 5
(“No Tech Map”) has the results for connectivity clustering on gate-level (non-
technology-mapped) circuits. The results show that technology-mapping before
partitioning almost doubles the cutsize. The K-L and Bandwidth clustering algorithms do
perform almost as well as the connectivity clustering algorithm for these circuits, but

obviously we are much better off simply partitioning the gate-level circuits. This has an
added benefit of speeding up technology-mapping as well, since we can technology-map
each of the partitions in parallel. Note that we may increase the logic size by partitioning
before technology-mapping, because there are fewer groupings for the technology-mapper
to consider. However, in many technologies (especially multi-FPGA systems) the amount
of logic that can be fit on the chip is constrained much more by the number of I/O pins
than on the logic size, and thus decreasing the cutsize by a factor of two is worth a small
increase in logic size. This increase in logic size is likely to be fairly small since gates that
technology-mapping is likely to group together into a single CLB share signals, and are
thus likely to be placed into the same partition by the partitioner.

Mapping K-L Bandwidth Connectivity No Tech Map Unclusterable

s38584 169 159 120 57 60
s35932 155 157 143 47 53
s15850 86 90 87 60 60
s13207 118 119 116 73 72
Mean 127.7 127.9 114.7 58.5 60.9

Table 4. Quality comparison of clustering methods on technology-mapped
circuits. Values are minimum cutsizes for ten runs using the specified
algorithm. The values in the column marked “Unclusterable” are the results of
applying Connectivity clustering to technology-mapped files, but allowing the
algorithm to uncluster the clusterings formed by the technology-mapping.
Note that only the four largest circuits are used, because technology-mapping
for the others causes clusters to exceed allowed partition size variation.

It is fairly surprising that technology-mapping has such a negative effect on partitioning.
There are two possible explanations: 1) technology-mapping produces circuits that are
somehow hard for the KLFM algorithm to partition or 2) technology-mapping creates
circuits with much higher minimum cutsizes. There is evidence that the second reason is
the underlying cause, that technology-mapped circuits simply cannot be partitioned as well
as gate-level circuits, and that it is not simply due to a poor partitioning algorithm. To
demonstrate this, we use the fact that the technology-mapped circuits for the Xilinx 3000
series we are using contain information on what gates are clustered together to form a single
CLB. This allows us to consider the technology-mapping not as a permanent restructuring
of the circuit, but instead simply as another clustering preprocessor. That is, we allowed our
algorithm to partition the circuit with the technology-mapped files, with connectivity
clustering applied on top of that, then uncluster down to the basic gates and partition again.
The results are shown in the final column of table 4. Although the results for this technique
are slightly worse than pure Connectivity clustering, it is still much better than the
permanently technology-mapped versions. The small example circuit (s27), as shown in
figure 2, demonstrates the problems technology-mapping can cause. There is a balanced
partitioning of the circuit with a cutsize of 2, as shown in gray at left. However, after
technology-mapping (CLBs are shown by gray loops), the only balanced partitioning puts
the smaller CLBs in one partition, the larger CLB on the other. This split has a cutsize of 5.

The effects of technology mapping on cutsize have been examined previously by
Weinmann [21], who determined that technology-mapping before partitioning is actually a
good idea, primarily for performance reasons. However, in his study he used only a basic
implementation of Kernighan-Lin (apparently not even the Fiduccia-Mattheyses
optimizations were applied), thus generating cutsizes significantly larger than what our
algorithm produces, with much slower performance. Thus, the benefits of any form of
clustering would help the algorithm, making the clustering provided by technology-

mapping competitive. However, even these results report a 6% improvement in arithmetic
mean cutsize for partitioning before technology-mapping, and the difference in geometric
mean is actually 19%2.

27
35

17

33

11

19
23

25

31

13

29

27
35

17

33

11

19
23

25

31

13

29

Figure 2. Example of the impact of technology-mapping on partitioning
quality. The circuit s27 is shown (clock, reset lines, and I/O pins are omitted).
At left is a balanced partition of the unmapped logic, which has a cutsize of 2.
Gray loops at right indicate logic grouped together during technology-
mapping. The only balanced partitioning has the largest group in one
partition, the other two in the other partition, yielding a cutsize of 5.

Unclustering
When we use clustering to improve partitioning, we will usually partition the circuit,

uncluster it, and partition again. There are several ways to uncluster. Most obviously, we
can either choose not to uncluster at all (no unclustering), or we can completely remove all
clustering in one step (complete unclustering). However, it turns out there are better
alternatives. The important observation is that while clustering we can build a hierarchy of
clusters by recursively applying a clustering method, and then uncluster it in a way that
exploits this hierarchy. In recursive clustering, after the circuit is initially clustered we
reapply the clustering algorithm again upon the already clustered circuit. Clusters are never
allowed to grow larger than half the allowed partition size variation. Recursive clustering
continues until no more clusters can be formed. We remember what clusters are formed at
each step, with clusters formed in the ith pass forming the ith level of a clustering hierarchy.

