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Field-Programmable Gate Arrays (FPGAs) are a powerful platform for developing

hardware implementations of machine learning algorithms. Building these models is

time-consuming and requires expertise in hardware design and writing code in Hardware

Description Language (HDL). High-level synthesis (HLS) offers a method for developing

hardware that does not require the specialized knowledge of FPGAs and HDL, but comes at the

cost of not being able to modify the design to take advantage of the resources available. To

evaluate models developed with HLS, we used the open-source Python library HLS4ML, which

can produce low latency HLS machine learning models. In this thesis, we explore the application

of high-level synthesis for machine learning, specifically the batch normalization layer, seeking

to evaluate the quality, resource usage, and performance of the models produced using this

technique. Our research indicates that HLS designs are efficient but not entirely accurate,

whereas the optimized handwritten designs are very accurate, but require more resources.
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1. Introduction

In recent years, the applications of machine learning have expanded significantly, as well

as the machine learning models themselves. These models have more trainable parameters,

process larger data sets, and call for faster processing speeds and specialized hardware. For

processing data that goes beyond the capabilities of the conventional CPU, a potentially desirable

solution is to use Field Programmable Gate Arrays (FPGAs). These devices allow developers to

design gate-level hardware that can take advantage of the FPGA’s parallel processing capabilities

as well as its ability to be reprogrammed with updated and optimized designs. The performance

gains derived from a low-level design require knowledge of Hardware Description Language

(HDL), which may not be in the skill set of the average software engineer. To bridge this gap,

High-Level Synthesis (HLS) tools are employed to convert code written in high-level

programming languages into the HDL code that is required to program an FPGA. These tools

provide a simple method of developing HDL code, and decrease development times. To

specifically convert machine learning models developed in Python to HDL, the High-Level

Synthesis for Machine Learning (HLS4ML) [1] library provides the necessary tools. This is an

open-source project that converts machine learning models into inference models that can be

programmed onto an FPGA.

2. FPGA Background

FPGAs are semiconductor devices consisting of a matrix of configurable logic blocks

connected using reprogrammable interconnects. These logic blocks consist of various smaller



components, usually including Look Up Tables, Registers, Multiplexers, and Carry Chains [2].

When a design is flashed to the FPGA, the interconnects are reprogrammed to link all the

required resources to create the desired logic. Aside from their reprogrammability, another

benefit of FPGAs is their ability to execute parallel processing tasks with low latency, which

makes them an attractive option for machine learning applications. Running inference models on

FPGAs allows for predictions to be made quickly from inputs, especially from live activities,

such as controlling autonomous machines and vehicles. Machine learning models can become

increasingly complex, and therefore the logic required to implement them would follow suit. To

understand how efficient a design is, it must be evaluated in two aspects: resource utilization and

performance. The FPGA targeted in this thesis is the Xilinx Virtex VC709.

2.1 Resource Utilization

Resource utilization measures the number of each type of resource in the FPGA that is

used. This metric will be evaluated in raw quantity used, as well as a percent of the available

resources on the board. The resources we will evaluate are:

● Look Up Tables (LUTs): LUTs are used to compute Boolean functions. The Virtex

VC709 has 6-input LUTs, which means it takes six 1-bit inputs, and produces one 1-bit

output. Each LUT can handle a total of 26 combinations of inputs and has a predetermined

output stored per input pattern. For processing larger inputs, multiple LUTs are linked

together.

● Flip-Flops (FFs): FFs are binary elements that store data between clock cycles. They are

used to synchronize data transfer between different logic blocks and implement

sequential logic.



● Digital Signal Processors (DSPs): DSPs are logic blocks used for mathematical

computations including addition and multiplication. Each DSP in the Virtex VC709

contains a pre-adder, a 25 x 18-bit multiplier, and an accumulator.

● Block RAM (BRAMs): BRAMs are memory blocks used to hold large amounts of data.

Each BRAM unit in the Virtex VC709 can hold 36 KB of data.

