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With the density of Field programmable Gate Arrays (FPGAs) steadily increasing, 

FPGAs have reached the point where they are capable of implementing complex floating-

point applications.  However, their general-purpose nature has limited the use of FPGAs 

in scientific applications that require floating-point arithmetic due to the large amount of 

FPGA resources that floating-point operations still require.  This thesis considers three 

architectural modifications that make floating-point operations more efficient on FPGAs.  

The first modification embeds floating-point multiply-add units in an island style FPGA.  

While offering a dramatic reduction in area and improvement in clock rate, these 

embedded units have the potential to waste significant silicon for non-floating-point 

applications. The next two modifications target a major component of IEEE compliant 

floating-point computations: variable length shifters.  The first alternative to LUTs (Look 

Up Tables) for implementing the variable length shifters is a coarse-grained approach: 

embedded variable length shifters in the FPGA fabric.  These shifters offer a significant 

reduction in area with a modest increase in clock rate and a relatively small potential for 

wasted silicon.  The next alternative is a fine-grained approach: adding a 4:1 multiplexer 

unit inside the slices, in parallel to the 4-LUTs.  While this offers the smallest reduction 

in overall area, it does offer a significant increase in clock rate with only a minimum 

increase in the size of the CLB (Configurable Logic Block). 
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1. Introduction 

A variety of research efforts are searching for alternative processor architectures to 

accelerate scientific applications.  While modern supercomputers depend almost 

exclusively on a collection of traditional microprocessors, these microprocessors have 

poor sustained performance on many modern scientific applications.  ASICs, which can 

be highly efficient at floating-point computations, do not have the programmability 

needed in a general purpose supercomputer.  Even though microprocessors are versatile 

and have fast clock rates, their performance is limited by their lack of customizability [1].  

One alternative that is being widely considered is the use of FPGAs.  However, scientific 

applications depend on complex floating-point computations that could not be 

implemented on FPGAs until recently, due to size constraints.  Increases in FPGA 

density, and optimizations of floating-point elements for FPGAs, have made it possible to 

implement a variety of scientific algorithms with FPGAs [2]-[7].  In spite of this, the 

floating-point performance of FPGAs must increase dramatically to offer a compelling 

advantage for the scientific computing application domain.  Fortunately, there are still 

significant opportunities to improve the performance of FPGAs on scientific applications 

by optimizing the device architecture. 

Because fixed-point operations have become common on FPGAs, FPGA architectures 

have introduced targeted optimizations for fixed-point operations like fast carry-chains, 

cascade chains, and embedded multipliers.  In fact, Xilinx has created an entire family of 

FPGAs optimized for the signal-processing domain, which uses this type of operation 

intensively [12].  Even though floating-point operations are becoming more common, 

there have not been the same-targeted architectures for floating-point as there are for 

fixed-point – there is not a scientific-computing family of FPGAs 

Potential architectural modifications span a spectrum from the extremely coarse-grained, 

addition of embedded units, to the extremely fine-grained, addition or modification of 

logic gates.  This thesis explores ideas at three points in that spectrum.  At the coarse-

grained end, the addition of fully compliant IEEE 754 standard [8] floating-point 
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multiply-add units was evaluated as an embedded block in the reconfigurable fabric.  

These embedded floating-point units are feasible because many scientific applications 

require compliance with the IEEE standard from any platform they use.  These coarse-

grained units provide a dramatic reduction in area and increase in clock rate at the cost of 

dedicating significant silicon resources to hardware that not all applications will use. 

IEEE floating-point also has other features that lend themselves to finer grained 

approaches.  The primary example is that floating-point arithmetic requires variable 

length and direction shifters.  In floating-point addition, the mantissas of the operands 

must be aligned before calculating the result.  In floating-point multiplication and 

division, the mantissa must be shifted before the calculation (if denormals are supported) 

and after the calculation to renormalize the mantissa [9].  The datapath for shifters 

involves a series of multiplexers, which are currently implemented using LUTs.  In 

Underwood and Hemmert's highly optimized double-precision floating-point cores for 

FPGAs [9], the shifter accounts for almost a third of the logic for the adder and a quarter 

of the logic for the multiplier.  Therefore, by developing a more efficient implementation 

of a variable length an direction shifter can noticeably improve floating-point 

performance. 

This led to two approaches in optimizing the FPGA hardware for variable length shifters. 

At the fine-grained end, a minor change to the traditional CLB (Configurable Logic 

Block): the addition of a 4:1 multiplexer in parallel with the 4-LUT was considered.  This 

provides a large increase in clock rate with a more modest area reduction and virtually no 

wasted silicon area.  In the middle of the spectrum, the addition of an embedded block to 

provide variable length shifting was considered.  This uses slightly more area than the 

CLB modification and provides a corresponding increase in area savings.  Unlike the 

embedded floating-point units, the embedded shifters provide only a modest 

improvement in clock rate. 

To test these three proposed architectural modifications to the FPGA architecture, the 

leading public-domain academic FPGA place and route tool, VPR (Versatile Place and 
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Route), was augmented to support embedded functional units and high-performance 

carry-chains.  It was then used to place and route five scientific benchmarks that use 

double-precision floating-point multiplication and addition.  The five benchmarks that 

were chosen were matrix multiply, matrix vector multiply, vector dot product, FFT, and 

LU decomposition.  To determine the feasibility of these proposed architectural 

modifications, five versions of each benchmark were used: 

• CLB ONLY – All floating-point operations are performed using the CLBs.  The 

only other units in this version are embedded RAMs and IO blocks. 

• EMBEDDED MULTIPLIER – This version adds 18-bit x 18-bit embedded 

multipliers to the CLB ONLY version.  Floating-point multiplication uses the 

CLBs and the embedded multipliers.  Floating-point addition and division are 

performed using only the CLBs.  This version is similar to the Xilinx Virtex-II 

Pro family of FPGAs, and thus is representative of what is currently available in 

commercial FPGAs. 

• EMBEDDED SHIFTER – This version further extends the EMBEDDED MULTIPLIER 

version with embedded variable length shifters that can be configured as a single 

64-bit variable length shifter or two 32-bit variable length shifters.  Floating-point 

multiplication uses the CLBs, embedded multipliers, and embedded shifters.  

Floating-point addition and division are performed using the CLBs and embedded 

shifters. 

• MULTIPLEXER – While the same embedded RAMs, embedded multipliers, and 

IO blocks of the EMBEDDED MULTIPLIER version are used, the CLBs have been 

slightly modified to include a 4:1 muliplexer in parallel with the LUTs.  Floating-

point multiplication uses the modified CLBs and the embedded multipliers.  

Floating-point addition and division are performed using only the modified CLBs. 

