

© Copyright 2006

Michael J. Beauchamp

Architectural Modifications to Enhance the Floating-Point
Performance of FPGAs

Michael J. Beauchamp

A thesis
submitted in partial fulfillment of the

requirements for the degree of

Master of Science
in Electrical Engineering

University of Washington

2006

Program Authorized to Offer Degree:
Electrical Engineering

University of Washington

Abstract

Architectural Modifications to Enhance the Floating-Point Performance of FPGAs

Chair of the Supervisory Committee:
Professor W. H. Carl Ebeling

Computer Science and Engineering

With the density of Field programmable Gate Arrays (FPGAs) steadily increasing,

FPGAs have reached the point where they are capable of implementing complex floating-

point applications. However, their general-purpose nature has limited the use of FPGAs

in scientific applications that require floating-point arithmetic due to the large amount of

FPGA resources that floating-point operations still require. This thesis considers three

architectural modifications that make floating-point operations more efficient on FPGAs.

The first modification embeds floating-point multiply-add units in an island style FPGA.

While offering a dramatic reduction in area and improvement in clock rate, these

embedded units have the potential to waste significant silicon for non-floating-point

applications. The next two modifications target a major component of IEEE compliant

floating-point computations: variable length shifters. The first alternative to LUTs (Look

Up Tables) for implementing the variable length shifters is a coarse-grained approach:

embedded variable length shifters in the FPGA fabric. These shifters offer a significant

reduction in area with a modest increase in clock rate and a relatively small potential for

wasted silicon. The next alternative is a fine-grained approach: adding a 4:1 multiplexer

unit inside the slices, in parallel to the 4-LUTs. While this offers the smallest reduction

in overall area, it does offer a significant increase in clock rate with only a minimum

increase in the size of the CLB (Configurable Logic Block).

 i

TABLE OF CONTENTS

Page
List of Figures ... ii
List of Tables ... iii
1. Introduction... 1
2. Background... 5

2.1. Floating-Point Numbering System ... 5
2.2. Island-Style FPGA.. 7

3. VPR... 10
3.1. Component Area ... 13
3.2. Component Latency .. 13
3.3. Track Length and Delay.. 14
3.4. Fast Carry-Chains ... 15

4. Methodology... 19
4.1. Embedded Floating-Point Units (FPUs) ... 19
4.2. Embedded Shifter.. 26
4.3. Modified CLB with additional 4:1 Multiplexer.. 32
4.4. Benchmarks... 33

5. Results... 38
5.1. Embedded FPUs.. 40
5.2. Embedded Shifters .. 40
5.3. Modified CLBs with additional 4:1 Multiplexers... 41
5.4. Single vs. Double Precision .. 41

6. Related Work .. 42
7. Conclusion .. 43
End Notes...45
Bibliography ..48

 ii

LIST OF FIGURES

Figure Number Page

1. Single precision IEEE floating-point number... 7
2. Double precision IEEE floating-point number ... 7
3. Basic island-style FPGA... 8
4. Column based architecture with CLBs, embedded multipliers, and block RAMs10
5. Column based architecture with addition of embedded shifters........................... 11
6. Embedded floating-point units replacing multipliers in Figure 4......................... 11
7. ASMBL... 12
8. Simplified CLB with fast vertical carry-chain.. 15
9. Embedded FPU benchmark clock rate.. 21
10. Embedded FPU benchmark area... 21
11. Embedded FPU benchmark track count ... 22
12. Embedded shifter block diagram .. 24
13. Embedded shifter benchmark clock rate... 28
14. Embedded shifter benchmark area.. 28
15. Embedded shifter benchmark track count... 29
16. Simplified representation of bottom half of modified CLB showing addition of

4:1 multiplexer .. 31
17. (a) 4-input LUT (b) 2:1 mux (c) 4:1 mux ... 32
18. CAD flow.. 35
19. Benchmark clock rate ... 38
20. Benchmark area .. 39
21. Benchmark track count ... 39

 iii

LIST OF TABLES

Table Number Page

1. IEEE floating-point component lengths and exponent bias.................................... 6
2. Component timing and area .. 13
3. Track Length... 14
4. Maximum clock rate with and without the use of the fast carry-chain................. 16
5. Embedded shifter modes and control signals.. 25
6. Number of components in each benchmark versions ... 37

 iv

ACKNOWLEDGEMENTS

The author wishes to express appreciation to National Science Foundation and Sandia
National Laboratories† for their support and research funding, Keith D. Underwood and
K. Scott Hemmert of Sandia National Laboratories for their guidance, support, editing,
and creation of the benchmarks, Scott Hauck for his leadership, guidance, patience, and
encouragement, and family and friends for their encouragement and devotion, without
them, this thesis would never have been completed.

† Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for
the United States Department of Energy under contract DE-AC04-94AL85000.

 v

DEDICATION

To my family and friends.

 1

1. Introduction

A variety of research efforts are searching for alternative processor architectures to

accelerate scientific applications. While modern supercomputers depend almost

exclusively on a collection of traditional microprocessors, these microprocessors have

poor sustained performance on many modern scientific applications. ASICs, which can

be highly efficient at floating-point computations, do not have the programmability

needed in a general purpose supercomputer. Even though microprocessors are versatile

and have fast clock rates, their performance is limited by their lack of customizability [1].

One alternative that is being widely considered is the use of FPGAs. However, scientific

applications depend on complex floating-point computations that could not be

implemented on FPGAs until recently, due to size constraints. Increases in FPGA

density, and optimizations of floating-point elements for FPGAs, have made it possible to

implement a variety of scientific algorithms with FPGAs [2]-[7]. In spite of this, the

floating-point performance of FPGAs must increase dramatically to offer a compelling

advantage for the scientific computing application domain. Fortunately, there are still

significant opportunities to improve the performance of FPGAs on scientific applications

by optimizing the device architecture.

Because fixed-point operations have become common on FPGAs, FPGA architectures

have introduced targeted optimizations for fixed-point operations like fast carry-chains,

cascade chains, and embedded multipliers. In fact, Xilinx has created an entire family of

FPGAs optimized for the signal-processing domain, which uses this type of operation

intensively [12]. Even though floating-point operations are becoming more common,

there have not been the same-targeted architectures for floating-point as there are for

fixed-point – there is not a scientific-computing family of FPGAs

Potential architectural modifications span a spectrum from the extremely coarse-grained,

addition of embedded units, to the extremely fine-grained, addition or modification of

logic gates. This thesis explores ideas at three points in that spectrum. At the coarse-

grained end, the addition of fully compliant IEEE 754 standard [8] floating-point

 2

multiply-add units was evaluated as an embedded block in the reconfigurable fabric.

These embedded floating-point units are feasible because many scientific applications

require compliance with the IEEE standard from any platform they use. These coarse-

grained units provide a dramatic reduction in area and increase in clock rate at the cost of

dedicating significant silicon resources to hardware that not all applications will use.

IEEE floating-point also has other features that lend themselves to finer grained

approaches. The primary example is that floating-point arithmetic requires variable

length and direction shifters. In floating-point addition, the mantissas of the operands

must be aligned before calculating the result. In floating-point multiplication and

division, the mantissa must be shifted before the calculation (if denormals are supported)

and after the calculation to renormalize the mantissa [9]. The datapath for shifters

involves a series of multiplexers, which are currently implemented using LUTs. In

Underwood and Hemmert's highly optimized double-precision floating-point cores for

FPGAs [9], the shifter accounts for almost a third of the logic for the adder and a quarter

of the logic for the multiplier. Therefore, by developing a more efficient implementation

of a variable length an direction shifter can noticeably improve floating-point

performance.

This led to two approaches in optimizing the FPGA hardware for variable length shifters.

At the fine-grained end, a minor change to the traditional CLB (Configurable Logic

Block): the addition of a 4:1 multiplexer in parallel with the 4-LUT was considered. This

provides a large increase in clock rate with a more modest area reduction and virtually no

wasted silicon area. In the middle of the spectrum, the addition of an embedded block to

provide variable length shifting was considered. This uses slightly more area than the

CLB modification and provides a corresponding increase in area savings. Unlike the

embedded floating-point units, the embedded shifters provide only a modest

improvement in clock rate.