LUTs FFs DSPs BRAMs

433,200 866,400 3,600 1,470

Table 2.1: Total Resources Available on the Virtex VC709 [3]

2.2 Performance

Along with resource utilization, the other aspect of a design is its performance, or the

speed of the design in hardware. All performance metrics are measured at the fastest clock speed

at which the design can run, and will be discussed in terms of the number of clock cycles as well

as the actual time taken (in nanoseconds). The performance metrics we will evaluate are:

● Latency: This is the time interval between the first input being passed into the system

and the system producing its first output. In other words, the time taken for one input to

be processed by the system. This metric is essentially the response time of the system.

● Initiation Interval (II): This is the time interval between successive outputs from the

system. In other words, after it produces one output, the time needed by the system to

produce the next output. This metric is inversely proportional to the throughput of the

system (data processed per unit of time).



3. Neural Network Background

Neural Networks are systems designed to generate outputs based on training data, and in

essence, replicate a human brain that learns from experience. These neural networks are

composed of smaller, interconnected units called neurons, which share information with other

neurons when they “fire”. In a neural network, a neuron will process and pass forward inputs

based on the neuron’s specific trained weights, biases, and activation function. Each input to a

neuron has a specifically trained weight it is multiplied with, and each neuron has a bias value

that is added to the sum of all the weights multiplied with the inputs. The activation function is

used to map the result to a specified range and determine the output of the neuron. Neurons

“fire” if the linear combination of the inputs multiplied by their respective weights exceeds the

threshold of the neuron’s activation function. During training, these weights and biases are

adjusted using a method called backpropagation, which compares the results from the current

state with what the result should be at the output, and adjusts the weights and biases in order to

bring the two closer. The process is repeated multiple times to fine-tune these values. For more

complex models, more layers are added to achieve a greater granularity in the results, as well as

to allow the model to “learn” more features of the data.

3.1 Dense Layer

The Dense layer, also known as the “Fully Connected” layer, is made up of a bank of

neurons such that every input to the layer is an input to every neuron in the layer [4]. To

mathematically represent a dense layer with n inputs and j neurons, the following equation can

be used:
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Where xi is the ith input value, wi, j is the weight for input i in neuron j, bj is the bias for neuron j,

and yj is the output of neuron j.

Figure 3.1: A Visual Representation for a Neural Network Computation [5]

This process can be described in matrix notation:

(3.2)𝑌 = 𝑋𝑊 + 𝐵 

For example, let's take a layer that has 8 inputs, 4 outputs, and consists of 4 neurons. The

Input vector X would be of size 1x8, the Weights matrix W would be of size 8x4, and the Bias

vector B would be of size 1x4. This example would be as follows:



Figure 3.2: Example of Dense Layer Computation

Through a simple matrix multiplication and addition, we would get a result vector Y of size 1x4.

This is a basic implementation of a fully connected layer.

3.2 Batch Normalization Layer

The Batch Normalization layer standardizes and normalizes the outputs of a layer in

order to speed up training and reduce overfitting. Mathematically, batch normalization

transforms the input values such that the resultant values have a mean of 0 and a standard

deviation of 1. When a model is trained, the weights for intermediate layers (such as the dense

layer) start at random values, and are updated as the model “learns” [6]. For some initializations,

these values may cause some outputs to be abnormally small or large. This can result in

instability in the training process and lead to the network not “learning” useful weights during

the training period. Another important aspect of batch normalization is that it removes bias due

to different input features being of different scales. For example, let’s take a model with two

input features: the age and yearly salary of a person. Generally, the salary of any given individual

is many factors of 10 larger than their age. This can cause certain inputs, weights, and neurons to



have a larger impact on the overall output than others, and the model will take longer to train

because of this skewed distribution.

The weights in Machine Learning models are updated during training using a process

known as Gradient Descent [7]. Gradient Descent is an optimization algorithm that will find the

values of a function’s parameters that minimize the cost function. In machine learning

applications, the cost function that is minimized is the loss. Loss is a measure of how inaccurate

a prediction is for one input, and to develop an accurate model that provides accurate predictions,

the loss function must be minimized. Gradient Descent works by evaluating the cost function of

the parameter, determining its derivative, and adjusting the parameter such that the result of the

cost function is moved closer to the local minima [7]. This process is repeated with each training

run of a model, also known as an epoch. The rate at which the parameter is adjusted is known as

the “learning rate”, and it can be adjusted to improve training time. Without normalized inputs,

training takes longer because the initial weights can start far from the local minimums on the cost

function due to the inputs being of different scales.