• EMBEDDED FPU – Besides the CLBs, embedded RAMs, and IO blocks of the 

CLB ONLY version, this version includes embedded floating-point units (FPUs).  

Each FPU performs a double-precision floating-point multiply-add.  Other 
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floating-point operations are implemented using the general reconfigurable 

resources. 

The EMBEDDED SHIFTER, MULTIPLEXER, and EMBEDDED FPU benchmark versions 

implement the proposed architectural modifications to enhance floating-point 

performance on FPGAs.  In order to measure the benefit of these modifications, these 

benchmark versions will be compared to the EMBEDDED MULTIPLIER version, which is 

representative of what is currently available in commercial FPGAs. 

The maximum clock rate, or frequency, and area will be compared to quantify the benefit 

of these three proposed architectural modifications.  While track count will also be 

measured, it is not considered for potential improvement but to ensure that the place and 

routes generated by VPR are reasonable. 

The remainder of this thesis is broken down as follows:  Section 2 presents a background 

of the floating-point numbering system and island-style FPGAs.  Section 3 details how 

VPR was modified and used to place and route the benchmarks.  Section 4 gives the 

specifics of the three proposed FPGA architectural modifications.  Section 5 presents the 

results, Section 6 gives some related work, and Section 7 is the conclusion. 
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2. Background 

2.1. Floating-Point Numbering System 

Often, for scientific calculations, the range of fixed-point numbers is insufficient.  

Therefore, floating-point numbers are used.  The larger dynamic range of floating-point 

numbers comes at a cost of more complex computations over fixed-point numbers.  

Floating-point numbers are similar to scientific notation.  Floating-point numbers consists 

of two parts, the mantissa M and exponent E, as seen in equation 1, where β is the base or 

radix of the number. 

  (1) EMX β⋅=

The base is consistent for all floating-point number of a given system.  For binary 

floating-point numbers the base is 2.  Both the mantissa and the exponent are signed 

numbers. 

IEEE standard 754 specifies that the mantissa is stored in sign-magnitude notation with a 

sign bit S and an unsigned fraction M, which is normalized to the range [1,2).  Since a 

normalized floating-point number will always have a leading one for the unsigned 

fraction M, it is not necessary to store this bit.  The leading one becomes "hidden", 

allowing for an extra bit in the mantissa and thus, increasing the precision.  The resulting 

mantissa is given in equation 2, where f is the fractional part of the mantissa after the 

leading one has been removed. 

 ( ) fM S .11 ⋅−=  (2) 

The exponent is a sum of the true two's complement value of the exponent and a constant 

bias, as given in equation 3. 

 biasEE true +=  (3) 
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1

The range of Etrue, where e is the bits of the exponent, is 

  22 11 −≤≤− −− e
true

e E

The bias, given in equation 4, is the magnitude of the most negative exponent, resulting 

in a non-negative exponent, which has a range 

  120 −≤≤ eE

 1  (4) 2 1 −= −ebias

By using a bias instead of another format, sign-magnitude or 2's complement, the 

exponent is always a non-negative value.  This makes comparison of two exponents 

easier, as they can be considered unsigned numbers.  Additionally, floating-point 

numbers in the order S, E, and M can be compared as if they were single sign-magnitude 

binary numbers. 

 
Table 1.  IEEE floating-point component lengths and exponent bias 

Precision Word Length 
[bits] 

Mantissa 
Length†

[bits] 

Exponent 
Length 
[bits] 

Exponent Bias 

Single 32 23 8 127 
Double 64 52 11 1023 

† Does not include "hidden" bit. 
 
 
IEEE standard 754 specifies that single precision binary floating-point numbers have 

32-bits, which consists of a sign bit, a 23-bit mantissa (not including the hidden bit), and 

an 8-bit exponent, as shown in Table 1.  The resulting representation is shown in equation 

5. 

 ( ) 1272.11 −⋅⋅−= ES fX  (5) 
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Double precision binary floating-point numbers have 64-bits, which consists of a sign bit, 

a 52-bit mantissa (not including the hidden bit), and an 11-bit exponent, as shown in 

Table 1.  The resulting representation is shown in equation 6. 

 ( ) 10232.11 −⋅⋅−= ES fX  (6) 

The IEEE standard specifies a sign bit, an 8-bit exponent, and a 23-bit mantissa for a 

single-precision floating-point number, as seen in Figure 1.  Double-precision floating-

point has a sign bit, an 11-bit exponent and 52-bit mantissa, as seen in Figure 2. 

S Exp Mantissa

0 1 8... 9 31...
 

Figure 1.  Single precision IEEE floating-point number 
 

S Exp Mantissa

0 1 11... 12 63...
 

Figure 2.  Double precision IEEE floating-point number 
 

Floating-point numbers have a larger dynamic range that fixed-point numbers, but due to 

their complex formulation, they are more difficult to implement in hardware.  It is this 

complexity that results in floating-point operations requiring a large percentage of 

resources in FPGAs. 

 

2.2. Island-Style FPGA 

FPGAs are an array of digital logic that can be programmed for specific tasks.  Because 

of the large amount of logic, for applications, whose operations can be performed in 

parallel, FPGAs can be faster than general-purpose processors, while generally being less 

expensive than an Application-Specific Integrated Circuits (ASICs). 



  8 

  

Switch
Box

CLB

C
on

ne
ct

io
n 

B
ox

Connection Box Switch
Box

CLB

C
on

ne
ct

io
n 

Bo
x

Switch
Box

CLB

C
on

ne
ct

io
n 

B
ox

Connection Box Switch
Box

CLB

C
on

ne
ct

io
n 

Bo
x

Connection Box Switch
Box

CLB

C
on

ne
ct

io
n 

B
ox

Connection Box Switch
Box

CLB

C
on

ne
ct

io
n 

B
ox

CLB

Connection Box

CLB

Switch
Box

Switch
Box

Connection Box

CLB

Switch
Box

Connection Box Connection Box Connection Box

I/O

C
on

ne
ct

io
n 

B
ox

I/O

C
on

ne
ct

io
n 

Bo
x

I/O

C
on

ne
ct

io
n 

B
ox

I/O

I/OI/O

Switch
Box

C
on

ne
ct

io
n 

B
ox

Switch
Box

C
on

ne
ct

io
n 

Bo
x

CLB

Connection Box

CLB

Switch
Box

C
on

ne
ct

io
n 

B
ox

Connection Box

CLB

Connection Box

I/O

Connection Box Switch
Box

CLB
C

on
ne

ct
io

n 
Bo

x

Connection Box Switch
Box

CLB

C
on

ne
ct

io
n 

Bo
x

Connection Box

CLB

Switch
Box

C
on

ne
ct

io
n 

Bo
x

I/O

Switch
Box

C
on

ne
ct

io
n 

Bo
x

Connection Box

CLB

FPGA
 

Figure 3.  Basic island-style FPGA 
 

The current dominant style of FPGAs is the island-style FPGA, consisting of a two 

dimensional lattice of CLBs (Configurable Logic Blocks), as shown in Figure 3.  Around 

the outside of the FPGA are IO blocks.  Connecting the CLBs are regular horizontal and 

vertical routing structures that allow configurable connections at the intersections.  The 

horizontal and vertical routing is in the form of connection and switch boxes.  The 

connection boxes allow programmable connection of the CLB's signals to enter and exit 

the general purpose routing.  Switch boxes allow programmable connections between the 

connection boxes.  The connection and switch boxes consist of programmable transistors 

that can connect wire segments.  The CLBs consist of combinational and sequential logic 

components in the form of 4-input function generators (or 4-LUTs), storage elements (or 

flip-flops), arithmetic logic gates, and a fast carry-chain. 