There are two ways to take advantage of the clustering hierarchy formed during recursive
clustering. The most obvious method is that after partitioning completes (that is, when a
complete pass of moving nodes fails to find any state better than the results of the previous
pass) we remove the highest level of the clustering hierarchy, leaving all clusterings at the
lower levels alone, and continue partitioning. That is, subclusters of clusters at the highest
level, as well as those clusters that were not reclustered in the highest level, will remain
clustered for the next pass. This process repeats until all levels of the clustering have been
removed (note that clustering performed by presweeping is never removed, since there is
nothing to be gained by doing so). In this way, the algorithm performs very coarse-grain
optimization during early passes, very fine grain optimization during late passes, as well as
medium-grain optimization during the middle passes. This algorithm, which we will refer
to here as iterative unclustering, is based on work by Cong and Smith [22].

An alternative to iterative unclustering is edge unclustering. This technique is based on
the observation that at any given point in the partitioning there is likely to be some fine-
grained, localized optimization, and some coarse-grained, global optimization that should
be done. Specifically, those nodes that are very close to the current cut should be very

2
 Throughout this paper we use geometric instead of arithmetic means because we believe improvements to

partitioning algorithms will result in some percentage decrease in each cutsize, not a decrease of some constant
number of nets in all examples. That is, it is likely that an improved algorithm would reduce cutsizes for all
circuits by 10%, and would not reduce cutsizes by 10 nets in both large and small examples. Thus, the
geometric mean is more appropriate.

carefully optimized, while nodes far from the cut need much less detailed examination.
The edge unclustering algorithm is similar to iterative unclustering in that it keeps
unclustering the highest levels of clustering remaining in between runs of the KLFM
partitioning algorithm. However, instead of removing all clusters at a given level, it only
removes clusters that are adjacent to the cut (i.e., those clusters connected to edges that are
in the cutset). In this way, we will end up eventually unclustering all clusters next to the cut,
while other clusters may remain together. When there are no more clusters left adjacent to
the cut, we completely uncluster the circuit and partition with KLFM.

Single-level Clustering Recursive Clustering
Mapping No Uncluster Complete

Uncluster
No Uncluster Complete

Uncluster
Iterative

Uncluster
Edge

Uncluster

s38584 95 77 167 88 57 56
s35932 157 156 90 75 47 46
s15850 77 67 123 84 60 62
s13207 101 79 119 89 73 72
s9234 68 61 105 54 52 58
s5378 79 68 125 70 68 68
Mean 92.4 80.1 119.3 75.6 58.8 59.7

Table 5a. Quality comparison of unclustering methods. Values are minimum
cutsizes for ten runs using the specified algorithm. Source mappings are not
technology-mapped, and are clustered by presweeping and connectivity
clustering.

Single-level Clustering Recursive Clustering
Mapping No Uncluster Complete

Uncluster
No Uncluster Complete

Uncluster
Iterative

Uncluster
Edge

Uncluster

s38584 1220 1709 1104 1784 1981 2023
s35932 1224 1664 1359 1798 2100 2127
s15850 380 491 301 485 643 646
s13207 375 525 282 429 549 572
s9234 219 283 145 262 333 335
s5378 104 144 82 132 181 162
Mean 411.4 557 338.9 533.6 667.6 664.8

Table 5b. Performance comparison of unclustering methods. Values are run
times on a SPARC-IPX for ten runs using the specified algorithm.

As the results in tables 5a and 5b show, using recursive clustering and a hierarchical
unclustering method (iterative or edge unclustering) has a significant advantage. The
methods that do not uncluster are significantly worse than all other approaches, by up to
more than a factor of two. Using only a single clustering pass plus complete unclustering
yields a cutsize 36% larger than the best unclustering (iterative), and even complete
unclustering of a recursively clustered mapping yields a 29% larger cutsize. The difference
between the two hierarchical unclustering methods is only 1.5%, with three mappings
having smaller cutsizes with edge unclustering, and two mappings having smaller cutsizes
with iterative unclustering. Thus, it appears that the difference between the two approaches
is slight enough to be well within the margins of error of this survey, with no conclusive
winner. In this survey, we use iterative unclustering except where explicitly stated otherwise.

Initial partition creation
KLFM is an iterative-improvement algorithm that gives no guidance on how to construct

the initial partitioning that is to be improved. As one might expect, there are many ways to
construct this initial partitioning, and the method chosen has an impact on the results.

The simplest method for generating an initial partition is to just randomly create one
(random initialization) by randomly ordering the clusters in the circuit (initial partition
creation takes place after clustering), and then finding the point in this ordering that best
balances the total cluster sizes before and after this point. All nodes before this point are in
one partition, and all nodes after this point are in the other partition.