There are two main methods for normalizing data. All training data can be normalized

before it is passed into the model, and the model can train on the normalized data to begin with.

This is a common practice and, in most cases, significantly improves training time. However, it

is hard to determine how the weights are behaving inside the model during training. Every layer

in the model is effectively an input layer: layer N’s outputs are layer N+1’s inputs. If the inputs

to one specific layer change drastically, the model may run into the problem of unstable gradients

[8]. To compensate for this, a batch normalization layer can be added.

During training, the technique works by taking batches of data, calculating their mean

and standard deviation, standardizing each data point in the batch using those parameters, and



finally scaling and shifting the values to normalize them accurately. The Batch Normalization

process [9] for one batch of n values during training is as follows:
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Step 1: Calculate the Batch Mean (μB) by summing n input values, and then divide by n
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Step 2: Calculate the Batch Variance (σ2) by summing the square of the difference of each input
less the batch mean, and then divide by n

(3.5)𝑥
𝑖
 =  

ℎ
𝑖
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𝐵

 σ2 + ε

Step 3: Calculate the Normalized input value (x̂i) by subtracting the batch mean from the input
value, and then dividing by the Batch Variance. Epsilon (ε) is a small constant value added to

avoid a divide-by-zero error in the case the batch variance is 0.

(3.6)𝑦
𝑖
 =  γ * 𝑥

𝑖
 + β

Step 4: Calculate the adjusted result value using gamma (γ) to scale the normalized input value,
and beta (β) to shift. These parameters are learned values: is the weight, and is the bias. Noteγ β

how this equation is of the same structure as that of the dense layer.

However, the Batch normalization layer works differently in inference than it does in

training [10]. During inference, the layer uses the final moving mean and variance that were



observed during training. The mathematical process for calculating the normalized value during

inference is also slightly different, with fewer calculations. The batch mean and variance are not

calculated, and the normalized input value equation uses the moving mean (μmov) and moving

variance (σ2mov) from the training data. The moving mean is defined as:

(3.7)µ
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Where μB is the batch mean, and the momentum is a value in the range (0, 1) which controls how

quickly the moving mean adjusts to the current batch mean. The moving variance is defined in

the same way:

(3.8)σ
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2  =  (σ
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2 * 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚) + (σ2 * (1 − 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚))

Where σ2 is the batch variance, and the momentum is a value in the range (0, 1) which controls

how quickly the moving variance adjusts to the current batch variance.

Combining equations 3.5 and 3.6 results in one linear operation, which gives us the

following equation, where is the input, and all other values on the right-hand side areℎ
𝑖

constants:
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This is the complete equation used for the inference model for the batch normalization layer.



4. HLS4ML Background

HLS4ML (High-Level Synthesis for Machine Learning) is a tool used to convert machine

learning models written in Python into HDL code that can be uploaded to an FPGA. The core

part of HLS4ML is HLS (High-Level Synthesis), which can take programs written in high-level

programming languages, such as C++, and convert them into HDL that can be used to program

an FPGA. The HLS4ML library [1] takes this conversion one step further, and allows the process

to start from Python. It converts Python machine learning models into C++ code written for

HLS. This is then fed into Vivado HLS, which in turn outputs the HDL.

Figure 4.1: A Visual Representation of the HLS4ML Flow [1]

The process starts with a Python machine learning model developed using TensorFlow or

Pytorch [1]. The user can specify all the layers they want in the model, and then train the model

on their desired data. For this process, we are examining inference models, so the models are

already trained and their weights and biases were already tuned. The next step is to convert the

trained model into an HLS model, which is done with the HLS4ML library. The conversion from

Python to HDL begins with the configurations of the build being set using the config dictionary.



With this, the reuse factor and bitwidth of the model can be set [11]. The last step is to call the

hls_model.build() command, which starts the complete conversion process. The tool will

produce three sets of files: the intermediate C++ files, the output files in Verilog, as well as in

VHDL, along with the log files, the config files, and the weights and biases. HLS4ML also

produces a resource usage and performance summary, but we have found that these results

produced during the C synthesis stage are not always accurate or representative of the true

resource utilization of the model. To thoroughly evaluate the model, the HDL is taken and a

Vivado project is created with it. This allows us to specify the target device and clock speed, and

run synthesis and implementation to produce a full set of reports. The synthesized design report

is used to evaluate resource usage, and the timing report produced is used to evaluate

performance.