In recent years, additional block units have been added that have increased the versatility 

and efficiency of FPGAs, especially for circuits that use fixed-point numbers.  Embedded 

RAMs, DSP blocks, and even microprocessors have been added to island-style FPGAs 

[11], [12].  However, circuits that use floating-point numbers still require a large number 
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of CLBs to perform basic operations.  Thus, this thesis examines hardware changes and 

modifications to FPGAs that will improve the efficiency of floating-point unit 

implementations. 
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3. VPR 

VPR [13], [14] is the leading public-domain academic FPGA place and route tool.  It 

uses simulated annealing and a timing based semi-perimeter routing estimate for 

placement, and a timing driven detailed router based on PathFinder [15].  In this thesis, 

VPR was used to determine the feasibility of three changes to the traditional island-style 

FPGAs: embedding floating-point units (FPUs), embedded shifters, and modified CLBs 

to facilitate shifting for floating-point calculations. 

 
Figure 4.  Column based architecture with CLBs, embedded multipliers, and block RAMs 

 



  11 

  

 
Figure 5.  Column based architecture with addition of embedded shifters  

 

 
Figure 6.  Embedded floating-point units replacing multipliers in Figure 4 

 
In previous versions, VPR supported only three types of circuit elements: input pads, 

output pads, and CLBs.  To test the proposed architectural modifications and to 

incorporate the necessary architectural elements, VPR was modified to allow the use of 

embedded block units with user defined size.  The heights and widths of these embedded 
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blocks are quantized by the size of the CLB.  For example the embedded RAM size can 

be specified as one CLB in width and four CLBs in height.  In order for continuity of 

signals, horizontal routing is allowed to cross the embedded units, but because the 

embedded blocks are arranged in columns, vertical routing only exists at the periphery of 

the embedded blocks.  The regular routing structure that existed in the original VPR was 

maintained, as shown in Figure 4 through Figure 6.  Additionally, a fast carry-chain was 

incorporated into the existing CLBs to ensure a reasonable comparison with state-of-the-

art devices.  The fast carry-chain is explained in greater detail in Section 3.4.  The 

benchmarks were synthesized using Synplify and technology mapped using Xilinx ISE 

(rather than the VPR technology mapping path).  See benchmarks, Section 4.4, for more 

details. 

 
Figure 7.  ASMBL 

 
The baseline FPGA architecture, which proposed architectural modifications will be 

compared, was modeled after the Xilinx Virtex-II Pro FPGA family, and includes most of 

the major elements of current FPGAs (IO blocks, CLBs, 18Kb block RAMs, and 

embedded 18-bit x 18-bit multiplier blocks) [11].  The CLBs include 4-input function 

generators, storage elements, arithmetic logic gates, and a fast carry-chain. 

In addition to the standard Xilinx Virtex-II Pro features, the proposed architectural 

modifications to the FPGA include embedded FPUs, embedded shifters, and the addition 

of a 4:1 mux in parallel to the 4-LUT.  Independent of whatever embedded block is bein 
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used, they are arranged in a column-based architecture similar to Xilinx’s ASMBL 

(Advanced Silicon Modular Block) architecture [16], as seen in Figure 7, which is the 

architectural foundation of the Virtex-4 FPGA family [17]. 

The embedded units have optional registered inputs and/or registered outputs.  Each unit 

is characterized by three timing parameters: sequential setup time, sequential clock-to-q, 

and maximum combinational delay (if unregistered).  The fast carry-chain is a dedicated 

route that does not use the normal routing structure of switch boxes and connection 

boxes.  The carry-chain has a dedicated route that goes from the carry-out at the top of 

the CLB to the carry-in at the bottom of the CLB above it.  Because it does not make use 

of the normal routing graph, it has its own timing parameters. 

3.1. Component Area 

The areas of the CLB, embedded multiplier, and block RAM were approximated using a 

die photo of a Xilinx Virtex-II 1000 [18] courtesy of Chipworks Inc.  The area estimate 

of each component includes the associated connection blocks, which dominate the 

routing area.  The areas were normalized by the process gate length, L.  All areas are 

referenced to the smallest component, which is the CLB, and are shown in Table 2. 

Table 2.  Component timing and area 

 TSETUP
[ns] 

TCLK→Q
[ns] 

Area 
[106 L2] 

Area 
[CLBs] 

CLB 0.32 0.38 0.662 1 
Embedded Multiplier 2.06 2.92 11.8 18 

Block RAM 0.23 1.50 18.5 28 
Shifter 0.30 0.70 0.843 1.27 
FPU 0.50 0.50 107 161 

 

3.2. Component Latency 

The CLBs that were used were modeled after the Xilinx slice.  Each CLB is composed of 

two 4-input function generators, two storage elements (D flip-flops), arithmetic logic 

gates, and a fast carry-chain.  VPR uses subblocks to specify the internal contents of the 
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CLB.  Each subblock can specify a combinational and sequential logic element and has 

three timing parameters, similar to the embedded units: sequential setup time, sequential 

clock-to-q, and maximum combinational delay if the output subblock is unregistered.  

More subblocks results in a more accurate timing representation of the CLB. To 

adequately represent the timing of an unmodified CLB, twenty VPR subblocks were 

used.  With the 4:1 multiplexer modification to the CLB, twenty-two VPR subblocks 

were used.  The embedded multiplier and block RAM were modeled after the Xilinx 

Virtex-II Pro.  However, unlike the Xilinx Virtex-II Pro (and more similar to the Xilinx 

Virtex-4), these units are independent of each other.  This was done to ease the modeling 

of the embedded multipliers and block RAMs in VPR.  These timing parameters are 

based on the Xilinx Virtex-II Pro -6 and were found in Xilinx data sheets or 

experimentally using Xilinx design tools and are shown in Table 2. 