Mapping Random Seeded Breadth-first Depth-first

s38584 57 57 57 56
s35932 47 47 47 47
s15850 60 60 60 60
s13207 73 75 80 74
s9234 52 68 52 52
s5378 68 79 80 78
Mean 58.8 63.4 61.4 60.2

Table 6a. Quality comparison of initial partition creation methods. Values are
minimum cutsizes for ten runs using the specified algorithm.

Mapping Random Seeded Breadth-first Depth-first

s38584 1981 1876 1902 2033
s35932 2100 2053 2090 2071
s15850 643 604 613 584
s13207 549 531 561 533
s9234 333 302 319 325
s5378 181 186 177 173
Mean 667.6 641.0 652.5 647.5

Table 6b. Performance comparison of initial partition creation methods.
Values are total CPU seconds on a SPARC-IPX for ten runs using the
specified algorithm.

An alternative to this is seeded initialization, which is based on work by Wei and Cheng
[23]. The idea is to allow the KLFM algorithm to do all the work of finding the initial
partitioning. It randomly chooses one cluster to put into one partition, and all other clusters
are placed into the other partition. The standard KLFM algorithm is then run with the
following alterations: 1) partitions are allowed to be outside the required size bounds,
though clusters can not be moved to a partition that is too large, and 2) at the end of the
pass, it accepts any partition within size bounds instead of a partition outside of the size
bounds. Thus, the KLFM algorithm should move clusters related to the initial “seed”
cluster over to the small partition, thus making all nodes that end up in the initially 1-cluster
partition much more related to one-another than a randomly generated partitioning.

We can also generate an initial partitioning that has one tightly connected partition by
breadth-first initialization. This algorithm starts with a single node in one of the partitions
and performs a breadth-first search from the initial node, inserting all nodes found into the
seed node’s partition. Once the seed partition grows to contain as close to half the overall
circuit size as possible the rest of the nodes are placed into the other partition. To avoid
searching huge-fanout nets such as clocks and reset lines, which would create a very
unrelated partition, nets connected to more that 10 clusters are not searched. Depth-first
initialization can be defined similarly, but should produce much less related partitions.

Results for these initial partition construction techniques are shown in tables 6a and 6b.
The data shows that random is actually the best initialization technique, followed by depth-
first search. The “more intelligent” approaches of seeded and breadth-first do 7% and 4%
worse than random, respectively, and the differences occur only for the three smaller
mappings. There are three reasons for this. First of all, recursive clustering and iterative
unclustering seem to be able to handle the larger circuits well, regardless of how the circuit

is initialized. With larger circuits there are more levels of hierarchy and the algorithms
consistently get the same results. For smaller mappings there are fewer levels and much
greater variance in results. Since there are many potential cuts that might be found when
partitioning smaller circuits, getting the greatest variance in the starting point will allow
greater variety in results, and better values will be found (as will worse, but we only accept
the best value of ten runs). Thus, the more random starting points perform better (random
and depth-first initialization). Also, the more random the initial partitioning, the easier it is
for the partitioner to move away from the initial partitioning. Thus, the partitioner is not
trapped in a potentially poor partitioning, and can generate better results.

Mapping Random EIG1 EIG1-IG IG-Match All Spectral

s38584 57 57 57 57 57
s35932 47 47 47 47 47
s15850 60 60 96 96 60
s13207 73 111 82 82 82
s9234 52 54 54 n/a 54
s5378 68 78 78 n/a 78
Mean 58.8 65.0 66.8 n/a 61.8

Table 7a. Quality comparison of Spectral initial partition creation methods. IG-
Match [24], EIG1 and EIG-IG [7] are spectral partitioning algorithms, used here
to generate initial partitions. Entries labeled “n/a” are situations where the
algorithm failed to find a partitioning within the required partition size bounds.
Some of the spectral algorithms may move several clusters from one side of
the cut to the other at once, missing the required size bounds (required only
for our purposes, not for the ratio-cut metric for which they were designed).
“All Spectral” is the best results from all three spectral algorithms.

Mapping Random EIG1 EIG1-IG IG-Match All Spectral

s38584 1981 336 445 1207 1988
s35932 2100 444 463 540 1447
s15850 643 89 102 206 397
s13207 549 79 95 152 326
s9234 333 42 56 n/a 98*
s5378 181 26 39 n/a 65*
Mean 667.6 102.3 127.8 n/a 365.2*

Table 7b. Performance comparison of Spectral initial partition creation
methods. Values are total CPU seconds on a SPARC-IPX for the clustering,
initialization, and partitioning algorithms combined. Values marked with “*” do
not include the time for the failed IG-Match runs.