5. Developing the Batch Normalization Layer

The batch normalization layer in inference takes the outputs of a previous layer and

performs the batch normalization operation (Equation 5) on each input, using the learned

parameters that were set during training. The two main learned parameters are gamma ( )γ

which is the scaling (weight) parameter, and beta ( ), which is the shifting (bias) parameter. Inβ

addition to these two, the moving mean ( ) and moving variance ( ) from the trainingµ
𝑚𝑜𝑣

σ
𝑚𝑜𝑣
2

data are also needed for the inference model. For each batch normalization layer, these values

will be constants. This leads to an interesting development: all of the values on the right-hand

side of Equation 5 are constants except the input. The most complex part of the equation is the



inverse square root, which is an expensive computation. To alleviate the system of having to

perform this computation, the moving variance is used as the input to a table that contains all

possible values of the inverse square root operation for all possible values of the moving

variance at the specified bitwidth. The output of the table is simply multiplied by the ( )ℎ
𝑖

− µ
𝐵

term. The resultant value is then scaled and shifted using gamma and beta. For this part, the

default parameters were used to simplify testing. By default, gamma is set to 1, so the value is

not scaled, and beta is set to 0, so the value is not shifted.

5.1 Fixed Point Numbers

Commonly in hardware designs, decimal numbers used for computation are represented

in binary in one of two ways: floating-point, or fixed-point. Floating-point numbers offer greater

precision than fixed-point numbers of the same bitwidth because the position of the decimal

point can vary based on the number being represented, but comes at the cost of complexity and

more resource usage. Fixed-point binary numbers have a set position of the decimal point, any

bits below this point represent fractional bits, and any bits above the decimal point represent

integer bits. Fixed-point numbers with higher bitwidths are more precise, but have a larger

hardware cost. On the other hand, fixed-point numbers with smaller bitwidths are less precise,

but have reduced hardware costs. For this thesis, the objective was to scale the bitwidth of the

inputs to the batch normalization layer and examine how the resource usage and performance

scales.

A perk of fixed point numbers is that basic arithmetic with these numbers works exactly

the same as it does with the basic binary representation of whole numbers. This means that all



fixed-point numbers in this layer are also 2’s complement numbers. To simplify the layer, the

bitwidth is split 50/50 between integer and fractional bits. For example, an 8-bit fixed point

number will have 4 fractional bits, and 4 integer bits, with the most significant integer bit being

the 2’s complement sign bit. For a fixed-point number, the decimal value is evaluated by

evaluating the integer bits with positive powers of 2 starting from 0 and increasing towards the

left, and evaluating the fractional bits with negative powers of 2 starting from -1 and decreasing

towards the right. For example, the fixed point number 0110 1100 would evaluate to 6.75.

Figure 5.1: A Visual Representation of a Fixed Point Number. The Number 0110 1100 is

Evaluated as: 22 + 21 + 2-1 + 2-2 = 6.75

All of the mathematical computations done in the hand-written version of the batch

normalization layer were done in fixed point. To avert the inverse square computation, a C

program was developed to generate tables for complex computations.

5.2 Table Generator

The table generator program evaluates an equation for all possible fixed-point inputs for a

specific bitwidth using floating-point numbers, and then converts the results back to fixed-point.

In this case, the equation was:



(5.1)
1

 σ
𝑚𝑜𝑣
2  + ε

The moving variance is a constant value input to the batch norm layer, and epsilon (ε) is a small

stabilizing value (0.00001001) used to avoid dividing by 0. The table generator takes a bitwidth

n, and evaluates the equation for all 2n -1 possible fixed-point binary values for the given

bitwidth. The fixed-point value is first converted to a floating-point value, the equation is

evaluated, and the result is converted to a fixed-point binary number. All results are formatted in

hexadecimal and sequentially written to a .dat file. The conversions have the potential to lose

precision due to the conversions between fixed- and floating-point formats. In order to evaluate

the effectiveness of this table generation program, the percent error for every fixed-point result

was calculated. The results indicate that as bitwidths increase, the average error shows an

exponential decay. At low bitwidths, the error is high. This is compounded by the fact that

fixed-point values of small bitwidths already have limited precision. At high bitwidths, the

average error is close to zero. The results are shown in the graph below.