3.3. Track Length and Delay 

Island-style FPGAs use track lengths of various sizes.  However, in the process of placing 

and routing VPR minimized the number of routing tracks used, but maintains a track 

length percentage as specified by the user.  Four different lengths of routing tracks were 

used: single, double, quad, and long, where long tracks spanned the entire length of the 

architecture.  The percentages of different routing track lengths were based on Xilinx 

Virtex-II Pro family and can be seen in Table 3 [11]. 

Table 3.  Track Length 
Size Length Fraction 

Single 1 22% 
Double 2 28% 
Quad 4 42% 
Long All 8% 

 

VPR uses a resistive and capacitive model to calculate the delay for various length 

routing tracks.  Based on previously determined component area, the resistive and 

capacitive values were estimated by laying out and extracting routing tracks using 
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Cadence IC design tools.  Timing results for the overall design were found to be 

reasonable based on previous experience with Xilinx parts. 

3.4. Fast Carry-Chains 

 

 

Figure 8.  Simplified CLB with fast vertical carry-chain 
 

VPR was also modified to allow the use of fast carry-chains.  Along with the two 4-input 

function generators (4-LUT), two storage elements (flip-flops), and arithmetic logic 

gates, each CLB has a fast carry-chain affecting two output bits.  The carry-out of the 

CLB exits through the top of the CLB and enters the carry-in of the CLB above, as shown 

in Figure 8.  Each column of CLBs has one carry-chain that starts at the bottom of the 

column of CLBs and ends at the top of the column.  Since each CLB has logic for two 

output bits, there are two opportunities in each CLB to get on or off of the carry-chain. 

The addition of the carry-chain was necessary to make a reasonable comparison between 

the baseline FPGA architecture and the proposed FPGA architecture modifications, 

which include embedded FPUs, embedded shifters, and additional 4:1 mux in parallel to 

the 4-LUT in the CLB.  Floating-point addition makes extensive use of the fast carry-

chains.  For example, the double-precision addition requires a 57-bit adder.  The fast 
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carry-chain is specifically designed to implement a ripple carry adder and is much faster 

than if the carry signal was required to go out on the general routing structure.  This 

would dramatically skew the results in favor of the embedded FPUs, which implement 

the floating-point addition in an embedded block and not in the CLBs. 

To demonstrate the correct operation of the carry-chain modification, the benchmarks 

that used the embedded multipliers to implement the double-precision floating-point 

multiply-add were placed and routed using VPR with and without the carry-chain 

modification.  The results are shown in Table 4.  By using the fast carry-chain the 

benchmarks had an average speed increase of 49.7%. 

Table 4.  Maximum clock rate with and without the use of the fast carry-chain 

Benchmark 
Max. Freq. w/o 

Fast Carry-Chain 
[MHz] 

Max. Freq. With 
Fast Carry-Chain 

[MHz] 
Matrix Multiply 87 126 
Vector Multiply 89 117 

Dot Product 87 149 
FFT 79 104 

LU Decomposition 84 142 
Average 85 128 

 

Because the carry-chains only exist in columns of CLBs, and only in the upward 

direction, all of the CLBs of a given carry-chain are initially placed in proper relative 

position to each other and move/swap all of the CLBs that comprise a carry-chain as one 

unit.  To accomplish this, when a CLB that is part of a carry-chain is chosen to be moved 

or swapped the following algorithm is used: 

1. The CLBs that are to be moved or swapped are randomly determined based on the 

constraints of the placement algorithm. 

2. If the CLBs are part of a carry-chain the beginning and end of the carry-chain are 

determined by traversing the carry-chain. 

3. The number of CLBs traversed to find the beginning and end of each carry-chain 

are compared. 
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EXAMPLE: The first CLB chosen to be swapped has one CLB 

until the beginning of the carry-chain and one until the end 

of the carry-chain for a total of three CLBs (including the 

original CLB).  The second CLB chosen to be swapped has 

two CLBs until the beginning of the carry-chain and none 

until the end of the carry-chain for a total of twelve 

(including the original CLB). 

4. The larger of these values is used to determine how m

considered for the move. 

any CLBs will be 

 CLBs until the end 

EXAMPLE:  The first CLB chosen to be swapped has one 

CLB until the beginning of its carry-chain and the second 

CLB chosen to be swapped has three CLBs until the 

beginning of its carry-chain.  The maximum distance to the 

beginning of the two carry-chains is three CLBs and this 

determines that three CLBs before each of the two CLBs 

originally chosen to be swapped will be included in the 

attempted swap.  The first CLB chosen to be swapped has one

of its carry-chain and the second CLB chosen to be swapped does not have any 

CLBs until the end of its carry-chain.  The maximum distance to the end of the 

two carry-chains is one CLB and this determines that one CLBs after each of the 

two CLBs originally chosen to be swapped will be included in the attempted 

swap.  Therefore, five CLBs surrounding the first CLB chosen for the swap and 

five CLBs surrounding the second CLB chosen for the swap will be considered 

for the attempted swap. 

5. It is determined if the CLBs could be moved or swapped without violating the 

physical constraints of the chip and breaking any other carry-chain. 
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ll of the CLBs that 

8. cepted or rejected based on the current simulated annealing 

9. p is accepted all of the CLBs on the carry-chain are moved together 

10.  N CLBs is 

The rest of the details of the simulated annealing algorithm remain unchanged.  This 

EXAMPLE:  In the ongoing example the second column of 

CLBs to be swapped would break a carry-chain (shown with 

green arrow). 

6. If the move swap is determined to be illegal, the move/swap 

is discarded and a new set of blocks are chosen for a 

potential move/swap.  Even though this potential move is 

discarded, it is not considered a rejected move. 

7. Once a legal move is found, all of the nets that connect to a

comprise the carry-chain are considered in the cost of moving the carry-chain. 

The move is ac

temperature. 

If a move/swa

to maintain the physical constraints of the carry-chain architecture. 

The accepted or rejected move of a carry-chain consisting of

considered N accepted or rejected moves. 

resulted in making VPR significantly slower, but is important for producing realistic 

comparisons. 



  19 

  

4. Methodology 

4.1. Embedded Floating-Point Units (FPUs) 

The embedded FPU implements a double-precision floating-point multiply-add 

operation, as described by Equation 7.  The FPU can be configured to implement a 

double-precision multiply, add, or multiply-add operation. 

 ( ) bitbitbitbit CBA=X −−−− + 64646464 *  (7) 

The baseline size of the FPU was conservatively estimated from commodity 

microprocessors and embedded cores in previous work [19], [20].  In addition to the size 

of the FPU the area necessary to connect to the general purpose routing structure was 

taken into account.  This area for this connection to the general purpose routing structure 

is the addition of one vertical side of the FPU being filled with connection blocks.  Since 

the exact size of a connection block is unknown, the conservative estimate of a 

connection block being the same size as a "CLB" was used.  This made the true area of 

the FPU dependent on the shape chosen, resulting in a conservative area estimate. 