To test these three proposed architectural modifications to the FPGA architecture, the

leading public-domain academic FPGA place and route tool, VPR (Versatile Place and

 3

Route), was augmented to support embedded functional units and high-performance

carry-chains. It was then used to place and route five scientific benchmarks that use

double-precision floating-point multiplication and addition. The five benchmarks that

were chosen were matrix multiply, matrix vector multiply, vector dot product, FFT, and

LU decomposition. To determine the feasibility of these proposed architectural

modifications, five versions of each benchmark were used:

• CLB ONLY – All floating-point operations are performed using the CLBs. The

only other units in this version are embedded RAMs and IO blocks.

• EMBEDDED MULTIPLIER – This version adds 18-bit x 18-bit embedded

multipliers to the CLB ONLY version. Floating-point multiplication uses the

CLBs and the embedded multipliers. Floating-point addition and division are

performed using only the CLBs. This version is similar to the Xilinx Virtex-II

Pro family of FPGAs, and thus is representative of what is currently available in

commercial FPGAs.

• EMBEDDED SHIFTER – This version further extends the EMBEDDED MULTIPLIER

version with embedded variable length shifters that can be configured as a single

64-bit variable length shifter or two 32-bit variable length shifters. Floating-point

multiplication uses the CLBs, embedded multipliers, and embedded shifters.

Floating-point addition and division are performed using the CLBs and embedded

shifters.

• MULTIPLEXER – While the same embedded RAMs, embedded multipliers, and

IO blocks of the EMBEDDED MULTIPLIER version are used, the CLBs have been

slightly modified to include a 4:1 muliplexer in parallel with the LUTs. Floating-

point multiplication uses the modified CLBs and the embedded multipliers.

Floating-point addition and division are performed using only the modified CLBs.

• EMBEDDED FPU – Besides the CLBs, embedded RAMs, and IO blocks of the

CLB ONLY version, this version includes embedded floating-point units (FPUs).

Each FPU performs a double-precision floating-point multiply-add. Other

 4

floating-point operations are implemented using the general reconfigurable

resources.

The EMBEDDED SHIFTER, MULTIPLEXER, and EMBEDDED FPU benchmark versions

implement the proposed architectural modifications to enhance floating-point

performance on FPGAs. In order to measure the benefit of these modifications, these

benchmark versions will be compared to the EMBEDDED MULTIPLIER version, which is

representative of what is currently available in commercial FPGAs.

The maximum clock rate, or frequency, and area will be compared to quantify the benefit

of these three proposed architectural modifications. While track count will also be

measured, it is not considered for potential improvement but to ensure that the place and

routes generated by VPR are reasonable.

The remainder of this thesis is broken down as follows: Section 2 presents a background

of the floating-point numbering system and island-style FPGAs. Section 3 details how

VPR was modified and used to place and route the benchmarks. Section 4 gives the

specifics of the three proposed FPGA architectural modifications. Section 5 presents the

results, Section 6 gives some related work, and Section 7 is the conclusion.

 5

2. Background

2.1. Floating-Point Numbering System

Often, for scientific calculations, the range of fixed-point numbers is insufficient.

Therefore, floating-point numbers are used. The larger dynamic range of floating-point

numbers comes at a cost of more complex computations over fixed-point numbers.

Floating-point numbers are similar to scientific notation. Floating-point numbers consists

of two parts, the mantissa M and exponent E, as seen in equation 1, where β is the base or

radix of the number.

 (1) EMX β⋅=

The base is consistent for all floating-point number of a given system. For binary

floating-point numbers the base is 2. Both the mantissa and the exponent are signed

numbers.

IEEE standard 754 specifies that the mantissa is stored in sign-magnitude notation with a

sign bit S and an unsigned fraction M, which is normalized to the range [1,2). Since a

normalized floating-point number will always have a leading one for the unsigned

fraction M, it is not necessary to store this bit. The leading one becomes "hidden",

allowing for an extra bit in the mantissa and thus, increasing the precision. The resulting

mantissa is given in equation 2, where f is the fractional part of the mantissa after the

leading one has been removed.

 () fM S .11 ⋅−= (2)

The exponent is a sum of the true two's complement value of the exponent and a constant

bias, as given in equation 3.

 biasEE true += (3)

 6

1

The range of Etrue, where e is the bits of the exponent, is

 22 11 −≤≤− −− e
true

e E

The bias, given in equation 4, is the magnitude of the most negative exponent, resulting

in a non-negative exponent, which has a range

 120 −≤≤ eE

 1 (4) 2 1 −= −ebias

By using a bias instead of another format, sign-magnitude or 2's complement, the

exponent is always a non-negative value. This makes comparison of two exponents

easier, as they can be considered unsigned numbers. Additionally, floating-point

numbers in the order S, E, and M can be compared as if they were single sign-magnitude

binary numbers.

Table 1. IEEE floating-point component lengths and exponent bias

Precision Word Length
[bits]

Mantissa
Length†

[bits]

Exponent
Length
[bits]

Exponent Bias

Single 32 23 8 127
Double 64 52 11 1023

† Does not include "hidden" bit.

IEEE standard 754 specifies that single precision binary floating-point numbers have

32-bits, which consists of a sign bit, a 23-bit mantissa (not including the hidden bit), and

an 8-bit exponent, as shown in Table 1. The resulting representation is shown in equation

5.

 () 1272.11 −⋅⋅−= ES fX (5)

 7

Double precision binary floating-point numbers have 64-bits, which consists of a sign bit,

a 52-bit mantissa (not including the hidden bit), and an 11-bit exponent, as shown in

Table 1. The resulting representation is shown in equation 6.

 () 10232.11 −⋅⋅−= ES fX (6)

The IEEE standard specifies a sign bit, an 8-bit exponent, and a 23-bit mantissa for a

single-precision floating-point number, as seen in Figure 1. Double-precision floating-

point has a sign bit, an 11-bit exponent and 52-bit mantissa, as seen in Figure 2.

S Exp Mantissa

0 1 8... 9 31...

Figure 1. Single precision IEEE floating-point number

S Exp Mantissa

0 1 11... 12 63...

Figure 2. Double precision IEEE floating-point number

Floating-point numbers have a larger dynamic range that fixed-point numbers, but due to

their complex formulation, they are more difficult to implement in hardware. It is this

complexity that results in floating-point operations requiring a large percentage of

resources in FPGAs.

2.2. Island-Style FPGA

FPGAs are an array of digital logic that can be programmed for specific tasks. Because

of the large amount of logic, for applications, whose operations can be performed in

parallel, FPGAs can be faster than general-purpose processors, while generally being less

expensive than an Application-Specific Integrated Circuits (ASICs).

 8

Switch
Box

CLB

C
on

ne
ct

io
n

B
ox

Connection Box Switch
Box

CLB

C
on

ne
ct

io
n

Bo
x

Switch
Box

CLB

C
on

ne
ct

io
n

B
ox

Connection Box Switch
Box

CLB

C
on

ne
ct

io
n

Bo
x

Connection Box Switch
Box

CLB

C
on

ne
ct

io
n

B
ox

Connection Box Switch
Box

CLB

C
on

ne
ct

io
n

B
ox

CLB

Connection Box

CLB

Switch
Box

Switch
Box

Connection Box

CLB

Switch
Box

Connection Box Connection Box Connection Box

I/O

C
on

ne
ct

io
n

B
ox

I/O

C
on

ne
ct

io
n

Bo
x

I/O

C
on

ne
ct

io
n

B
ox

I/O

I/OI/O

Switch
Box

C
on

ne
ct

io
n

B
ox

Switch
Box

C
on

ne
ct

io
n

Bo
x

CLB

Connection Box

CLB

Switch
Box

C
on

ne
ct

io
n

B
ox

Connection Box

CLB

Connection Box

I/O

Connection Box Switch
Box

CLB
C

on
ne

ct
io

n
Bo

x

Connection Box Switch
Box

CLB

C
on

ne
ct

io
n

Bo
x

Connection Box

CLB

Switch
Box

C
on

ne
ct

io
n

Bo
x

I/O

Switch
Box

C
on

ne
ct

io
n

Bo
x

Connection Box

CLB

FPGA

Figure 3. Basic island-style FPGA

The current dominant style of FPGAs is the island-style FPGA, consisting of a two

dimensional lattice of CLBs (Configurable Logic Blocks), as shown in Figure 3. Around

the outside of the FPGA are IO blocks. Connecting the CLBs are regular horizontal and

vertical routing structures that allow configurable connections at the intersections. The

horizontal and vertical routing is in the form of connection and switch boxes. The

connection boxes allow programmable connection of the CLB's signals to enter and exit

the general purpose routing. Switch boxes allow programmable connections between the

connection boxes. The connection and switch boxes consist of programmable transistors

that can connect wire segments. The CLBs consist of combinational and sequential logic

components in the form of 4-input function generators (or 4-LUTs), storage elements (or

flip-flops), arithmetic logic gates, and a fast carry-chain.