Figure 5.2: Table Generator Average Percent Error

5.3 Handwritten Verilog Model

The Verilog model of the batch normalization layer is parameterized to take in different

bitwidths, as well as a different number of inputs. For this thesis, the number of inputs was kept

constant at 16, while the bitwidth was varied. The layer takes 16 n-bit inputs, and produces 16

n-bit outputs. The layer also takes the beta, gamma, moving mean, and moving variance as

parameters. The model also reads in the appropriate bitwidth inverse square root table’s data file,

which is used to select the respective inverse square root multiplier based on the moving

variance. The computation is performed in two steps, each step consisting of one multiply and

one add operation. The computations are as follows:

(5.2)𝑆1[𝑖] = (ℎ
𝑖

− µ
𝐵

) * (𝐼𝑛𝑣𝑆𝑞𝑟𝑡 𝑇𝑎𝑏𝑙𝑒 𝑉𝑎𝑙𝑢𝑒)  



(5.3)𝑂𝑢𝑡[𝑖] = (γ * 𝑆1[𝑖]) + β  

Equation 7.1 is a modified implementation of Equation 3.3, where the term comes1

 σ
𝑚𝑜𝑣
2  + ε

from the inverse square root table, and works like a constant multiplier. The next step takes the

normalized value and scales and shifts it according to the learned parameters of the layer.

5.4 HLS4ML Verilog Model

The batch normalization layer generated by HLS4ML was created using a simple model

that contains one input layer, containing 16 inputs, followed by a batch normalization layer. The

model shown below was developed for a bitwidth of 24.

Figure 5.3: HLS4ML Model Plot for a Batch Normalization Layer

This model was generated with bitwidths varying from 4 bits to 22 bits, and was passed through

the HLS flow described in part 5. The model produces two main Verilog files: a top-level

module, and a normalization module.



6. Results

6.1 Initial Results

Once the handwritten and HLS4ML-generated models were created, they were evaluated

for resource usage and performance. In the following graphs, the dashed lines are the

handwritten design, and the solid lines are the HLS4ML designs.

Figure 6.1: Resource Utilization Comparison Between the HLS4ML and Handwritten Layers

The results above show resource usage as the percent of the total available of each type of

resource. Starting with the handwritten model, it can be seen that at small bitwidths (4, 6, and 8

bits), the computations are done without any DSPs, and the layer relies entirely on LUTs and FFs

to process the logical operations. At a bitwidth of 10 bits, the model starts to use DSPs. This is



correlated to the drop in LUTs and FFs used, due to the multiplications being computed with the

DSPs. From 12 bits up to 20 bits, the results show the number of DSPs used remaining constant,

but the LUT and FF usage increases as the bitwidth increases. At a bitwidth of 22, it can be seen

that the DSP usage doubles, and the FF usage drops slightly. However, the LUT usage continues

to increase. This can likely be attributed to the fact that at larger bitwidths, the inverse square

root table grows exponentially, so the number of LUTs required to store all the values increases.

Moving onto the HLS4ML-generated model, it can be seen that this model overall uses

significantly fewer resources than the handwritten model. The model does not use any DSPs for

processing, and only relies on the LUTs and FFs. This was an interesting result, because even

though batch normalization is effectively a linear operation, HLS4ML seems to be implementing

it with very few resources. The Flip-Flop usage was relatively similar between the two models,

but the LUT and DSP usage is significantly different at certain bitwidths. Next, the performance

was evaluated. The results are shown below.



Figure 6.2: Performance comparison between the HLS4ML and handwritten layers

The handwritten version had 3 clock cycles of latency, and had an initiation interval of 1

clock cycle regardless of bitwidth. Changing the bitwidth did impact the fastest clock speed the

model could run at. The handwritten model had an average clock period of around 2.9 ns, an

average latency of 8.6 ns, and an average initiation interval of 2.9 ns, excluding the 22-bit test.

