
Automated Least-Significant Bit Datapath
Optimization for FPGAs

Mark L. Chang and Scott Hauck
Department of Electrical Engineering

University of Washington
Seattle, Washington

Email: {mchang,hauck}@ee.washington.edu

Abstract— In this paper we present a method for FPGA
datapath precision optimization subject to user-defined area and
error constraints. This work builds upon our previous research
[1] which presented a methodology for optimizing for dynamic
range—the most significant bit position. In this work, we present
an automated optimization technique for the least-significant
bit position of circuit datapaths. We present results describing
the effectiveness of our methods on typical signal and image
processing kernels.

I. I NTRODUCTION

With the widespread growth of reconfigurable computing
platforms in education, research, and industry, more software
developers are being exposed to hardware development. Many
are seeking to achieve the enormous gains in performance
demonstrated in the research community by implementing
their software algorithms in a reconfigurable fabric. For the
novice hardware designer, this effort usually begins and ends
with futility and frustration as they struggle with unwieldy
tools and new programming paradigms.

One of the more difficult paradigm shifts to grasp is the
notion of bit-level operations. On a typical FPGA fabric,
logical and arithmetic operators can work at the bit level
instead of the word level. With careful optimization of the
precision of the datapath, the overall size and relative speed
of the resulting circuit can be dramatically improved.

In this paper we present a methodology that broadens
the work presented in [1]. We begin with background on
precision analysis and previous research efforts. We describe
the problem of least-significant bit optimization and develop
several optimization techniques that provide finer control of
area-to-error tradeoffs than more traditional methods. We then
present a simulated annealing-based approach to automatically
applying these optimizations to a datapath. Finally, we present
the results of using our techniques to optimize the datapath of
image processing circuits and draw some conclusions.

II. BACKGROUND

General-purpose processors are designed to perform opera-
tions at the word level, typically 8, 16, or 32 bits. Supporting
this paradigm, programming languages and compilers abstract
these word sizes into storage classes, or data-types, such
as char, int, and float . In contrast, most mainstream
reconfigurable logic devices, such as FPGAs, operate at the

bit level. This allows the developer to tune datapaths to any
word size desired. Unfortunately, choosing the appropriate
size for datapaths is not trivial. Choosing a wide datapath,
as in a general-purpose processor, usually results in an im-
plementation that is larger than necessary. This consumes
valuable resources and potentially reduces the performance of
the design. On the other hand, if the hardware implementation
uses too little precision, errors can be introduced at runtime
through quantization effects, such as roundoff and truncation.

To alleviate the programmer’s burden of doing manual
precision analysis, researchers have proposed many different
solutions. Techniques range from semi-automatic to fully-
automated methods that employ static and dynamic analysis
of circuit datapaths. We will touch on some of these efforts in
the following section.

A. The Least-Significant Bit Problem

In determining the fixed-point representation of a floating-
point datapath, we must consider both the most-significant
and least-significant ends. Reducing the relative bit position
of the most-significant bit reduces the maximum value that
the datapath may represent, sometimes referred to as the
dynamic range. On the other end, increasing the relative bit
position of the least-significant bit (toward the most-significant
end) reduces the maximum precision that the datapath may
attain. For example, if the most-significant bit is at the27

position, and the least-significant bit is at the2−3 position,
the maximum value attainable by an unsigned number will
be 28 − 1 = 255, while the precision will be quantized to
multiples of 2−3 = 0.125. Values smaller than0.125 cannot
be represented as the bits necessary to represent, for example,
0.0625, do not exist.

Having a fixed-point datapath means that results or op-
erations may exhibit some quantity of error compared to
their floating-point counterparts. This quantization error can
be introduced in both the most-significant and least-significant
sides of the datapath. If the value of an operation is larger than
the maximum value that can be represented by the datapath,
the quantization error is typically a result of truncation or
saturation, depending on the implementation of the operation.
Likewise, error is accumulated at the least-significant end of
the datapath if the value requires greater precision than the



datapath can represent, resulting in truncation or round-off
error.

Previous research includes [2], [3], which only performs
the analysis on the most-significant bit position of the dat-
apath. While this method achieves good results, it ignores
the potential optimization of the least-significant bit position.
Other research, including [4], [5] begin to touch on fixed-point
integer representations of numbers with fractional portions.
Finally, more recent research, [6], [7] begin to incorporate
error analysis into the overall optimization of the fractional
width of the datapath elements.