In recent years, additional block units have been added that have increased the versatility

and efficiency of FPGAs, especially for circuits that use fixed-point numbers. Embedded

RAMs, DSP blocks, and even microprocessors have been added to island-style FPGAs

[11], [12]. However, circuits that use floating-point numbers still require a large number

 9

of CLBs to perform basic operations. Thus, this thesis examines hardware changes and

modifications to FPGAs that will improve the efficiency of floating-point unit

implementations.

 10

3. VPR

VPR [13], [14] is the leading public-domain academic FPGA place and route tool. It

uses simulated annealing and a timing based semi-perimeter routing estimate for

placement, and a timing driven detailed router based on PathFinder [15]. In this thesis,

VPR was used to determine the feasibility of three changes to the traditional island-style

FPGAs: embedding floating-point units (FPUs), embedded shifters, and modified CLBs

to facilitate shifting for floating-point calculations.

Figure 4. Column based architecture with CLBs, embedded multipliers, and block RAMs

 11

Figure 5. Column based architecture with addition of embedded shifters

Figure 6. Embedded floating-point units replacing multipliers in Figure 4

In previous versions, VPR supported only three types of circuit elements: input pads,

output pads, and CLBs. To test the proposed architectural modifications and to

incorporate the necessary architectural elements, VPR was modified to allow the use of

embedded block units with user defined size. The heights and widths of these embedded

 12

blocks are quantized by the size of the CLB. For example the embedded RAM size can

be specified as one CLB in width and four CLBs in height. In order for continuity of

signals, horizontal routing is allowed to cross the embedded units, but because the

embedded blocks are arranged in columns, vertical routing only exists at the periphery of

the embedded blocks. The regular routing structure that existed in the original VPR was

maintained, as shown in Figure 4 through Figure 6. Additionally, a fast carry-chain was

incorporated into the existing CLBs to ensure a reasonable comparison with state-of-the-

art devices. The fast carry-chain is explained in greater detail in Section 3.4. The

benchmarks were synthesized using Synplify and technology mapped using Xilinx ISE

(rather than the VPR technology mapping path). See benchmarks, Section 4.4, for more

details.

Figure 7. ASMBL

The baseline FPGA architecture, which proposed architectural modifications will be

compared, was modeled after the Xilinx Virtex-II Pro FPGA family, and includes most of

the major elements of current FPGAs (IO blocks, CLBs, 18Kb block RAMs, and

embedded 18-bit x 18-bit multiplier blocks) [11]. The CLBs include 4-input function

generators, storage elements, arithmetic logic gates, and a fast carry-chain.

In addition to the standard Xilinx Virtex-II Pro features, the proposed architectural

modifications to the FPGA include embedded FPUs, embedded shifters, and the addition

of a 4:1 mux in parallel to the 4-LUT. Independent of whatever embedded block is bein

 13

used, they are arranged in a column-based architecture similar to Xilinx’s ASMBL

(Advanced Silicon Modular Block) architecture [16], as seen in Figure 7, which is the

architectural foundation of the Virtex-4 FPGA family [17].

The embedded units have optional registered inputs and/or registered outputs. Each unit

is characterized by three timing parameters: sequential setup time, sequential clock-to-q,

and maximum combinational delay (if unregistered). The fast carry-chain is a dedicated

route that does not use the normal routing structure of switch boxes and connection

boxes. The carry-chain has a dedicated route that goes from the carry-out at the top of

the CLB to the carry-in at the bottom of the CLB above it. Because it does not make use

of the normal routing graph, it has its own timing parameters.

3.1. Component Area

The areas of the CLB, embedded multiplier, and block RAM were approximated using a

die photo of a Xilinx Virtex-II 1000 [18] courtesy of Chipworks Inc. The area estimate

of each component includes the associated connection blocks, which dominate the

routing area. The areas were normalized by the process gate length, L. All areas are

referenced to the smallest component, which is the CLB, and are shown in Table 2.

Table 2. Component timing and area

 TSETUP
[ns]

TCLK→Q
[ns]

Area
[106 L2]

Area
[CLBs]

CLB 0.32 0.38 0.662 1
Embedded Multiplier 2.06 2.92 11.8 18

Block RAM 0.23 1.50 18.5 28
Shifter 0.30 0.70 0.843 1.27
FPU 0.50 0.50 107 161

3.2. Component Latency

The CLBs that were used were modeled after the Xilinx slice. Each CLB is composed of

two 4-input function generators, two storage elements (D flip-flops), arithmetic logic

gates, and a fast carry-chain. VPR uses subblocks to specify the internal contents of the

 14

CLB. Each subblock can specify a combinational and sequential logic element and has

three timing parameters, similar to the embedded units: sequential setup time, sequential

clock-to-q, and maximum combinational delay if the output subblock is unregistered.

More subblocks results in a more accurate timing representation of the CLB. To

adequately represent the timing of an unmodified CLB, twenty VPR subblocks were

used. With the 4:1 multiplexer modification to the CLB, twenty-two VPR subblocks

were used. The embedded multiplier and block RAM were modeled after the Xilinx

Virtex-II Pro. However, unlike the Xilinx Virtex-II Pro (and more similar to the Xilinx

Virtex-4), these units are independent of each other. This was done to ease the modeling

of the embedded multipliers and block RAMs in VPR. These timing parameters are

based on the Xilinx Virtex-II Pro -6 and were found in Xilinx data sheets or

experimentally using Xilinx design tools and are shown in Table 2.

3.3. Track Length and Delay

Island-style FPGAs use track lengths of various sizes. However, in the process of placing

and routing VPR minimized the number of routing tracks used, but maintains a track

length percentage as specified by the user. Four different lengths of routing tracks were

used: single, double, quad, and long, where long tracks spanned the entire length of the

architecture. The percentages of different routing track lengths were based on Xilinx

Virtex-II Pro family and can be seen in Table 3 [11].

Table 3. Track Length
Size Length Fraction

Single 1 22%
Double 2 28%
Quad 4 42%
Long All 8%

VPR uses a resistive and capacitive model to calculate the delay for various length

routing tracks. Based on previously determined component area, the resistive and

capacitive values were estimated by laying out and extracting routing tracks using

 15

Cadence IC design tools. Timing results for the overall design were found to be

reasonable based on previous experience with Xilinx parts.

3.4. Fast Carry-Chains

Figure 8. Simplified CLB with fast vertical carry-chain

VPR was also modified to allow the use of fast carry-chains. Along with the two 4-input

function generators (4-LUT), two storage elements (flip-flops), and arithmetic logic

gates, each CLB has a fast carry-chain affecting two output bits. The carry-out of the

CLB exits through the top of the CLB and enters the carry-in of the CLB above, as shown

in Figure 8. Each column of CLBs has one carry-chain that starts at the bottom of the

column of CLBs and ends at the top of the column. Since each CLB has logic for two

output bits, there are two opportunities in each CLB to get on or off of the carry-chain.

The addition of the carry-chain was necessary to make a reasonable comparison between

the baseline FPGA architecture and the proposed FPGA architecture modifications,

which include embedded FPUs, embedded shifters, and additional 4:1 mux in parallel to

the 4-LUT in the CLB. Floating-point addition makes extensive use of the fast carry-

chains. For example, the double-precision addition requires a 57-bit adder. The fast

 16

carry-chain is specifically designed to implement a ripple carry adder and is much faster

than if the carry signal was required to go out on the general routing structure. This

would dramatically skew the results in favor of the embedded FPUs, which implement

the floating-point addition in an embedded block and not in the CLBs.