The latency of the FPUs was more difficult to estimate experimentally.  Given that a 

processor on a similar process (the Pentium 4) can achieve 3 GHz operation with a 4 

cycle add and a 6 cycle multiply, it is assumed that an FPU implemented for an FPGA 

could achieve 500 MHz at the same latency.  Setup and clock-to-q were set 

conservatively assuming the latency included registers front and back. 

To determine the appropriate aspect ratio for the FPU, each benchmark was run using 

eight different heights and widths.  These FPUs with different aspect ratios were 

combined in a column based architecture with CLBs and block RAMs as shown in Figure 

6.  With an increase in the height of the FPU (decrease in the aspect ratio), there will be 

fewer FPUs on a single column.  To maintain the same ratio of FPUs, CLBs, and RAMs 

for all the different FPU sizes, the number of columns of FPUs was increased as the FPU 

height increased. 
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The area of the FPUs varies with the aspect ratio due to the overhead of connecting the 

FPU with the surrounding routing resources – for each row of CLBs along an FPU’s 

edge, a row’s worth of routing resources must be provided.  A conservative estimate was 

used that for each CLB of height added to the FPU, an additional full CLB tile’s worth of 

area was required for the programmable routing. 

Each of the five benchmarks, matrix multiply, matrix vector multiply, vector dot product, 

FFT, and a LU Decomposition, were tested with eight different FPU heights; from 4 

CLBs to 160 CLBs in height.  These benchmarks with different FPU sizes were 

compared on three criteria: area, maximum clock rate, and number of routing tracks as 

given in Figure 9 through Figure 11. 

There is a significant difference in the maximum clock rate between the benchmarks with 

different FPU aspect ratios.  The benchmarks with FPUs of height 32 had the highest 

average clock rate as shown in Figure 9.  The lower frequencies were found at the 

extremes, those with very large and very small aspect ratios.  The benchmarks with large 

aspect ratios, small FPU heights, were very wide and consequently had large horizontal 

routes that increased the overall circuit latency.  The benchmarks with small aspect ratios, 

large FPU heights, used a larger percentage of the routing tracks near the FPUs.  This 

would dominate the minimum number of routing tracks needed and slower clock 

frequencies. 



  21 

 

Figure 9.  Embedded FPU benchmark clock rate 
 
 

 

Figure 10.  Embedded FPU benchmark area 
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Figure 11.  Embedded FPU benchmark track count 
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Because there was an area penalty for greater FPU heights to account for connectivity 

and routing, the architecture with the shortest FPUs had the smallest area.  However, 

there was only a 2.7% difference in the areas of the FPU benchmark with the highest 

frequency and the benchmark with the smallest area as shown in Figure 10. 

Modern FPGAs have a large number of routing tracks.  Therefore, apart from its impact 

on maximum clock frequency, the required number of routing tracks is unlikely to be the 

driving consideration when choosing the best aspect ratio for the FPU.  Even though 

there was a 12.8% difference in track count of the FPU benchmark with the lowest track 

count (FPU height 16) and the benchmark with the highest clock rate (FPU height 32), 

the benchmark with the highest clock rate only had an average routing track count of 46 

as shown in Figure 11. 

On average, the benchmarks that used the FPU of height 32 had the highest clock rate, 

did not have a significant area increase over those with other aspect ratios, and had a 

reasonable track count.  Therefore, it is the architectures with FPUs of height 32 that are 

being compared to the other architectures.  
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Figure 12.  Embedded shifter block diagram 
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Table 5.  Embedded shifter modes and control signals 
 Input Control 

Shifter 'A' Shifter 'B' Shift 
Configuration 

Shift 
Amount 

(SA) 
Direction   Mode Type Top 

Mux 
Bottom 

Mux 
Top 
Mux 

Bottom 
Mux 

Shift 
Muxs 

SRL     32x2 – RIGHT SHIFT LOGICAL 0 IN63-IN32 0 IN31-IN0 SHIFT AMT 
SRA   32x2 – RIGHT SHIFT ARITHMETIC SIGN IN63-IN32 SIGN IN31-IN0 SHIFT AMT 

SLL/SLA    32x2 – LEFT SHIFT  – IN62-IN32 0 IN30-IN0 0 32-SA 
ROR 32x2    – RIGHT ROTATE – IN62-IN32 IN63-IN32 IN30-IN0 IN31-IN0 SHIFT AMT 
ROL     32x2 – LEFT ROTATE – IN62-IN32 IN63-IN32 IN30-IN0 IN31-IN0 32-SA 
SRL      64x1 >32 RIGHT SHIFT LOGICAL 0 0 0 IN63-IN32 SHIFT AMT 
SRL     64x1 <32 RIGHT SHIFT LOGICAL 0 IN63-IN32 IN62-IN32 IN31-IN0 SHIFT AMT 
SRL      64x1 =32 RIGHT SHIFT LOGICAL – 0 – IN63-IN32 SHIFT AMT 
SRA   64x1 >32 RIGHT SHIFT ARITHMETIC SIGN SIGN SIGN IN63-IN32 SHIFT AMT 
SRA   64x1 <32 RIGHT SHIFT ARITHMETIC SIGN IN63-IN32 IN62-IN32 IN31-IN0 SHIFT AMT 
SRA     64x1 =32 RIGHT SHIFT ARITHMETIC – SIGN – IN63-IN32 SHIFT AMT 

SLL/SLA      64x1 >32 LEFT SHIFT  – IN30-IN0 0 0 0 32-SA 
SLL/SLA      64x1 <32 LEFT SHIFT – IN62-IN32 IN31-IN0 IN30-IN0 0 32-SA 
SLL/SLA        64x1 =32 LEFT SHIFT – – IN31-IN0 – 0 32-SA 
SLL/SLA      64x1 =0 LEFT SHIFT – – IN63-IN32 – IN31-IN0 32-SA 

ROR 64x1    >32 RIGHT ROTATE – IN62-IN32 IN31-IN0 IN30-IN0 IN63-IN32 SHIFT AMT 
ROR     64x1 <32 RIGHT ROTATE – IN30-IN0 IN63-IN32 IN62-IN32 IN31-IN0 SHIFT AMT 
ROR      64x1 =32 RIGHT ROTATE – – IN31-IN0 – IN63-IN32 SHIFT AMT 
ROL     64x1 >32 LEFT ROTATE – IN30-IN0 IN63-IN32 IN62-IN32 IN31-IN0 32-SA 
ROL     64x1 <32 LEFT ROTATE – IN62-IN32 IN31-IN0 IN30-IN0 IN63-IN32 32-SA 
ROL      64x1 =32 LEFT ROTATE – – IN31-IN0 – IN63-IN32 32-SA 
ROL      64x1 =0 LEFT ROTATE – – IN63-IN32 – IN31-IN0 32-SA 
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4.2. Embedded Shifter 

In floating-point addition, the mantissas must be aligned by shifting one of the mantissas 

to match the other.  This requires a variable length and direction shifter.  Because 

maximum range of the exponent is larger than the length of the mantissa, the mantissa 

can be shifted either left or right by any distance up to the full length of the mantissa.  