While the previous discussion of initial partition generation has focused on simple
algorithms, we can in fact use more complex, complete partitioning algorithms to find
initial partitions. Specifically, there exists a large amount of work on “spectral”
partitioning methods (as well as others) that constructs a partitioning from scratch. We will
consider here the IG-Match [24], EIG1 and EIG-IG [7] spectral partitioning algorithms.
Details of these approaches are beyond the scope of this paper. One important note is that
these algorithms are designed to optimize for the ratio-cut objective [23], which does not
necessarily generate balanced partitions. However, we obtained the programs from the
authors and altered them to generate only partitions with sizes between 49% and 51% of the
complete circuit size, the same allowed partition size variation used throughout this paper.
These algorithms were applied to clustered circuits to generate initial partitionings. These
initial partitionings were then used by our KLFM partitioning algorithm.

As the results show, the algorithms (when taken as a group, under “All Spectral”)
produce fairly good results, but are still 5% worse than the random initialization approach.
They do have the advantage of faster run times (including the time to perform Spectral
Initialization on the clustered circuits), since they do not require, and cannot use, multiple
partitioning runs. However the KLFM algorithm can be run fewer times, meeting the
Spectral performance, while getting better quality results.

Higher-level gains
The basic KLFM algorithm evaluates node moves purely on how the move immediately

affects the cutsize. However, there are often several possible moves that have the same
effect on the cutsize, but these moves may have very different ramifications for later moves.
Take for example the circuit in figure 3 left. If we move either B or E to the other partition,
the cutsize remains the same. However, by choosing to move B, we can reduce the cutsize
by one by then moving A to the other partition. If we move E, it will take two further
moves (C and D) to remove the newly cut three-terminal net from the cutset, and this would
still keep the cutsize at 2 because of the edge from C to the rest of the logic.

A

B Complex
Logic

D
E

CComplex
Logic

4 5

2

3
1

6

8
7

Figure 3. Examples for higher-level gains discussion.

To deal with this problem, and give the KLFM algorithm some lookahead ability,
Krishnamurthy proposed higher-level gains [25]. As in the standard KLFM algorithm, a
net that is not in the cutset contributes an immediate (first-level) increase of 1 (gain of -1)
in cutsize if any of the nodes connected to it move to another partition. The extension is
that if a net has n unlocked nodes in a partition, and no locked nodes in that partition, it
contributes an nth-level gain of 1 to moving a node from that partition. Moves are
compared based on the lowest-order gain in which they differ. So a node with gains (-1, 1,
0) (1st-level gain of -1, 2nd-level of 1, 3rd-level of 0) would be better to move than a node
of (-1, 0, 2), but worse to move than a node of (0, 0, 0). To illustrate the gain computation
better, we give the examples in figure 3 right. Net 123 is currently cut, so there is no
negative gain for moving nodes connected to this net. There is only one unlocked node on
this net in the left partition, and no locked nodes, so there is a 1st-level gain of 1 for moving
node 1. There are two unlocked and no locked nodes on net 123 in the right partition, so
there is a 2nd-level gain for moving nodes 2 or 3. Note that if either 2 or 3 were locked,
there would be no 2nd-level gain for this net, since there is no way to remove all connected
nodes from the right partition. Net 45 is not currently cut, so there is a first-order gain of
-1 for moving a node on this net to the partition on the right. 45 has two unlocked nodes
in the left partition, so there is a 2nd-order gain of 1 for making the same move. Net 678 is
similar to 45 , except that it has a 3rd-order, not a 2nd-order, gain of 1. So, we can rank the
nodes (from best to move to worst) as 1, 23 , 45 , 678, where nodes grouped together have
the same gains. If we do move 1 first, 1 would now be locked into the other partition, and
nodes 2 and 3 would have a 1st-level gain of -1, and no other gains. Thus, they would
become the worst nodes to move, and node 4 or 5 would be the next candidate.

Note that the definition of nth-level gains given above is slightly different that
Krishnamurthy’s. Specifically, in Krishnamurthy’s definition the rule that gives an nth-
level gain to a net with n unlocked nodes in a partition is restricted to nets that are currently

in the cutset. Thus, nets 678 and 45 would both have gains (-1, 0, 0). However, as we have
seen, allowing nth-level gains for nets not in the cutset allows us to see that moving a node
on 45 is better than moving a node on 678, since it is easier to then remove 45 from the
cutset than it is 678. Also, this definition handles 1-terminal nets naturally, while
Krishnamurthy requires no 1-terminal nets to be present in the circuit. A 1-terminal net
with our definitions would have a 1st-level gain of -1 because it is not in the cutset, but a
1st-level gain of 1 for having only 1 node in a given partition, yielding an overall 1st-level
gain of 0. Note that 1-terminal nets are common in clustered circuits, when all nodes
connected to a net are clustered together.