To demonstrate the correct operation of the carry-chain modification, the benchmarks

that used the embedded multipliers to implement the double-precision floating-point

multiply-add were placed and routed using VPR with and without the carry-chain

modification. The results are shown in Table 4. By using the fast carry-chain the

benchmarks had an average speed increase of 49.7%.

Table 4. Maximum clock rate with and without the use of the fast carry-chain

Benchmark
Max. Freq. w/o

Fast Carry-Chain
[MHz]

Max. Freq. With
Fast Carry-Chain

[MHz]
Matrix Multiply 87 126
Vector Multiply 89 117

Dot Product 87 149
FFT 79 104

LU Decomposition 84 142
Average 85 128

Because the carry-chains only exist in columns of CLBs, and only in the upward

direction, all of the CLBs of a given carry-chain are initially placed in proper relative

position to each other and move/swap all of the CLBs that comprise a carry-chain as one

unit. To accomplish this, when a CLB that is part of a carry-chain is chosen to be moved

or swapped the following algorithm is used:

1. The CLBs that are to be moved or swapped are randomly determined based on the

constraints of the placement algorithm.

2. If the CLBs are part of a carry-chain the beginning and end of the carry-chain are

determined by traversing the carry-chain.

3. The number of CLBs traversed to find the beginning and end of each carry-chain

are compared.

 17

EXAMPLE: The first CLB chosen to be swapped has one CLB

until the beginning of the carry-chain and one until the end

of the carry-chain for a total of three CLBs (including the

original CLB). The second CLB chosen to be swapped has

two CLBs until the beginning of the carry-chain and none

until the end of the carry-chain for a total of twelve

(including the original CLB).

4. The larger of these values is used to determine how m

considered for the move.

any CLBs will be

 CLBs until the end

EXAMPLE: The first CLB chosen to be swapped has one

CLB until the beginning of its carry-chain and the second

CLB chosen to be swapped has three CLBs until the

beginning of its carry-chain. The maximum distance to the

beginning of the two carry-chains is three CLBs and this

determines that three CLBs before each of the two CLBs

originally chosen to be swapped will be included in the

attempted swap. The first CLB chosen to be swapped has one

of its carry-chain and the second CLB chosen to be swapped does not have any

CLBs until the end of its carry-chain. The maximum distance to the end of the

two carry-chains is one CLB and this determines that one CLBs after each of the

two CLBs originally chosen to be swapped will be included in the attempted

swap. Therefore, five CLBs surrounding the first CLB chosen for the swap and

five CLBs surrounding the second CLB chosen for the swap will be considered

for the attempted swap.

5. It is determined if the CLBs could be moved or swapped without violating the

physical constraints of the chip and breaking any other carry-chain.

 18

ll of the CLBs that

8. cepted or rejected based on the current simulated annealing

9. p is accepted all of the CLBs on the carry-chain are moved together

10. N CLBs is

The rest of the details of the simulated annealing algorithm remain unchanged. This

EXAMPLE: In the ongoing example the second column of

CLBs to be swapped would break a carry-chain (shown with

green arrow).

6. If the move swap is determined to be illegal, the move/swap

is discarded and a new set of blocks are chosen for a

potential move/swap. Even though this potential move is

discarded, it is not considered a rejected move.

7. Once a legal move is found, all of the nets that connect to a

comprise the carry-chain are considered in the cost of moving the carry-chain.

The move is ac

temperature.

If a move/swa

to maintain the physical constraints of the carry-chain architecture.

The accepted or rejected move of a carry-chain consisting of

considered N accepted or rejected moves.

resulted in making VPR significantly slower, but is important for producing realistic

comparisons.

 19

4. Methodology

4.1. Embedded Floating-Point Units (FPUs)

The embedded FPU implements a double-precision floating-point multiply-add

operation, as described by Equation 7. The FPU can be configured to implement a

double-precision multiply, add, or multiply-add operation.

 () bitbitbitbit CBA=X −−−− + 64646464 * (7)

The baseline size of the FPU was conservatively estimated from commodity

microprocessors and embedded cores in previous work [19], [20]. In addition to the size

of the FPU the area necessary to connect to the general purpose routing structure was

taken into account. This area for this connection to the general purpose routing structure

is the addition of one vertical side of the FPU being filled with connection blocks. Since

the exact size of a connection block is unknown, the conservative estimate of a

connection block being the same size as a "CLB" was used. This made the true area of

the FPU dependent on the shape chosen, resulting in a conservative area estimate.

The latency of the FPUs was more difficult to estimate experimentally. Given that a

processor on a similar process (the Pentium 4) can achieve 3 GHz operation with a 4

cycle add and a 6 cycle multiply, it is assumed that an FPU implemented for an FPGA

could achieve 500 MHz at the same latency. Setup and clock-to-q were set

conservatively assuming the latency included registers front and back.

To determine the appropriate aspect ratio for the FPU, each benchmark was run using

eight different heights and widths. These FPUs with different aspect ratios were

combined in a column based architecture with CLBs and block RAMs as shown in Figure

6. With an increase in the height of the FPU (decrease in the aspect ratio), there will be

fewer FPUs on a single column. To maintain the same ratio of FPUs, CLBs, and RAMs

for all the different FPU sizes, the number of columns of FPUs was increased as the FPU

height increased.

 20

The area of the FPUs varies with the aspect ratio due to the overhead of connecting the

FPU with the surrounding routing resources – for each row of CLBs along an FPU’s

edge, a row’s worth of routing resources must be provided. A conservative estimate was

used that for each CLB of height added to the FPU, an additional full CLB tile’s worth of

area was required for the programmable routing.

Each of the five benchmarks, matrix multiply, matrix vector multiply, vector dot product,

FFT, and a LU Decomposition, were tested with eight different FPU heights; from 4

CLBs to 160 CLBs in height. These benchmarks with different FPU sizes were

compared on three criteria: area, maximum clock rate, and number of routing tracks as

given in Figure 9 through Figure 11.

There is a significant difference in the maximum clock rate between the benchmarks with

different FPU aspect ratios. The benchmarks with FPUs of height 32 had the highest

average clock rate as shown in Figure 9. The lower frequencies were found at the

extremes, those with very large and very small aspect ratios. The benchmarks with large

aspect ratios, small FPU heights, were very wide and consequently had large horizontal

routes that increased the overall circuit latency. The benchmarks with small aspect ratios,

large FPU heights, used a larger percentage of the routing tracks near the FPUs. This

would dominate the minimum number of routing tracks needed and slower clock

frequencies.

 21

Figure 9. Embedded FPU benchmark clock rate

Figure 10. Embedded FPU benchmark area

 22

Figure 11. Embedded FPU benchmark track count

 23

Because there was an area penalty for greater FPU heights to account for connectivity

and routing, the architecture with the shortest FPUs had the smallest area. However,

there was only a 2.7% difference in the areas of the FPU benchmark with the highest

frequency and the benchmark with the smallest area as shown in Figure 10.

Modern FPGAs have a large number of routing tracks. Therefore, apart from its impact

on maximum clock frequency, the required number of routing tracks is unlikely to be the

driving consideration when choosing the best aspect ratio for the FPU. Even though

there was a 12.8% difference in track count of the FPU benchmark with the lowest track

count (FPU height 16) and the benchmark with the highest clock rate (FPU height 32),

the benchmark with the highest clock rate only had an average routing track count of 46

as shown in Figure 11.

On average, the benchmarks that used the FPU of height 32 had the highest clock rate,

did not have a significant area increase over those with other aspect ratios, and had a

reasonable track count. Therefore, it is the architectures with FPUs of height 32 that are

being compared to the other architectures.