Most of the techniques introduced deal with either limited
scope of problem, such as linear time-invariant (LTI) systems,
and/or perform the analysis completely automatically, with
minimal input from the developer. While again, these methods
achieve good results, it is our belief that the developer should
be kept close at hand during all design phases, as there are
some things for which an automatic optimization method
simply cannot handle.

Simply put, a “goodness” metric must be devised in or-
der to guide an automatic precision optimization tool. This
“goodness” function is then evaluated by the automated tool to
guide its precision optimization. In some cases, such as image
processing, a simple block signal-to-noise ratio (BSNR) may
be appropriate. In many cases, though, this metric is difficult or
impossible to evaluate programmatically. A human developer,
therefore, has the benefit of having a much greater sense of
context in evaluating what is an appropriate tradeoff between
error in the output and performance of the implementation.
We have used this idea as the guiding principle behind the
design of our precision analysis tool Précis [1]. In this paper
we provide the metrics and methodology for performing least-
significant-bit optimization.

III. E RRORMODELS

The observation that the relative bit position of the least-
significant bit introduces a quantifiable amount of error over a
floating-point datapath is an important one. After performing
the optimization for the most-significant bit position as de-
scribed in [1], we must perform an area/error analysis phase
to optimize the position of the least-significant bit. In order
to quantify changes to the datapath, we introduce models for
area and error estimation of a general island-style FPGA.

Consider an integer value that isM ′ bits in length. This
value has an implicit binary point at the far right—to the right
of the least-significant bit position. By truncating bits from the
least-significant side of the word, we reduce the area impact
of this word on downstream arithmetic and logic operations.
It is common practice to simply truncate the bits from the
least-significant side to reduce the number of bits required
to store and operate on this word. We propose an alternate
method—replace the bits that would normally be truncated
with constants, in this case zeros. Therefore, for anM ′-bit
value, we will use the notationAm0p. This denotes a word
that hasm correct bits andp zeros inserted to signify bits that

+ C

pmA 0

qnB 0

12..0 −p

12..0 −q

222..0 −+ qp

+ C

pmA 0

qnB 0

12..0 −p

12..0 −q

222..0 −+ qp

Fig. 1. Error model of an adder.

* C

pmA 0

qnB 0

12..0 −p

12..0 −q

qppq EEBEAE −+..0

Fig. 2. Error model of a multiplier.

have been effectively truncated, resulting in anM ′ = m+p-bit
word.

Having performed a reduction in the precision that can be
obtained by this datapath with a substitution of zeros, we have
introduced a quantifiable amount of error into the datapath.
For anAm0p value, substitutingp zeros for the lower portion
of the word, gives us a maximum error of2p − 1. This
maximum error occurs when the bits replaced were originally
ones, making this result too low by the amount2p − 1. If
the bits replaced were originallyzeros, we will have incurred
no error. We will use the notation[0..2p − 1] to describe this
resultant error range that our substitution method produces.

This error model can be used to estimate the effective error
of combining quantized values in arithmetic operators. To
investigate the impact, we will discuss an adder and multiplier
in greater detail.

A. Adder Error Model

An adder error model is shown in Fig. 1. The addition of
two quantized values,Am0p + Bn0q, results in an output,C,
which has a total ofmax(M ′, N ′) + 1 bits. Of these bits,
min(p, q) of them are substituted zeros at the least-significant
end. In an adder structure, the range of error for the output,
C, is the sum of the error ranges of the two inputs,A andB.
This gives us an output error range of[0..2p + 2q − 2].

B. Multiplier Error Model

Just as we can derive an error model for the adder, we do
the same for a multiplier. Again we have two quantized input
values,Am0p ∗ Bn0q. These are multiplied together to form
the output,C, which has a total ofM ′ + N ′ bits. Here,p + q
of them are substituted zeros at the least-significant end. This
structure is shown in Fig. 2.

The output error is more complex in the multiplier structure
than the adder structure. The input error ranges are the same,
[0..2p−1] and[0..2q−1] for Am0p andBn0q, respectively. Un-
like the adder, multiplying these two inputs together requires



us to multiply the error terms as well, as shown in (1).

C = A ∗B

= (A− (2p − 1)) ∗ (B − (2q − 1))
= AB −B(2p − 1)−A(2q − 1) + (2p − 1)(2q − 1)

(1)

The first line of (1) indicates the desired multiplication oper-
ation between the two input signals. Since we are introducing
errors into each signal, line two shows the impact of the error
range ofAm0p by subtracting2p−1 from the error-free input
A. The same occurs for inputB.