Fixed

Mapping Dynamic 1 2 3 4 20

s38584 57 57 57 57 57 57
s35932 49 47 49 47 47 47
s15850 60 64 62 60 60 60
s13207 75 77 77 73 73 73
s9234 52 56 52 52 52 52
s5378 66 71 70 68 68 68
Mean 59.2 61.2 60.4 58.8 58.8 58.8

Table 8a. Quality comparison of higher-level gains. Numbers in column
headings are the highest higher-level gains considered. Note that a fixed
gain-level of 1 is identical to KLFM without higher-level gains. Values are
minimum cutsizes for ten runs using the specified algorithm.

Fixed

Mapping Dynamic 1 2 3 4 20

s38584 1904 1606 1652 1981 2078 3910
s35932 2321 1830 1862 2100 2297 2766
s15850 630 509 518 643 678 956
s13207 551 425 446 549 572 815
s9234 338 252 250 333 355 466
s5378 186 130 134 181 185 241
Mean 677.2 524.5 536.4 667.6 703.8 990.8

Table 8b. Performance comparison of higher-level gains. Values are total CPU
seconds on a SPARC-IPX for ten runs using the specified algorithm.

There is an additional problem with using higher-level gains on clustered circuits: huge
runtimes. The KLFM partitioning algorithm maintains a bucket for all nodes with the same
gains in each partition. Thus, if the highest-fanout node has a fanout of N, in KLFM
without higher-level gains there must be 2*N+1 buckets per partition (the N-fanout node
can have a total gain between +N and -N). If we use M-level gains (i.e. consider higher-level
gains between 1st-level and Mth-level inclusive), we would require (2*N+1)M different
buckets. In unclustered circuits this is fine, since nodes will have a fanout of at most 5 or 6.
Unfortunately, clustered circuits can have nodes with fanout on the order of hundreds. This
causes not only a storage problem, but also a performance problem, since the KLFM
algorithm will often have to perform a linear search of all buckets of gains between
occupied buckets, and buckets will tend to be sparsely filled. We have found two different
techniques for handling these problems. First of all, the runtimes are acceptable as long as
the number of buckets is reasonable (perhaps a few thousand). So, given a specific bound
N on the largest-fanout node (which is fixed after every clustering and unclustering step),
we can set M to the largest value that requires less than a thousand buckets be maintained.
This value is recalculated after every unclustering step, allowing us to use a greater number
of higher-level gains as the remaining cluster sizes get smaller. We call this technique

dynamic gain-levels. An alternative to this is to exploit the sparse nature of the occupied
gain buckets. That is, among nodes with the same 1st- and 2nd-level gains, there will be few
different occupied gain buckets. What we can do is perform the dynamic gain-level
computation to determine the number of array locations to use, but each of these array
locations is actually a sorted list of occupied buckets. That is, once the dynamic
computation yields a given M, all occupied gain buckets with the same first M gains will be
placed in the list in the same array location. In this way, circuits with large clusters, and thus
very sparse usage of the possible gain levels, have only 2 or 3 gain-levels determining the
array location, while circuits with small or no clusters, and thus more dense usage of the
smaller possible gain locations, have more of their gain orders determining the array
locations. In this latter technique, called fixed gain-levels, the user can specify how many
gain-levels the algorithm should consider, and the algorithm automatically adapts its data
structures to the current cluster sizes.

As shown in tables 8a and 8b, using more gain levels improves the quality of the results,
but only to a point. Once we consider gains up to the 3rd level, we get all the benefits of up
to at least 20 gain levels. Thus, extra gain levels beyond the 3rd only serve to slow down
the algorithm, up to a factor of 50% or more. Dynamic gain-levels produce results between
those of 2nd-level and 3rd-level fixed gains. This is because at high clustering levels the
dynamic algorithm uses only 2 gain levels, though once the circuit is almost totally
unclustered it uses several more gain-levels. In this survey we use fixed, 3-level gains.

Partition maximum size variation
Variation in the allowed partition size can have a significant impact on partitioning

quality. In partitioning, we put limits on the sizes of the partitions so that the partitioner
cannot place most of the nodes into a single partition. Allowing all nodes into a single
partition obviously defeats the purpose of partitioning in most cases, since we are usually
trying to divide the problem into manageable pieces. The variance in partition size defines
the range of sizes allowed, such as between 45% and 55% of the entire circuit. There are
two incentives to allow as much variance in the partition sizes as possible. First of all, the
larger the allowable variation, the greater the number of possible partitionings. With more
possible partitionings, it is likely that there will be better partitionings available, and
hopefully the partitioner will generate smaller cutsizes. The second issue is that there needs
to be enough variance in partition sizes to let each node move between partitions. If the
minimum partition size plus the size of a large node is greater than the maximum partition
size then this node can never be moved. This will artificially constrain the placement of this
node to the node’s initial partition assignment, which is often a poor choice. While we
might expect that the size of the nodes in the graph being partitioned will be small, and thus
not require a large variation in partition sizes, we will usually cluster together nodes before
partitioning, greatly increasing the maximum node size. A smaller partition variation will
limit the maximum cluster size, limiting the effectiveness of clustering optimizations. In
general, we will require that the maximum cluster size be at most half the size of the
allowable variation in partition sizes. In this way, if we have maximum-sized clusters as
move candidates from both partitions, at least one of them will be able to move.