This means that up to a 24 bit shift can be required for IEEE 754 single precision and up 

to 53 bits of shift can be required for IEEE 754 double precision.  However, in hardware, 

shifters tend to be implemented in powers of two.  Therefore, shifters of length 32 and 64 

bits were implemented for single and double precision floating-point operations, 

respectively, as shown in Figure 12.  This unit can perform either one 64-bit shift (using 

the 'A' shift controls shown in Figure 12) or two independent 32-bit shifts (using both the 

'A' and 'B' shift controls shown in Figure 12). 

Even though floating-point operations only require a logical shift, the embedded shifter 

should be versatile enough to be used for other circuits that might make use of a different 

type of shifter.  If the shifter is not versatile, implementing all shift modes, the embedded 

shifters will have a higher probability of being wasted in other types of circuits that 

require the modes that were not implemented.  Therefore, the embedded shifter that was 

used has five modes: rotate left (ROL), rotate right (ROR), shift right logical (SRL), shift 

right arithmetic (SRA), and shift left logical/arithmetic (SLL/SLA). 

During the shifting that accompanies the normalization of floating-point numbers it is 

important to calculate the sticky bit as it is an integral part of the shift operation.  The 

sticky bit is used when implementing round-to-nearest-even and is the result of the 

logical OR of all the bits that are lost during a right shift.  Adding the necessary logic to 

the shifter to compute the sticky bit increases the size of the shifter by less than 1%.  

Thus, the logic for the sticky bit calculation is included in each shifter.  The sticky bit 

outputs are undefined when a shift other than a logical right shift is performed. 

To help improve the maximum clock speed, the embedded shifter also has optional 

registers on the inputs and outputs of the datapath.  There are a total of 83 inputs and 66 
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outputs.  The 83 inputs include 16 control bits, 64 data bits, and 3 register control bits 

(clock, reset, and enable).  The 66 outputs include 64 data bits and 2 sticky bits (two 

independent sticky bit outputs are needed when the shifter is used as two independent 

32-bit shifters). 

The modes of operation and control of the embedded shifter is given in Table 5.  A 64-bit 

left and right shifter can be created out of a 127-bit right only shifter.  This shifter would 

have six levels of muxes (shift by 1, shift by 2, shift by 4, … , shift by 32).  In addition to 

the muxes needed for shifting, a mux is needed on the input to select the correctly 

orientate the input, force a zero for logical shifts, or force a zero or one for sign 

extension.  However, the top-level mux can be combined with the shift by 32 mux, 

minimizing the complexity of the shifter. 

In order to use the 64-bit shifter as two independent 32-bit shifters, a few modifications 

were needed.  The bottom five levels of muxes need to be duplicated and the control for 

the top level was modified to account for both 32-bit and 64-bit shift modes.  The control 

for the embedded shifter is shown in Table 5.  The control was determined such that in 

both the 32-bit and 64-bit shift modes the output is in correct sequence and another level 

muxes are not needed. 
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Figure 13.  Embedded shifter benchmark clock rate 
 

 

Figure 14.  Embedded shifter benchmark area 
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Figure 15.  Embedded shifter benchmark track count 
 

The benchmark circuits used to test the feasibility of embedded shifter in FPGAs, matrix 

multiply, matrix vector multiply, vector dot product, FFT, and LU decomposition, use the 

embedded shifters in the fully registered mode, so only two timing parameters were 

needed: sequential setup time of 300 ps and sequential clock-to-q of 700 ps.  Internally, 

the combinational delay of the shifter was 1.52 ns.  While this is not needed for 

simulation, it is necessary to ensure that it is not the limiting timing path.  The sequential 

times were derived from similar registered embedded components of the Xilinx Virtex-II 

Pro -6, while the combinational time and area (0.843 106 L2) were derived by doing a 

layout in a 130 nm process.  The area of the embedded shifter is 1.27 times the area of the 

CLB and its associated routing.  The area of the shifter does not take into account the area 

needed for the additional number of connections to the general purpose routing structure 

of the embedded shifter compared to the CLB.  Because this area overhead is difficult to 

estimate, three different embedded shifter sizes (two, four, and eight equivalent CLBs) 

were examined and their results are given in Figure 13 through Figure 15. 
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There is only an average difference of 3.7% in clock rate and 1.0% in area between the 

different shifter sizes.  Since four CLBs have more combined I/O connections than a 

shifter, this can be used for an extremely conservative estimate of the shifter size.  

Therefore, an embedded shifter size equivalent to four CLBs is used to compare with the 

baseline architecture. 
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Figure 16.  Simplified representation of bottom half of modified CLB showing addition of 4:1 multiplexer 
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4.3. Modified CLB with additional 4:1 Multiplexer 

 
 

 
 

 (a) (b) (c) 
 

Figure 17.  (a) 4-input LUT  (b) 2:1 mux  (c) 4:1 mux 
 

The Xilinx CLB consists of a combination of 4-LUTs.  A 4-LUT can implement any 

4-input logic function.  Since binary shifters consist of a series of muxes in powers of 

two, a 2:1 mux can be used.  A 2:1 mux has three inputs as seen in Figure 17.  

Implementing a 2:1 in a 4-LUT results in an unused input.  Two 4-LUTs can be 

combined to form a 5-LUT, which is still not large enough to implement a 4:1 mux, 

which can also be used in binary shifters.  The 4:1 mux has six inputs as seen in Figure 

17 and would require a 6-LUT. 

In modifying the CLB to better implement variable length shifters, two general ideas 

were observed: minimize the impact on the architecture, and have no impact on general 

purpose routing. To accomplish these goals, the only change that was made to the CLB's 

architecture was to add a single 4:1 multiplexer in parallel with each 4-LUT, as shown in 

Figure 16.  The multiplexer and LUT share the same four data inputs.  The select lines for 

the multiplexer are the BX and BY inputs to the CLB.  Since each CLB on the Xilinx 

Virtex II Pro has two LUTs, each CLB would have two 4:1 multiplexers.  Since there are 

only two select lines, both of the 4:1 multiplexers would have to share their select lines.  