At 22 bits, the size of the model increases significantly and the jump in clock period is

potentially linked to the doubling of DSPs used at a bitwidth of 22.

The HLS4ML version had a consistent 1 clock cycle of latency, as well as an initiation

interval of 1 clock cycle, regardless of bitwidth. Changing the bitwidth had no impact on the

fastest clock speed the model could run at, and had a smallest clock period of 1.41 ns. This

results in the latency and initiation interval always being 1.41 ns. HLS4ML’s approximation

implementation of the batch normalization algorithm not only saves resources, but also improves

performance. The algorithm does not require any heavy computations, which allows the clock

period to be small. The HLS4ML version achieves 2x the performance of the handwritten

version, and can run at nearly double the clock frequency.

To understand how the HLS4ML implementation was able to achieve such low resource

usage, the HLS4ML implementation was thoroughly examined. First, both versions were tested

using a testbench and given the same input, a series of numbers [0, 7]. The handwritten version

was given a moving mean of 3.5, and a moving variance value of 5.25. These values were

chosen since they are the mean and variance of the input set of data. Mathematically, the

handwritten batch normalization layer computes the correct values for each input. This can be

seen in the graph below: the output values are distributed with a mean of 0, and a standard



deviation of 1. The HLS4ML version produces different results, and with a similar distribution

but in a very different range. Inputs are represented in fixed-point hexadecimal, and output

values are represented in fixed-point converted to decimal.

Figure 6.3: Inference Outputs of the HLS4ML and Handwritten Versions

Upon inspecting the HLS4ML code itself, it was found that the process the HLS4ML

implementation uses is significantly different from the standard batch normalization algorithm.

The HLS4ML algorithm does the following, with X being the input value:

(6.1)𝑂𝑢𝑡𝑝𝑢𝑡 =  ((𝑋 <<  (𝑊𝐼𝐷𝑇𝐻/2)) −  𝑋) >>  (𝑊𝐼𝐷𝑇𝐻/2)

This mathematical shortcut provides an approximation for the normalization results. The

algorithm used here simply scales all input values such that they become closer to 0, rather than

actually performing the batch normalization process. The HLS4ML implementation takes the

input value, shifts it left by half of the bitwidth, and then subtracts the original input value from



this shifted value. It is then right-shifted back by the same amount in order to fit in the same

original bitwidth. The HLS4ML implementation requires nearly 25% of the resources used by

the handwritten implementation, but it comes at the cost of accuracy, and the results produced

can show upwards of 333% error.

The initial results showed a large difference in resource usage and performance, and with

the handwritten design using more resources and computing slower than the HLS design, we

looked to optimize the handwritten design.

6.2 Optimized Design

The first, and biggest cause of ballooning resource usage in the handwritten design is the

storing of the inverse square root table. The solution to this is to not store the table at all, and to

take the value that the table produces as a parameter. This parameter effectively replaces the

moving variance parameter. This serves to reduce the quantity of LUTs used in the design. The

next step taken was to simplify the computation the design performs. Going back to equation 3.9,

it was found that all of the values on the right-hand side of the equation were constants, except

for the input value (hi). This means the equation can be simplified into the linear slope-intercept

form. In this form, the resulting equation is:

(6.2)𝑦
𝑖
 =  𝑚 * 𝑥 + 𝑏

Where the input x is the input data value hi, and the two constants, m and b, are the following:

(6.3)𝑚 =  
γ

 σ
𝑚𝑜𝑣
2  + ε



(6.4)𝑏 =  −
γ * µ

𝑚𝑜𝑣

 σ
𝑚𝑜𝑣
2  + ε

+ β( )
When the layer is initialized, the two constant values are computed once, then the batch

normalization computation is performed on the input data. Since the revised computation only

requires one multiply and one add, it only takes one cycle, which should improve the latency.

The optimized version is bit-accurate to the original, and produces the same outputs.

6.3 Optimized Results

This new optimized model was evaluated for resource usage and performance. In the

following graphs, the solid lines are the initial handwritten design, and the dashed lines are the

optimized handwritten designs (marked with (Opt) in the legend).