Conflicting with the desire to allow as much variation in partition sizes as possible is the
fact that the larger the variation, the greater the wastage of logic resources in a multi-chip
implementation, particularly a multi-FPGA system. Specifically, when we partition to a
system of 32 FPGAs, we iteratively apply our bipartitioning algorithm. We split the overall
circuit in half, then split each of these partitions in half, and so on until we generate a total
of 32 subpartitions. Now, consider allowing partition sizes to vary between 40% and 60%

of the logic being split. On average, it is likely that better partitions exist at points where the
partition sizes are most unbalanced, since with the least amount of logic in one partition
there is the least chance that a net is connected to one of those nodes, and thus the cutsize is
likely to be smaller. This means that many of the cuts performed may yield one partition
containing nearly 60% of the nodes, and the other containing close to 40%. Thus, after 5
levels of partitioning, there will probably be one partition containing .65 = .078 of the
logic. Now, an FPGA has a fixed amount of logic capacity, and since we need to ensure
that each partition fits into an individual FPGA, all FPGAs must be able to hold that amount
of logic. Thus, for a mapping of size N, we need a total FPGA logic capacity of
32*(.078*N) = 2.488*N, yielding a wastage of about 60%. In contrast, if we restrict each
partition to between 49% and 51%, the maximum subpartition size is .515 = .035, the
required total FPGA logic capacity is 1.104*N, and the wastage is about 10%. This is a
much more reasonable overhead and we will thus restrict the partition sizes considered in
this paper to between 49%-51% of the total logic size. Note that by a similar argument we
can show that partitioning algorithms that lack strong control over partition sizes, such as
ratio-cut algorithms [23], are unsuitable for our purposes.

Overall comparison
While throughout this paper we have discussed how individual techniques impact an

overall partitioning algorithm, it is natural to wonder which of these techniques is most
important, and how much of the cutsize improvement is due to any specific technique. We
have tried to answer this question in two ways. First of all, we can take the comparisons we
have made throughout this paper, and bring them together into a single graph (figure 4
right). Here we show the difference between the cutsizes generated by our best algorithm
and the cutsizes generated with the same algorithm, except the specified technique has been
replaced with the worst alternative considered in this paper. For example, the “Connectivity
Clustering” line is the difference between our best algorithm, which uses Connectivity
clustering, and the best algorithm with Bandwidth clustering used instead. Note that the
alternative used for iterative unclustering is complete clustering, not no unclustering, since
complete unclustering is a very commonly used technique when any clustering is applied.

Our second comparison was made by starting with an algorithm using the worst choice
for each of the techniques, and then iteratively adding whichever of the best techniques
gives the greatest improvement in cutsize. Specifically, we ran the worst algorithm, and then
ran it several more times, this time with each of the best techniques substituted individually
into the mix. Whichever technique reduced the overall cutsize the most was inserted into
the algorithm. We then tried running this algorithm multiple times, with both that best
technique inserted, as well as each of the other techniques (one at a time). This process was
repeated until all techniques were inserted. The resulting cutsizes, and the technique that
was added to achieve these improvements, are shown in figure 4 left. The initial, worst
algorithm used was basic KLFM with seeded initialization and technology-mapped files.

As we can see from the graphs in figure 4, the results are mixed. Both of the
comparisons show that connectivity clustering, recursive clustering, and iterative
unclustering have a significant impact, presweeping has a modest impact, and both random
initialization and higher-level gains cause only a small improvement. The results are mixed
on technology-mapping, with the left comparison indicating only a small improvement,
while the right comparison indicates a decrease in cutsize of almost a factor of two.

The graphs in figure 4 give the illusion that we can pinpoint which individual techniques
are responsible for what portion of the improvements in cutsizes. However, it appears that
cutsize decreases are most likely due more to synergy between multiple techniques than to

the sum of individual techniques. In figure 5 we present all of the data used to generate
figure 4 left. The striped bar at left is the cutsize of the worst algorithm. The other groups
of bars represent the cutsizes generated by adding each possible unused technique to the
best algorithm found in the prior group of bars. Thus, the leftmost group of 5 bars
represent 5 possible techniques to add to the worst algorithm, and the group of 5 bars just
to the right represent the 5 possible additions to the best algorithm from the leftmost group
of bars. Note that the leftmost set of bars is missing one bar, since we cannot consider
recursive clustering & iterative unclustering until we first introduce a clustering metric.