 24

Figure 12. Embedded shifter block diagram

 25

Table 5. Embedded shifter modes and control signals
 Input Control

Shifter 'A' Shifter 'B' Shift
Configuration

Shift
Amount

(SA)
Direction Mode Type Top

Mux
Bottom

Mux
Top
Mux

Bottom
Mux

Shift
Muxs

SRL 32x2 – RIGHT SHIFT LOGICAL 0 IN63-IN32 0 IN31-IN0 SHIFT AMT
SRA 32x2 – RIGHT SHIFT ARITHMETIC SIGN IN63-IN32 SIGN IN31-IN0 SHIFT AMT

SLL/SLA 32x2 – LEFT SHIFT – IN62-IN32 0 IN30-IN0 0 32-SA
ROR 32x2 – RIGHT ROTATE – IN62-IN32 IN63-IN32 IN30-IN0 IN31-IN0 SHIFT AMT
ROL 32x2 – LEFT ROTATE – IN62-IN32 IN63-IN32 IN30-IN0 IN31-IN0 32-SA
SRL 64x1 >32 RIGHT SHIFT LOGICAL 0 0 0 IN63-IN32 SHIFT AMT
SRL 64x1 <32 RIGHT SHIFT LOGICAL 0 IN63-IN32 IN62-IN32 IN31-IN0 SHIFT AMT
SRL 64x1 =32 RIGHT SHIFT LOGICAL – 0 – IN63-IN32 SHIFT AMT
SRA 64x1 >32 RIGHT SHIFT ARITHMETIC SIGN SIGN SIGN IN63-IN32 SHIFT AMT
SRA 64x1 <32 RIGHT SHIFT ARITHMETIC SIGN IN63-IN32 IN62-IN32 IN31-IN0 SHIFT AMT
SRA 64x1 =32 RIGHT SHIFT ARITHMETIC – SIGN – IN63-IN32 SHIFT AMT

SLL/SLA 64x1 >32 LEFT SHIFT – IN30-IN0 0 0 0 32-SA
SLL/SLA 64x1 <32 LEFT SHIFT – IN62-IN32 IN31-IN0 IN30-IN0 0 32-SA
SLL/SLA 64x1 =32 LEFT SHIFT – – IN31-IN0 – 0 32-SA
SLL/SLA 64x1 =0 LEFT SHIFT – – IN63-IN32 – IN31-IN0 32-SA

ROR 64x1 >32 RIGHT ROTATE – IN62-IN32 IN31-IN0 IN30-IN0 IN63-IN32 SHIFT AMT
ROR 64x1 <32 RIGHT ROTATE – IN30-IN0 IN63-IN32 IN62-IN32 IN31-IN0 SHIFT AMT
ROR 64x1 =32 RIGHT ROTATE – – IN31-IN0 – IN63-IN32 SHIFT AMT
ROL 64x1 >32 LEFT ROTATE – IN30-IN0 IN63-IN32 IN62-IN32 IN31-IN0 32-SA
ROL 64x1 <32 LEFT ROTATE – IN62-IN32 IN31-IN0 IN30-IN0 IN63-IN32 32-SA
ROL 64x1 =32 LEFT ROTATE – – IN31-IN0 – IN63-IN32 32-SA
ROL 64x1 =0 LEFT ROTATE – – IN63-IN32 – IN31-IN0 32-SA

26
4.2. Embedded Shifter

In floating-point addition, the mantissas must be aligned by shifting one of the mantissas

to match the other. This requires a variable length and direction shifter. Because

maximum range of the exponent is larger than the length of the mantissa, the mantissa

can be shifted either left or right by any distance up to the full length of the mantissa.

This means that up to a 24 bit shift can be required for IEEE 754 single precision and up

to 53 bits of shift can be required for IEEE 754 double precision. However, in hardware,

shifters tend to be implemented in powers of two. Therefore, shifters of length 32 and 64

bits were implemented for single and double precision floating-point operations,

respectively, as shown in Figure 12. This unit can perform either one 64-bit shift (using

the 'A' shift controls shown in Figure 12) or two independent 32-bit shifts (using both the

'A' and 'B' shift controls shown in Figure 12).

Even though floating-point operations only require a logical shift, the embedded shifter

should be versatile enough to be used for other circuits that might make use of a different

type of shifter. If the shifter is not versatile, implementing all shift modes, the embedded

shifters will have a higher probability of being wasted in other types of circuits that

require the modes that were not implemented. Therefore, the embedded shifter that was

used has five modes: rotate left (ROL), rotate right (ROR), shift right logical (SRL), shift

right arithmetic (SRA), and shift left logical/arithmetic (SLL/SLA).

During the shifting that accompanies the normalization of floating-point numbers it is

important to calculate the sticky bit as it is an integral part of the shift operation. The

sticky bit is used when implementing round-to-nearest-even and is the result of the

logical OR of all the bits that are lost during a right shift. Adding the necessary logic to

the shifter to compute the sticky bit increases the size of the shifter by less than 1%.

Thus, the logic for the sticky bit calculation is included in each shifter. The sticky bit

outputs are undefined when a shift other than a logical right shift is performed.

To help improve the maximum clock speed, the embedded shifter also has optional

registers on the inputs and outputs of the datapath. There are a total of 83 inputs and 66

27
outputs. The 83 inputs include 16 control bits, 64 data bits, and 3 register control bits

(clock, reset, and enable). The 66 outputs include 64 data bits and 2 sticky bits (two

independent sticky bit outputs are needed when the shifter is used as two independent

32-bit shifters).

The modes of operation and control of the embedded shifter is given in Table 5. A 64-bit

left and right shifter can be created out of a 127-bit right only shifter. This shifter would

have six levels of muxes (shift by 1, shift by 2, shift by 4, … , shift by 32). In addition to

the muxes needed for shifting, a mux is needed on the input to select the correctly

orientate the input, force a zero for logical shifts, or force a zero or one for sign

extension. However, the top-level mux can be combined with the shift by 32 mux,

minimizing the complexity of the shifter.

In order to use the 64-bit shifter as two independent 32-bit shifters, a few modifications

were needed. The bottom five levels of muxes need to be duplicated and the control for

the top level was modified to account for both 32-bit and 64-bit shift modes. The control

for the embedded shifter is shown in Table 5. The control was determined such that in

both the 32-bit and 64-bit shift modes the output is in correct sequence and another level

muxes are not needed.

28

Figure 13. Embedded shifter benchmark clock rate

Figure 14. Embedded shifter benchmark area

29

Figure 15. Embedded shifter benchmark track count

The benchmark circuits used to test the feasibility of embedded shifter in FPGAs, matrix

multiply, matrix vector multiply, vector dot product, FFT, and LU decomposition, use the

embedded shifters in the fully registered mode, so only two timing parameters were

needed: sequential setup time of 300 ps and sequential clock-to-q of 700 ps. Internally,

the combinational delay of the shifter was 1.52 ns. While this is not needed for

simulation, it is necessary to ensure that it is not the limiting timing path. The sequential

times were derived from similar registered embedded components of the Xilinx Virtex-II

Pro -6, while the combinational time and area (0.843 106 L2) were derived by doing a

layout in a 130 nm process. The area of the embedded shifter is 1.27 times the area of the

CLB and its associated routing. The area of the shifter does not take into account the area

needed for the additional number of connections to the general purpose routing structure

of the embedded shifter compared to the CLB. Because this area overhead is difficult to

estimate, three different embedded shifter sizes (two, four, and eight equivalent CLBs)

were examined and their results are given in Figure 13 through Figure 15.

30
There is only an average difference of 3.7% in clock rate and 1.0% in area between the

different shifter sizes. Since four CLBs have more combined I/O connections than a

shifter, this can be used for an extremely conservative estimate of the shifter size.

Therefore, an embedded shifter size equivalent to four CLBs is used to compare with the

baseline architecture.

 31

Figure 16. Simplified representation of bottom half of modified CLB showing addition of 4:1 multiplexer

 32

4.3. Modified CLB with additional 4:1 Multiplexer

 (a) (b) (c)

Figure 17. (a) 4-input LUT (b) 2:1 mux (c) 4:1 mux

The Xilinx CLB consists of a combination of 4-LUTs. A 4-LUT can implement any

4-input logic function. Since binary shifters consist of a series of muxes in powers of

two, a 2:1 mux can be used. A 2:1 mux has three inputs as seen in Figure 17.

Implementing a 2:1 in a 4-LUT results in an unused input. Two 4-LUTs can be

combined to form a 5-LUT, which is still not large enough to implement a 4:1 mux,

which can also be used in binary shifters. The 4:1 mux has six inputs as seen in Figure

17 and would require a 6-LUT.