Figure 6.4: Resource Utilization Comparison Between the Initial and Optimized Implementation



The results show an overall decrease in total resource usage in the optimized handwritten

layer in comparison to the original implementation. The DSP usage in the optimized model is

similar for smaller bitwidths (4 to 8 bits), and for all other bitwidths, the optimized model uses

close to 40% fewer DSPs. The FF usage is nearly identical in both implementations. Reducing

the computation and eliminating storing the inverse square root tables reduces the LUT usage for

most of the tested bitwidths in the optimized implementation, up to 90% at the highest bitwidth

of 22. Next, let's evaluate the performance of the optimized design.

Figure 6.5: Performance Comparison Between the Initial and Optimized Implementations

The optimized implementation had a latency of one clock cycle, as well as an initiation

interval of one clock cycle, whereas the original implementation had a latency of three clock

cycles, and an initiation interval of one clock cycle. The improvements also resulted in the

optimized design being able to be run at a faster clock speed. The II remained similar between

the two, but the latency was close to 3x lower in the optimized design at most bitwidths.



Having shown that the optimized version uses fewer resources and has better

performance, we will now compare the optimized handwritten design to the HLS4ML design. In

the following graphs, the solid lines are the HLS4ML design, and the dashed lines are the

optimized handwritten designs (marked with (Hand, Opt) in the legend).

Figure 6.6: Resource Utilization Comparison Between the HLS and Optimized Implementations

The results above indicate a more comparable design in terms of overall resource usage.

The FF and LUT usage between the two designs is nearly identical, with the exception of a small

spike in usage at a bitwidth of 20. Unlike the original, the LUT usage does not exponentially

increase with the bitwidths. Similar to the original, with the handwritten model, it can be seen

that at small bitwidths (4 to 8 bits), the computations are done without any DSPs, using only

LUTs and FFs, which explains the early spike. At a bitwidth of 10 bits, the handwritten model

starts to use DSPs, which appears to cause a decrease in the LUT and FF usage.



Figure 6.7: Performance Comparison Between the HLS and Optimized Implementations

The performance results also show a significant improvement in the latency of the

optimized design as compared to the original. At small bitwidths (4 to 8 bits), the handwritten

model matches the performance of the HLS4ML model, with the latency and II only increasing

when DSPs are introduced. From bitwidths 10 to 18, the latency and II have the general trend of

a slight increase. At a bitwidth of 20, the latency drops, which is potentially linked to the

increase in FFs and LUTs used at this bitwidth. At a bitwidth of 22, the latency increases again,

likely due to an increase in DSP usage. The improvement also is due to both designs now having

a latency and II of one clock cycle. The only difference between the two is the lowest clock

period the designs can run at. The HLS4ML design’s smallest clock period was not dependent on

the bitwidth due to it not using any DSPs, whereas the handwritten design’s smallest clock period

varied based on the bitwidth and resources used.



7. Conclusion

HLS tools can quickly and efficiently convert machine learning models to run on FPGAs,

but at times they come at the expense of accuracy. In this thesis, it was shown that although the

HLS design for the batch normalization layer was implemented with fewer resources, it was not

accurate. The optimized handwritten design was implemented using slightly more resources, but

produces significantly more accurate results with minimal error. HLS4ML shows promising

results, and if it is implemented with the correct algorithm, it should be able to produce

mathematically correct results. For designs where resources are limited and some inaccuracies

can be tolerated, HLS tools can get the job done. However, for designs where achieving accuracy

and precision is paramount, it is best to stick to handwritten designs.

8. Future Work

The next step to further evaluate the Batch Normalization layer is to test the layer with a

complete benchmark. This will give more insights into how the layer performs when connected

to other layers, as well as how accurate the final results of a model are. Further exploration

should be conducted to explore the implementation of the 2-dimensional batch normalization

layer to see if there are more layers where HLS4ML implements an approximation of the

standard algorithm to reduce resource usage. Additionally, HLS4ML should consider developing

a version of the batch normalization layer that matches the mathematical implementation used by

QKeras to match the accuracy that can be achieved with a handwritten model.
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Appendix

Hand Written Code

All code for the handwritten layers can be found at: https://github.com/uw-acme/

HLS4ML_VS_MANUAL/tree/main/src.
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