0

25

50

75

100

125

C
ut

si
ze

 (
G

eo
m

 M
ea

n)

Connectivity Clustering,
 Complete Unclustering

No Technology Mapping

Recursive Clustering,
 Iterative Unclustering

Random Initialization

Presweeping

Higher-Level Gains

Best Cutsize

0 10 20 30 40 50 60

Increase in Cutsize (Geom. Mean # of nets)

Connectivity Clustering

No Technology Mapping

Recursive Clustering

Iterative Unclustering

Higher-Level Gains

Presweeping

Random Initialization

Figure 4. Two methods of determining the contribution of individual
partitioning techniques to the overall results. At left are the resulting cutsizes
after starting with the worst algorithm, then iteratively adding the technique
that gives the greatest improvement at that point. At right are the results of
comparing our best algorithm vs. taking the specified technique and replacing
it with the worst alternative in this paper.

0

25

50

75

100

125

C
ut

si
ze

Higher-Level Gains

Presweeping

Random Initialization

Recurse. Clust., Iter. Unclust

No Tech. Mapping

Connectivity Clustering

Worst

Figure 5. Details of the comparison of individual features. The bar at left is
the cutsize of the worst algorithm. Each group of bars is the set of all possible
improvements to the algorithm. Gray horizontal lines show the cutsize of the
best choice in a given group of bars.

The observation to be made from figure 5 is that a technique can have a radically
different impact on the overall cutsize depending on what other techniques are used. For
example, if we apply the worst algorithm to non-technology mapped files, the resulting
cutsizes increase by about 9%; Once we add connectivity clustering to the worst algorithm
we then see an improvement of 3% by working on non-technology mapped files. In fact,
figure 5 shows cases where we degrade the cutsize by applying random initialization,
presweeping, or higher-level gains, even though all of these techniques are used in our best
algorithm, and the cutsizes would increase if we removed any of these techniques. The
conclusion to be reached seems to be that it is not just individual techniques that generate
the best cutsizes, but it is the intelligent combination of multiple techniques, and the
interactions between them, that is responsible for the strong partitioning results we achieve.

Conclusions
There are numerous approaches to augmenting the basic Kernighan-Lin, Fiduccia-

Mattheyses partitioning algorithm, and the proper combination is far from obvious. We
have demonstrated that technology-mapping before partitioning is a poor choice,
significantly impacting mapping quality. Clustering is very important, and we found that
Connectivity clustering performs well, though Shortest-path clustering is a reasonable
alternative. Recursive clustering and a hierarchical unclustering technique help take
advantage of the full power of the clustering algorithm, with iterative unclustering being
somewhat preferred to edge unclustering. Augmenting the basic KLFM inner-loop with at
least 2nd- and 3rd-level gains improves the final results. The table in the introduction
shows that applying all of these techniques generates results at least 17% better than the
state-of-the-art in partitioning research.

This paper has included several novel techniques, or efficient implementations of existing
work. We have started from the base work of Schuler and Ulrich [17] to develop an
efficient, effective clustering method. We have also created the presweeping clustering pre-
processor to help most algorithms handle small fanout gates. We have shown how shortest-
path clustering can be implemented efficiently. We developed the edge unclustering
method, which is competitive with iterative unclustering. Finally, we have extended the
work of Krishnamurthy [25], both to allow higher-order gains to be applied to nets not in
the cutset, and also to give an efficient implementation, even when the circuit is clustered.

Beyond the details of how exactly to construct the best partitioner, there are several
important lessons to be learned. As we have seen, the only way to determine whether a
given optimization to a partitioning algorithm makes sense is to actually try it out, and to
consider how it interacts with other optimizations. We have shown that many of the
optimizations had greater difficulty working on clustered circuits than on unclustered
circuits, yet clustering seems to be important to achieve the best results. Also, many of the
clustering algorithms seem to assume the circuit will be technology-mapped before
partitioning, yet technology-mapping the circuit will greatly increase the cutsize of the
resulting partitionings. However, it is quite possible to reach a different conclusion if we
use only the basic KLFM algorithm, and not any of the numerous enhancements proposed
since then. By using the basic KLFM algorithm, cutsizes are huge, and subtle effects can be
ignored. While a decrease of 10 in the cutset is not significant when cutsizes are in the
hundreds, it is critical when cutsizes are in the tens. Thus, it is important that as we continue
research in partitioning we properly place new concepts and optimizations in the context of
what has already been discovered.

Acknowledgments
This paper has benefited from the help of several people, including Lars Hagen, Andrew

B. Kahng, D. F. Wong, and Honghua Yang. This research was funded in part by the
Advanced Research Projects Agency under Contract N00014-J-91-4041. Scott Hauck was
supported by an AT&T Fellowship.