In modifying the CLB to better implement variable length shifters, two general ideas

were observed: minimize the impact on the architecture, and have no impact on general

purpose routing. To accomplish these goals, the only change that was made to the CLB's

architecture was to add a single 4:1 multiplexer in parallel with each 4-LUT, as shown in

Figure 16. The multiplexer and LUT share the same four data inputs. The select lines for

the multiplexer are the BX and BY inputs to the CLB. Since each CLB on the Xilinx

Virtex II Pro has two LUTs, each CLB would have two 4:1 multiplexers. Since there are

only two select lines, both of the 4:1 multiplexers would have to share their select lines.

However, for shifters and other large datapath elements it is easy to find muxes with

shared select inputs. The BX and BY inputs are normally used as the independent inputs

for the D flip-flops, but are blocked in the new mux mode. However, the D flip-flops can

still be driven by the LUTs in the CLB, and can be used as normal when not using the

 33

mux mode. This is a trade-off that is made to not increase the number of inputs to the

CLB.

To test the impact of adding the 4:1 multiplexer, a 4-LUT and associated logic was laid

out and simulated with and without the capacitive load of the 4:1 multiplexer. It was

determined that adding the 4:1 multiplexer increased the delay of the 4-LUT by only

1.83%. A 4:1 multiplexer was also laid out and simulated. The delay of the 4:1

multiplexer was 253 ps, which is less than the 270 ps that was determined for the 4-LUT

from the Xilinx Virtex-II Pro -6 datasheet. The area of the 4:1 multiplexer was 1.58 103

L2, and adding two 4:1 multiplexers to each CLB increases the size of the CLB by less

than 0.5% (the original area of the CLB takes into account all logic, routing, and control

bits associated with the CLB as given in Table 2).

4.4. Benchmarks

Five benchmarks were used to test the feasibility of the proposed architectural

modification. They were matrix multiply, matrix vector multiply, vector dot product,

FFT, and a LU Decomposition* datapath which were created by K. Scott Hemmert and

Keith D. Underwood at Sandia National Laboratories. All of the benchmarks use double-

precision floating-point addition and multiplication. The LU decomposition also

includes floating-point division, which must be implemented in the reconfigurable fabric

for all architectures. Five versions of the benchmarks were used.

• CLB ONLY – All floating-point operations are performed using the CLBs

(Configurable Logic Blocks). The only other units in this version are embedded

RAMs and IO.

• EMBEDDED MULTIPLIER – This version adds 18-bit x 18-bit embedded

multipliers to the CLB ONLY version. Floating-point multiplication uses the

CLBs and the embedded multipliers. Floating-point addition and division are

* LU Decompostion is the decomposition of an N x N matrix, A, into a product of a lower triangular matrix

L and an upper triangular matrix U, such that LU=A.

 34

performed using only the CLBs. This version is similar to the Xilinx Virtex II Pro

family of FPGAs, and thus is representative of what is currently available in

commercial FPGAs.

• EMBEDDED SHIFTER – This version further extends the EMBEDDED MULTIPLIER

version with embedded variable length shifters that can be configured as a single

64-bit variable length shifter or two 32-bit variable length shifters. Floating-point

multiplication uses the CLBs, embedded multipliers, and embedded shifters.

Floating-point addition and division are performed using the CLBs and embedded

shifters.

• MULTIPLEXER – While the same embedded RAMs, embedded multipliers, and

IO of the EMBEDDED MULTIPLIER version are used, the CLBs have been slightly

modified to include a 4:1 multiplexer in parallel with the LUTs. Floating-point

multiplication uses the modified CLBs and the embedded multipliers. Floating-

point addition and division are performed using only the modified CLBs.

• EMBEDDED FPU – Besides the CLBs, embedded RAMs, and IO of the CLB

ONLY version, this version includes embedded floating-point units (FPUs). Each

FPU performs a double-precision floating-point multiply-add. Other floating-

point operations are implemented using the general reconfigurable resources.

 35

Figure 18. CAD flow

The floating-point benchmarks were written in a hardware description language, VHDL

or JHDL [21]. LU Decomposition was written in JHDL. Matrix multiply, matrix vector

multiply, vector dot product, and FFT were written in VHDL. Instead of using the

traditional VPR path of synthesis using SIS [22] and technology mapping using Flow

Map [23], the benchmarks were synthesized using Synplicity’s Synplify 7.6 into an EDIF

(Electronic Data Interchange Format) file. Technology mapping was accomplished using

Xilinx ISE 6.3. While these are slightly older versions of the tools, only the Xilinx

mapper was used and only small parts of the benchmarks were synthesized (the floating-

 36

point units were hand mapped in JHDL). The Xilinx NGDBuild (Native Generic

Database) and the Xilinx map tool were used to reduce the design from gates to slices

(which map one-to-one with our CLBs). The Xilinx NCD (Native Circuit Description)

Read was used to convert the design to a text format. A custom conversion program was

used to convert the mapping of the NCD file to the NET format used by VPR. This flow

is shown in Figure 18

The benchmarks vary in size and complexity as shown in Table 6. The number of IO and

block RAMs is the same for all benchmark versions. The number of embedded

multipliers in the EMBEDDED SHIFTER and MULTIPLEXER versions is the same as the

EMBEDDED MULTIPLIER version.

 37

Table 6. Number of components in each benchmark versions

CLB ONLY EMBEDDED
MULTIPLIER†

EMBEDDED
SHIFTER†‡ MULTIPLEXER†‡ EMBEDDED

FPU†

Benchmark
IO RAM CLB CLB MULT CLB SHIFT CLB

CLBs
Using

4:1 Mux
CLB FPU

Matrix Mult. 195 192 56,973 41,502 144 36,483 64 39,894 9.9% 17,510 16
Vector Matrix Mult. 2,034 4 53,082 36,926 144 30,207 64 33,604 11.7% 11,250 16

Dot Product 1,492 0 51,924 36,737 144 30,018 64 33,403 11.8% 9,929 16
FFT 590 144 44,094 34,745 72 27,907 56 30,777 11.7% 15,432 28

LU Decomposition 193 96 56,093 37,634 144 30,506 67 34,145 12.2% 11,382 16
Maximum 2,034 192 56,973 41,502 144 36,483 67 39,894 12.2% 17,510 28
Average 901 87 52,433 37,509 130 31,024 63 34,365 11.4% 13,101 19

‡ Benchmarks include the same number of embedded multipliers as the EMBEDDED MULTIPLIER version.
† Benchmarks include the same number of IOs and block RAMs as CLB ONLY version.

 38

5. Results

Three FPGA architectural modifications were proposed: adding embedded FPUs,

embedded shifters, and adding a 4:1 mux in parallel with the 4-LUT in the CLB. Each of

these architectural modifications and the baseline architecture, which represents what is

currently available in FPGAs, were implemented in five benchmarks: matrix multiply,

matrix vector multiply, vector dot product, FFT, and LU Decomposition. Each of the

architectures was placed and routed using VPR. The maximum clock rate (or circuit

frequency), circuit area, and minimum track count was noted.

Figure 19. Benchmark clock rate

 39

Figure 20. Benchmark area

Figure 21. Benchmark track count

 40

5.1. Embedded FPUs

The embedded FPU had the highest clock rate, smallest area, and lowest track count of

all the architectures, as seen in Figure 19 through Figure 21. By adding embedded FPUs

there was an average clock rate increase of 33.4%, average area reduction of 54.2%, and

average track count reduction of 6.83% from the EMBEDDED MULTIPLIER to the

EMBEDDED FPU versions. To determine the penalty of using an FPGA with embedded

FPUs for non floating-point computations, the percent of the chip that was used for each

component was calculated. For the chosen FPU configuration, the FPUs consumed

17.6% of the chip. This is an enormous amount of “wasted” area for non-floating-point

calculations, and would clearly be received poorly by that community; however, this

generally mirrors the introduction of the PowerPC to the Xilinx architecture. Ultimately,

embedded floating-point units would only likely be added if a “scientific application”

series of FPGAs were added (much like the DSP series currently in the Xilinx Virtex4

family).

5.2. Embedded Shifters

Even with a conservative size estimate, adding embedded shifters to modern FPGAs

significantly reduced circuit size. As seen in Figure 19 through Figure 21, adding

embedded shifters increased the average clock rate by 3.3% and reduced the average area

by 14.6% from the EMBEDDED MULTIPLIER to the EMBEDDED SHIFTER versions. Even

though there was an average increase in the track count of 16.5%, a track count of 58 is

well within the number of routing tracks on current FPGAs.