However, for shifters and other large datapath elements it is easy to find muxes with 

shared select inputs.  The BX and BY inputs are normally used as the independent inputs 

for the D flip-flops, but are blocked in the new mux mode.  However, the D flip-flops can 

still be driven by the LUTs in the CLB, and can be used as normal when not using the 
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mux mode.  This is a trade-off that is made to not increase the number of inputs to the 

CLB. 

To test the impact of adding the 4:1 multiplexer, a 4-LUT and associated logic was laid 

out and simulated with and without the capacitive load of the 4:1 multiplexer.  It was 

determined that adding the 4:1 multiplexer increased the delay of the 4-LUT by only 

1.83%.  A 4:1 multiplexer was also laid out and simulated.  The delay of the 4:1 

multiplexer was 253 ps, which is less than the 270 ps that was determined for the 4-LUT 

from the Xilinx Virtex-II Pro -6 datasheet.  The area of the 4:1 multiplexer was 1.58 103 

L2, and adding two 4:1 multiplexers to each CLB increases the size of the CLB by less 

than 0.5% (the original area of the CLB takes into account all logic, routing, and control 

bits associated with the CLB as given in Table 2). 

4.4. Benchmarks 

Five benchmarks were used to test the feasibility of the proposed architectural 

modification.  They were matrix multiply, matrix vector multiply, vector dot product, 

FFT, and a LU Decomposition* datapath which were created by K. Scott Hemmert and 

Keith D. Underwood at Sandia National Laboratories.  All of the benchmarks use double-

precision floating-point addition and multiplication.   The LU decomposition also 

includes floating-point division, which must be implemented in the reconfigurable fabric 

for all architectures.  Five versions of the benchmarks were used. 

• CLB ONLY – All floating-point operations are performed using the CLBs 

(Configurable Logic Blocks).  The only other units in this version are embedded 

RAMs and IO. 

• EMBEDDED MULTIPLIER – This version adds 18-bit x 18-bit embedded 

multipliers to the CLB ONLY version.  Floating-point multiplication uses the 

CLBs and the embedded multipliers.  Floating-point addition and division are 

 
* LU Decompostion is the decomposition of an N x N matrix, A, into a product of a lower triangular matrix 

L and an upper triangular matrix U, such that LU=A. 
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performed using only the CLBs.  This version is similar to the Xilinx Virtex II Pro 

family of FPGAs, and thus is representative of what is currently available in 

commercial FPGAs. 

• EMBEDDED SHIFTER – This version further extends the EMBEDDED MULTIPLIER 

version with embedded variable length shifters that can be configured as a single 

64-bit variable length shifter or two 32-bit variable length shifters.  Floating-point 

multiplication uses the CLBs, embedded multipliers, and embedded shifters.  

Floating-point addition and division are performed using the CLBs and embedded 

shifters. 

• MULTIPLEXER – While the same embedded RAMs, embedded multipliers, and 

IO of the EMBEDDED MULTIPLIER version are used, the CLBs have been slightly 

modified to include a 4:1 multiplexer in parallel with the LUTs.  Floating-point 

multiplication uses the modified CLBs and the embedded multipliers.  Floating-

point addition and division are performed using only the modified CLBs. 

• EMBEDDED FPU – Besides the CLBs, embedded RAMs, and IO of the CLB 

ONLY version, this version includes embedded floating-point units (FPUs).  Each 

FPU performs a double-precision floating-point multiply-add.  Other floating-

point operations are implemented using the general reconfigurable resources. 
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Figure 18.  CAD flow 
 
The floating-point benchmarks were written in a hardware description language, VHDL 

or JHDL [21].  LU Decomposition was written in JHDL.  Matrix multiply, matrix vector 

multiply, vector dot product, and FFT were written in VHDL.  Instead of using the 

traditional VPR path of synthesis using SIS [22] and technology mapping using Flow 

Map [23], the benchmarks were synthesized using Synplicity’s Synplify 7.6 into an EDIF 

(Electronic Data Interchange Format) file.  Technology mapping was accomplished using 

Xilinx ISE 6.3.  While these are slightly older versions of the tools, only the Xilinx 

mapper was used and only small parts of the benchmarks were synthesized (the floating-
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point units were hand mapped in JHDL).  The Xilinx NGDBuild (Native Generic 

Database) and the Xilinx map tool were used to reduce the design from gates to slices 

(which map one-to-one with our CLBs).  The Xilinx NCD (Native Circuit Description) 

Read was used to convert the design to a text format.  A custom conversion program was 

used to convert the mapping of the NCD file to the NET format used by VPR.  This flow 

is shown in Figure 18 

The benchmarks vary in size and complexity as shown in Table 6.  The number of IO and 

block RAMs is the same for all benchmark versions.  The number of embedded 

multipliers in the EMBEDDED SHIFTER and MULTIPLEXER versions is the same as the 

EMBEDDED MULTIPLIER version. 
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Table 6.  Number of components in each benchmark versions 

CLB ONLY EMBEDDED 
MULTIPLIER†

EMBEDDED 
SHIFTER†‡ MULTIPLEXER†‡ EMBEDDED 

FPU†

Benchmark 
IO          RAM CLB CLB MULT CLB SHIFT CLB

CLBs 
Using 

4:1 Mux 
CLB FPU

Matrix Mult. 195 192 56,973 41,502 144 36,483 64 39,894 9.9% 17,510 16
Vector Matrix Mult. 2,034 4 53,082 36,926 144 30,207 64 33,604 11.7% 11,250 16

Dot Product 1,492 0 51,924 36,737 144 30,018 64 33,403 11.8% 9,929 16
FFT  590 144 44,094 34,745 72 27,907 56 30,777 11.7% 15,432 28

LU Decomposition 193 96 56,093 37,634 144 30,506 67 34,145 12.2% 11,382 16
Maximum 2,034   192 56,973 41,502 144 36,483 67 39,894 12.2% 17,510 28
Average  901 87 52,433 37,509 130 31,024 63 34,365 11.4% 13,101 19

‡ Benchmarks include the same number of embedded multipliers as the EMBEDDED MULTIPLIER version. 
† Benchmarks include the same number of IOs and block RAMs as CLB ONLY version. 
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5. Results 

Three FPGA architectural modifications were proposed: adding embedded FPUs, 

embedded shifters, and adding a 4:1 mux in parallel with the 4-LUT in the CLB.  Each of 

these architectural modifications and the baseline architecture, which represents what is 

currently available in FPGAs, were implemented in five benchmarks: matrix multiply, 

matrix vector multiply, vector dot product, FFT, and LU Decomposition.  Each of the 

architectures was placed and routed using VPR.  The maximum clock rate (or circuit 

frequency), circuit area, and minimum track count was noted. 