References
[1] C. K. Cheng, T. C. Hu, “Maximum Concurrent Flow and Minimum Ratio-cut”, Technical Report CS88-141,

University of California, San Diego, December, 1988.
[2] M. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, San

Francisco, CA: Freeman, 1979.
[3] W. E. Donath, "Logic Partitioning", in Physical Design Automation of VLSI Systems, B. Preas, M.

Lorenzetti, Editors, Menlo Park, CA: Benjamin/Cummings, pp. 65-86, 1988.
[4] B. W. Kernighan, S. Lin, "An Efficient Heuristic Procedure for Partitioning of Electrical Circuits", Bell

Systems Technical Journal, Vol. 49, No. 2, pp. 291- 307, February 1970.
[5] C. M. Fiduccia, R. M. Mattheyses, "A Linear-Time Heuristic for Improved Network Partitions", DAC, pp.

241-247, 1982.
[6] B. M. Riess, K. Doll, F. M. Johannes, “Partitioning Very Large Circuits Using Analytical Placement

Techniques”, DAC, pp. 646-651, 1994.
[7] L. Hagen, A. B. Kahng, “New Spectral Methods for Ratio Cut Partitioning and Clustering”, IEEE Trans. on

CAD, Vol. 11, No. 9, pp. 1074-1085, September, 1992.
[8] H. Yang, D. F. Wong, “Efficient Network Flow Based Min-Cut Balanced Partitioning”, ICCAD, 1994.
[9] MCNC Partitioning93 benchmark suite. E-mail benchmarks@mcnc.org for ftp access.
[10]R. Kuznar, F. Brglez, B. Zajc, “Multi-way Netlist Partitioning into Heterogeneous FPGAs and

Minimization of Total Device Cost and Interconnect”, DAC, pp. 238-243, 1994.
[11]R. Kuznar, F. Brglez, B. Zajc, “A Unified Cost Model for Min-cut Partitioning with Replication Applied to

Optimization of Large Heterogeneous FPGA Partitions”, European Design Automation Conference, 1994.
[12]M. K. Goldberg, M. Burstein, “Heuristic Improvement Technique for Bisection of VLSI Networks”, ICCD,

pp. 122-125, 1983.
[13]T. Bui, C. Heigham, C. Jones, T. Leighton, “Improving the Performance of the Kernighan-Lin and

Simulated Annealing Graph Bisection Algorithms”, DAC, pp. 775-778, 1989.
[14]Z. Galil, “Efficient Algorithms for Finding Maximum Matching in Graphs”, ACM Computing Surveys,

Vol. 18, No. 1, pp. 23-38, March, 1986.
[15]J. Garbers, H. J. Prömel, A. Steger, “Finding Clusters in VLSI Circuits”, ICCAD, pp. 520-523, 1990.
[16]K. Roy, C. Sechen, “A Timing Driven N-Way Chip and Multi-Chip Partitioner”, ICCAD, pp. 240-247,

1993.
[17]D. M. Schuler, E. G. Ulrich, “Clustering and Linear Placement”, DAC, pp. 50-56, 1972.
[18]C.-W. Yeh, C.-K. Cheng, T.-T. Lin, "A Probabilistic Multicommodity-Flow Solution to Circuit Clustering

Problems", ICCAD, pp. 428-431, 1992.
[19]S. Hauck, G. Borriello, “Logic Partition Orderings for Multi-FPGA Systems”, International Symposium on

Field-Programmable Gate Arrays, 1995.
[20]Xilinx, Inc., The Programmable Gate Array Data Book , 1992.
[21]U. Weinmann, “FPGA Partitioning under Timing Constraints”, in W. R. Moore, W. Luk, Eds., More

FPGAs, Oxford: Abingdon EE&CS Books, pp. 120-128, 1994.
[22]J. Cong, M. Smith, “A Parallel Bottom-up Clustering Algorithm with Applications to Circuit Partitioning

in VLSI Design”, DAC, pp. 755-760, 1993.
[23]Y.-C. Wei, C.-K. Cheng, “Towards Efficient Hierarchical Designs by Ratio Cut Partitioning”, ICCAD, pp.

298-301, 1989.
[24]J. Cong, L. Hagen, A. Kahng, “Net Partitions Yield Better Module Partitions”, DAC, pp. 47-52, 1992.
[25]B. Krishnamurthy, "An Improved Min-Cut Algorithm for Partitioning VLSI Networks", IEEE Trans. on

Computers, Vol. C-33, No. 5, pp. 438-446, May 1984.
[26]C.-W. Yeh, C.-K. Cheng, T.-T. Y. Lin, “A General Purpose Multiple Way Partitioning Algorithm”, DAC,

pp. 421-426, 1991.