Only the floating-point operations were optimized for the embedded shifters – the control

and reminder of the data path remained unchanged. Only considering the floating-point

units, the embedded shifters reduced the number of CLBs for each double-precision

floating-point addition by 31% while requiring only two embedded shifters. For the

double-precision floating-point multiplication the number of CLBs decreased by 22% and

required two embedded shifters.

 41

5.3. Modified CLBs with additional 4:1 Multiplexers

Using the small modification to the CLB architecture showed small circuit area and

increased clock rates. Even though only the floating-point cores were optimized with the

4:1 multiplexers, there was an average clock rate increase of 11.6% and average area

reduction of 7.3% from the EMBEDDED MULTIPLIER to the MULTIPLEXER versions. The

addition of the multiplexer reduced the size of the double-precision floating-point adder

by 17% and reduced the size of the double-precision multiplier by 10%. Even though

there was an average increase in the track count of 16.1%, a track count of 58 is well

within the number of routing tracks on current FPGAs.

5.4. Single vs. Double Precision

The computing usage at Sandia National Laboratories is oriented toward scientific

computing which requires double-precision. It is because of this that the benchmarks

were written using double-precision floating-point numbers. With some modification, a

double-precision FPU could be configured into two single precision units, and should

show similar benefits.

 42

6. Related Work

While there has not been a great deal of work dedicated to increasing the efficiency of

floating-point operations on FPGAs, there has been some work that might be beneficial to

floating-point operations on FPGAs. Ye [24] showed the benefits for bus-based routing

for datapath circuits. Because IEEE floating-point numbers have 32 or 64-bits (single or

double precision) and these signals will generally follow the same routing path, circuits

that use floating-point numbering system might naturally lend itself to bus-based routing.

Altera Corporation’s Stratix II has a logic architecture that consists of smaller LUTs that

can be combined into two 6-LUTs if the two 6-LUTs share four inputs [25]. While

6-LUTs that share no more than two inputs would have been ideal for implementing a 4:1

multiplexer and possibly produced similar results to adding a 4:1 multiplexer, the fact

that the Stratix II 6-LUT requires sharing of four inputs reduces the efficiency of the

Stratix II for implementing shifters and thus performing floating-point operations. Xilinx

just announced their next generation of FPGAs; the Virtex-5 will have true 6-LUTs [26].

While the details of the Virtex-5 are not known, it is expected that it could be used to

implement a 4:1 multiplexer.

Another alternative to implement shifting is to use the embedded multipliers that are

common in Xilinx architectures. Unfortunately, this approach is infeasible in modern

designs where the multipliers are completely consumed by the floating-point units to do

multiplication. Extending the techniques of Xilinx AppNote 195 to 56 bits would be an

inefficient technique with regards to silicon area as 7 multipliers would be needed along

with over 100 4-LUTs. That would not include the sticky bit which needs to be

generated as well.

 43

7. Conclusion

This thesis has demonstrated three architectural modifications that make floating-point

operations more efficient on FPGAs. Adding complete double-precision floating-point

multiply-add units, adding embedded shifters, and adding a 4:1 multiplexer in parallel to

the 4-LUT, each provide an area and clock rate benefit over traditional approaches with

different trade-offs.

At the most coarse-grained end of the spectrum is a major architectural change that

consumes significant chip area, but provides a dramatic advantage. Despite a "worst

case" area estimate, the embedded FPUs provided an average reduction in area of 54.2%

compared to an FPGA enhanced with embedded 18-bit x 18-bit multipliers. This area

achievement is in addition to an average speed improvement of 33.4% over using the

embedded 18-bit x 18-bit multipliers. There is even an average reduction in the number

of routing tracks required by an average of 6.8%.

The embedded shifter provided an average area savings of 14.3% and an average clock

rate increase of 3.3% compared to the baseline architecture, which used embedded

multipliers and CLBs to implement floating-point operations. At the finest-grain end of

the spectrum, adding a 4:1 multiplexer in the CLBs provided an average area savings of

7.3% while achieving an average speed increase of 11.6% compared to the baseline

architecture, which used embedded multipliers and CLBs to implement floating-point

operations. The former comes at the cost of a slightly larger increase (1.5%) in the

silicon area of the FPGA versus only a 0.35% increase in FPGA area for the latter

change; however, neither of these changes is a significant amount of wasted spaces. It is

somewhat unexpected that the smaller change to the FPGA architecture amounts to the

bigger net “win”.

There is a compromise that must be met between an FPGA that has fined grained generic

logic and thus is extremely versatile, but inefficient and an application specific FPGA

which has specialized coarse grained logic blocks to facilitate efficient operations. There

might be a small continuous demand for generic FPGAs for research and prototyping, but

 44

in order for FPGAs to obtain a greater use in industry they must become more efficient

for scientific applications, and therefore floating-point operations. It is conceivable that

this need will not make more generic FPGAs obsolete, but rather spawn other FPGA

families.

 45

END NOTES

[1] K. D. Underwood. FPGAs vs. CPUs: Trends in Peak Floating-Point Performance.
In Proceedings of the ACM International Symposium on Field Programmable Gate
Arrays, Monterey, CA, February 2004.

[2] K. D. Underwood and K. S. Hemmert. Closing the gap: CPU and FPGA Trends in
sustainable floating-point BLAS performance. In Proceedings of the IEEE
Symposium on FPGAs for Custom Computing Machines, Napa Valley, CA, 2004.

[3] K. S. Hemmert and K. D. Underwood. An Analysis of the Double-Precision
Floating-Point FFT on FPGAs. In Proceedings of the IEEE Symposium on FPGAs
for Custom Computing Machines, Napa Valley, CA 2005.

[4] M. de Lorimier and A. DeHon. Floating point sparse matrix-vector multiply for
FPGAs. In Proceedings of the ACM International Symposium on Field
Programmable Gate Arrays, Monterey, CA, February 2005.

[5] G. Govindu, S. Choi, V. K. Prasanna, V. Daga, S. Gangadharpalli, and V. Sridhar. A
high-performance and energy efficient architecture for floating-point based lu
decomposition on fpgas. In Proceedings of the 11th Reconfigurable Architectures
Workshop (RAW), Santa Fe, NM, April 2004.

[6] L. Zhuo and V. K. Prasanna. Scalable and modular algorithms for floating-point
matrix multiplication on fpgs. In 18th International Parallel and Distributed
Processing Symposium (IPDPS’04), Santa Fe, NM, April 2004.

[7] L. Zhuo and V. K. Prasanna. Sparse matrix-vector multiplication on FPGAs. In
Proceedings of the ACM International Symposium on Field Programmable Gate
Arrays, Monterey, CA, February 2005.

[8] IEEE Standards Board. IEEE standard for binary floating-point arithmetic.
Technical Report ANSI/IEEE Std. 754-1985, The Institute of Electrical and
Electronic Engineers, New York, 1985.

[9] K. S. Hemmert and K. D. Underwood. Open Source High Performance Floating-
Point Modules. In Proceedings of the IEEE Symposium on FPGAs for Custom
Computing Machines, Napa Valley, CA, 2006.

[10] I. Koren, Computer Arithmetic Algorithms, 2nd Edition, A.K. Peters, Ltd. Natick,
MA 2002.

[11] Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet. June 2005
(Rev 4.3), [cited Aug 2005], http://direct.xilinx.com/ bvdocs/ publications/
ds083.pdf.

 46

[12] Virtex-4 Family Overview. June 2005 (Rev 1.4), [cited Sept 2005], http://
direct.xilinx.com/ bvdocs/ publications/ ds112.pdf.

[13] V. Betz and J. Rose. VPR: A new packing, placement and routing tool for FPGA
research. In Proceedings of the 7th International Workshop on Field-Programmable
Logic and Applications, pp 213-222, 1997.

[14] V. Betz and J. Rose. Architecture and CAD for Deep-Submicron FPGAs. Kluwer
Academic Publishers, Boston, MA 1999.

[15] Larry McMurchie and Carl Ebeling, PathFinder: A Negotiation-Based Performance-
Driven Router for FPGAs, In Proceedings of the ACM International Symposium on
Field Programmable Gate Arrays, February 1995.