 

Figure 19.  Benchmark clock rate 
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Figure 20.  Benchmark area 
 

 

Figure 21.  Benchmark track count 
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5.1. Embedded FPUs 

The embedded FPU had the highest clock rate, smallest area, and lowest track count of 

all the architectures, as seen in Figure 19 through Figure 21.  By adding embedded FPUs 

there was an average clock rate increase of 33.4%, average area reduction of 54.2%, and 

average track count reduction of 6.83% from the EMBEDDED MULTIPLIER to the 

EMBEDDED FPU versions. To determine the penalty of using an FPGA with embedded 

FPUs for non floating-point computations, the percent of the chip that was used for each 

component was calculated.   For the chosen FPU configuration, the FPUs consumed 

17.6% of the chip.  This is an enormous amount of “wasted” area for non-floating-point 

calculations, and would clearly be received poorly by that community; however, this 

generally mirrors the introduction of the PowerPC to the Xilinx architecture.  Ultimately, 

embedded floating-point units would only likely be added if a “scientific application” 

series of FPGAs were added (much like the DSP series currently in the Xilinx Virtex4 

family). 

5.2. Embedded Shifters 

Even with a conservative size estimate, adding embedded shifters to modern FPGAs 

significantly reduced circuit size.  As seen in Figure 19 through Figure 21, adding 

embedded shifters increased the average clock rate by 3.3% and reduced the average area 

by 14.6% from the EMBEDDED MULTIPLIER to the EMBEDDED SHIFTER versions.  Even 

though there was an average increase in the track count of 16.5%, a track count of 58 is 

well within the number of routing tracks on current FPGAs. 

Only the floating-point operations were optimized for the embedded shifters – the control 

and reminder of the data path remained unchanged.  Only considering the floating-point 

units, the embedded shifters reduced the number of CLBs for each double-precision 

floating-point addition by 31% while requiring only two embedded shifters.  For the 

double-precision floating-point multiplication the number of CLBs decreased by 22% and 

required two embedded shifters. 
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5.3. Modified CLBs with additional 4:1 Multiplexers 

Using the small modification to the CLB architecture showed small circuit area and 

increased clock rates.  Even though only the floating-point cores were optimized with the 

4:1 multiplexers, there was an average clock rate increase of 11.6% and average area 

reduction of 7.3% from the EMBEDDED MULTIPLIER to the MULTIPLEXER versions.  The 

addition of the multiplexer reduced the size of the double-precision floating-point adder 

by 17% and reduced the size of the double-precision multiplier by 10%.  Even though 

there was an average increase in the track count of 16.1%, a track count of 58 is well 

within the number of routing tracks on current FPGAs. 

 

5.4. Single vs. Double Precision 

The computing usage at Sandia National Laboratories is oriented toward scientific 

computing which requires double-precision.  It is because of this that the benchmarks 

were written using double-precision floating-point numbers.  With some modification, a 

double-precision FPU could be configured into two single precision units, and should 

show similar benefits. 
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6. Related Work 

While there has not been a great deal of work dedicated to increasing the efficiency of 

floating-point operations on FPGAs, there has been some work that might be beneficial to 

floating-point operations on FPGAs.  Ye [24] showed the benefits for bus-based routing 

for datapath circuits.  Because IEEE floating-point numbers have 32 or 64-bits (single or 

double precision) and these signals will generally follow the same routing path, circuits 

that use floating-point numbering system might naturally lend itself to bus-based routing. 

Altera Corporation’s Stratix II has a logic architecture that consists of smaller LUTs that 

can be combined into two 6-LUTs if the two 6-LUTs share four inputs [25].  While 

6-LUTs that share no more than two inputs would have been ideal for implementing a 4:1 

multiplexer and possibly produced similar results to adding a 4:1 multiplexer, the fact 

that the Stratix II 6-LUT requires sharing of four inputs reduces the efficiency of the 

Stratix II for implementing shifters and thus performing floating-point operations.  Xilinx 

just announced their next generation of FPGAs; the Virtex-5 will have true 6-LUTs [26].  

While the details of the Virtex-5 are not known, it is expected that it could be used to 

implement a 4:1 multiplexer. 

Another alternative to implement shifting is to use the embedded multipliers that are 

common in Xilinx architectures.  Unfortunately, this approach is infeasible in modern 

designs where the multipliers are completely consumed by the floating-point units to do 

multiplication. Extending the techniques of Xilinx AppNote 195 to 56 bits would be an 

inefficient technique with regards to silicon area as 7 multipliers would be needed along 

with over 100 4-LUTs.  That would not include the sticky bit which needs to be 

generated as well. 
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7. Conclusion 

This thesis has demonstrated three architectural modifications that make floating-point 

operations more efficient on FPGAs.  Adding complete double-precision floating-point 

multiply-add units, adding embedded shifters, and adding a 4:1 multiplexer in parallel to 

the 4-LUT, each provide an area and clock rate benefit over traditional approaches with 

different trade-offs.   

At the most coarse-grained end of the spectrum is a major architectural change that 

consumes significant chip area, but provides a dramatic advantage.  Despite a "worst 

case" area estimate, the embedded FPUs provided an average reduction in area of 54.2% 

compared to an FPGA enhanced with embedded 18-bit x 18-bit multipliers.  This area 

achievement is in addition to an average speed improvement of 33.4% over using the 

embedded 18-bit x 18-bit multipliers.  There is even an average reduction in the number 

of routing tracks required by an average of 6.8%. 

The embedded shifter provided an average area savings of 14.3% and an average clock 

rate increase of 3.3% compared to the baseline architecture, which used embedded 

multipliers and CLBs to implement floating-point operations.  At the finest-grain end of 

the spectrum, adding a 4:1 multiplexer in the CLBs provided an average area savings of 

7.3% while achieving an average speed increase of 11.6% compared to the baseline 

architecture, which used embedded multipliers and CLBs to implement floating-point 

operations.  The former comes at the cost of a slightly larger increase (1.5%) in the 

silicon area of the FPGA versus only a 0.35% increase in FPGA area for the latter 

change; however, neither of these changes is a significant amount of wasted spaces.  It is 

somewhat unexpected that the smaller change to the FPGA architecture amounts to the 

bigger net “win”. 

There is a compromise that must be met between an FPGA that has fined grained generic 

logic and thus is extremely versatile, but inefficient and an application specific FPGA 

which has specialized coarse grained logic blocks to facilitate efficient operations.  There 

might be a small continuous demand for generic FPGAs for research and prototyping, but 
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in order for FPGAs to obtain a greater use in industry they must become more efficient 

for scientific applications, and therefore floating-point operations.  It is conceivable that 

this need will not make more generic FPGAs obsolete, but rather spawn other FPGA 

families. 
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