[16] Xilinx: ASMBL Architecture. 2005 [cited Sept 2005],
http://www.xilinx.com/products/silicon_solutions/ fpgas/virtex/virtex4/overview/

[17] Virtex-4 Data Sheet: DC and Switching Characteristics. Aug 2005 (Rev 1.9), [cited
Sept 2005], http://direct.xilinx.com/bvdocs/publications/ ds302.pdf

[18] Virtex-II Platform FPGAs: Complete Data Sheet. Mar 2005 (Rev 3.4), [cited Aug
2005], http://direct.xilinx.com/bvdocs/publications/ds031. pdf

[19] MIPS Technologies, Inc. 64-Bit Cores, MIPS64 Family Features. 2005, [cited Jan
2005], http://www.mips.com /content/Products/Cores/64-BitCores.

[20] J. B. Brockman, S. Thoziyoor, S. Kuntz, and P. Kogge. A Low Cost, Multithreaded
Processing-in-Memory System. In Proceedings of the 3rd workshop on Memory
performance issues, Munich, Germany, 2004.

[21] B. Hutchings, P. Bellows, J. Hawkins, K. S. Hemmert, B. Nelson, and M. Rytting. A
CAD Suite for High-Performance FPGA Design. In Proceedings of the IEEE
Workshop on FPGAs for Custom Computing Machines, Napa, CA, April 1999.

[22] E. Sentovich et al, “SIS: A System for Sequential Circuit Analysis,” Tech Report No.
UCB/ERL M92/41, University of California, Berkley, 1992.

[23] J. Cong and Y. Ding, “FlowMap: An Optimal Technology Mapping Algorithm for
Delay Optimization in Lookup-Table Based FPGA Designs,” IEEE Trans. CAD, Jan
1994, pp 1-12.

[24] A. Ye, J. Rose, “Using Bus-Based Connections to Improve Field-Programmable
Gate Array Density for Implementing Datapath Circuits,” In Proceeding of the ACM
International Symposium on Field-Programmable Gate Arrays, Monterey, CA,
February 2005.

 47

[25] D. Lewis, et al, “The Stratix II Logic and Routing Architecture,” In Proceeding of
the ACM International Symposium on Field-Programmable Gate Arrays, Monterey,
CA, February 2005.

[26] Virtex-5 LX Platform Overview. May 12, 2006 (Rev 1.1), [cited May 2006],
http://direct.xilinx.com/bvdocs/publications/ds100.pdf

 48

BIBLIOGRAPHY

V. Betz and J. Rose. Architecture and CAD for Deep-Submicron FPGAs. Kluwer
Academic Publishers, Boston, MA 1999.

V. Betz and J. Rose. VPR: A new packing, placement and routing tool for FPGA
research. In Proceedings of the 7th International Workshop on Field-Programmable
Logic and Applications, pp 213-222, 1997.

J. B. Brockman, S. Thoziyoor, S. Kuntz, and P. Kogge. A Low Cost, Multithreaded
Processing-in-Memory System. In Proceedings of the 3rd workshop on Memory
performance issues, Munich, Germany, 2004.

J. Cong and Y. Ding, “FlowMap: An Optimal Technology Mapping Algorithm for Delay
Optimization in Lookup-Table Based FPGA Designs,” IEEE Trans. CAD, Jan 1994, pp
1-12.

G. Govindu, S. Choi, V. K. Prasanna, V. Daga, S. Gangadharpalli, and V. Sridhar. A
high-performance and energy efficient architecture for floating-point based lu
decomposition on fpgas. In Proceedings of the 11th Reconfigurable Architectures
Workshop (RAW), Santa Fe, NM, April 2004.

K. S. Hemmert and K. D. Underwood. An Analysis of the Double-Precision Floating-
Point FFT on FPGAs. In Proceedings of the IEEE Symposium on FPGAs for Custom
Computing Machines, Napa Valley, CA 2005.

K. S. Hemmert and K. D. Underwood. Open Source High Performance Floating-Point
Modules. In Proceedings of the IEEE Symposium on FPGAs for Custom Computing
Machines, Napa Valley, CA, 2006.

B. Hutchings, P. Bellows, J. Hawkins, K. S. Hemmert, B. Nelson, and M. Rytting. A
CAD Suite for High-Performance FPGA Design. In Proceedings of the IEEE Workshop
on FPGAs for Custom Computing Machines, Napa, CA, April 1999.

IEEE Standards Board. IEEE standard for binary floating-point arithmetic. Technical
Report ANSI/IEEE Std. 754-1985, The Institute of Electrical and Electronic Engineers,
New York, 1985.

I. Koren, Computer Arithmetic Algorithms, 2nd Edition, A.K. Peters, Ltd. Natick, MA
2002.

D. Lewis, et al, “The Stratix II Logic and Routing Architecture,” In Proceeding of the
ACM International Symposium on Field-Programmable Gate Arrays, Monterey, CA,
February 2005.

 49

M. de Lorimier and A. DeHon. Floating point sparse matrix-vector multiply for FPGAs.
In Proceedings of the ACM International Symposium on Field Programmable Gate
Arrays, Monterey, CA, February 2005.

MIPS Technologies, Inc. 64-Bit Cores, MIPS64 Family Features. 2005, [cited Jan 2005],
http://www.mips.com /content/Products/Cores/64-BitCores.

E. Sentovich et al, “SIS: A System for Sequential Circuit Analysis,” Tech Report No.
UCB/ERL M92/41, University of California, Berkley, 1992.

K. D. Underwood. FPGAs vs. CPUs: Trends in Peak Floating-Point Performance. In
Proceedings of the ACM International Symposium on Field Programmable Gate Arrays,
Monterey, CA, February 2004.

K. D. Underwood and K. S. Hemmert. Closing the gap: CPU and FPGA Trends in
sustainable floating-point BLAS performance. In Proceedings of the IEEE Symposium
on FPGAs for Custom Computing Machines, Napa Valley, CA, 2004.

Virtex-II Platform FPGAs: Complete Data Sheet. Mar 2005 (Rev 3.4), [cited Aug 2005],
http://direct.xilinx.com/bvdocs/publications/ds031. pdf

Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet. June 2005
(Rev 4.3), [cited Aug 2005], http://direct.xilinx.com/ bvdocs/ publications/ ds083.pdf.

Virtex-4 Family Overview. June 2005 (Rev 1.4), [cited Sept 2005], http://
direct.xilinx.com/ bvdocs/ publications/ ds112.pdf.

Virtex-4 Data Sheet: DC and Switching Characteristics. Aug 2005 (Rev 1.9), [cited Sept
2005], http://direct.xilinx.com/bvdocs/publications/ ds302.pdf

Virtex-5 LX Platform Overview. May 12, 2006 (Rev 1.1), [cited May 2006],
http://direct.xilinx.com/bvdocs/publications/ds100.pdf

Xilinx: ASMBL Architecture. 2005 [cited Sept 2005],
http://www.xilinx.com/products/silicon_solutions/ fpgas/virtex/virtex4/overview/

A. Ye, J. Rose, “Using Bus-Based Connections to Improve Field-Programmable Gate
Array Density for Implementing Datapath Circuits,” In Proceeding of the ACM
International Symposium on Field-Programmable Gate Arrays, Monterey, CA, February
2005.

L. Zhuo and V. K. Prasanna. Scalable and modular algorithms for floating-point matrix
multiplication on fpgs. In 18th International Parallel and Distributed Processing
Symposium (IPDPS’04), Santa Fe, NM, April 2004.

 50

L. Zhuo and V. K. Prasanna. Sparse matrix-vector multiplication on FPGAs. In
Proceedings of the ACM International Symposium on Field Programmable Gate Arrays,
Monterey, CA, February 2005.

	Introduction
	Background
	Floating-Point Numbering System
	Island-Style FPGA

	VPR
	Component Area
	Component Latency
	Track Length and Delay
	Fast Carry-Chains

	Methodology
	Embedded Floating-Point Units (FPUs)
	Embedded Shifter
	Modified CLB with additional 4:1 Multiplexer
	Benchmarks

	Results
	Embedded FPUs
	Embedded Shifters
	Modified CLBs with additional 4:1 Multiplexers
	Single vs. Double Precision

	Related Work
	Conclusion