Performing a substitution ofEp = 2p − 1 andEq = 2q − 1
into (1) yields the simpler (2):

C = AB −BEp −AEq + EpEq

= AB − (AEq + BEp − EpEq)
(2)

From (2) we can see that the range of error resulting on
the outputC will be [0..AEq + BEp − EpEq]. That is to
say, the error that the multiplication will incur is governed by
the actual correct values ofA andB, multiplied by the error
attained by each input. In terms of maximum error, this occurs
when we consider the maximum attainable value of the inputs
multiplied by the maximum possible error of the inputs.

IV. H ARDWARE MODELS

In the previous section we derived error models for adder
and multiplier structures. Error is only one metric upon which
we will base optimization decisions. Another crucial piece of
information is hardware cost in terms of area.

By performing substitution rather than immediate trunca-
tion, we introduce a critical difference in the way hardware
will handle this datapath. Unlike the case of immediate
truncation, we do not have to change the implementation of
downstream operators to handle different bit-widths on the
inputs. Likewise, we do not have to deal with alignment issues,
as all inputs to operators will have the same location of the
binary point.

For example, in an adder, as we reduce the number of bits
on the inputs, the area requirement of the adder decreases.
The same relationship holds true when we substitute zeros in
place of variable bits on an input. This is true because we can
simply use wires to represent static zeros or static ones, so the
hardware cost in terms of area is essentially zero.

If the circuit is specified in a behavioral fashion using a
hardware description language (HDL), this optimization is
likely to fall under the jurisdiction of vendor tools such as
the technology mapper and the logic synthesizer. Fortunately,
this constant propagation optimization utilizing wires is im-
plemented in most current vendor tools.

In the next sections we outline the area models used to
perform area estimation of our datapath. We will assume a
simple 2-LUT architecture for our target FPGA and validate
this assumption through implementation on target hardware.

A A A A A A A 0
+ B B B B B 0 0 0 0
-------------------
H F F F H W W W W

A A A A A A A 0
+ B B B B B 0 0 0 0
-------------------
H F F F H W W W W

Fig. 3. Adder hardware requirements.

TABLE I

ADDER AREA

Number Hardware

max(|M ′ − N ′|, 0) half-adder

max(M ′, N ′) − max(p, q) − |M ′ − N ′| − 1 full-adder

1 half-adder

max(p, q) wire

A. Adder Hardware Model

In a 2-LUT architecture, a half-adder can be implemented
with a pair of 2-LUTs. Combining two half-adders together
and an OR gate to complete a full-adder requires five 2-
LUTs. To derive the hardware model for the adder structure as
described in previous sections, we utilize the example shown
in Fig. 3.

Starting at the least-significant side, all bit positions that
overlap with zeros need only wires. The next most significant
bit will only require a half-adder, as there can be no carry-in
from any lower bit positions, as they are all wires. For the rest
of the overlapping bit positions, we require a regular full-adder
structure, complete with carry propagation. Finally, at the
most-significant end, if there are any bits that do not overlap,
we require half-adders to add together the non-overlapping
bits with the possible carry-out from the highest overlapping
full-adder bit.

The relationship described in the preceding paragraph is
generalized into Table I, using the notation previously outlined.
For the example in Fig. 3, we have the following formula to
describe the addition.

Am0p + Bn0q

m = 7, p = 1, n = 5, q = 4

This operation requires two half-adders, three full-adders,
and four wires. In total, 19 2-LUTs.

B. Multiplier Hardware Model

We use the same approach to characterize the multiplier. A
multiply consists of a multiplicand (top value) multiplied by a
multiplier (bottom value). The hardware required for an array
multiplier consists of AND gates, half-adders, full-adders, and
wires. The AND gates form the partial products, which in turn
are inputs to an adder array structure as shown in Fig. 5.

Referring to the example in Fig. 4, each bit of the input that
has been substituted with a zero manipulates either a row or
column in the partial product sum calculation. For each bit of



A  A  A  0
x  B  B  0  0
-------------
A0 A0 A0 00

A0 A0 A0 00
AB AB AB 0B

+   AB AB AB 0B
------------------------

Fig. 4. Multiplication example.

HAFAFAHA

HAFAFAFA

HAFAFAFA

0,00,11,00,21,10,31,21,3

2,02,12,22,3

3,03,13,23,3

p0p2p3p4p5p6p7 p1

Fig. 5. Multiplication structure.

the multiplicand that is zero, we effectively remove an inner
column. For each bit of the multiplier that is zero, we remove
an inner row. Thus:

Am0p ∗Bn0q

m = 3, p = 1, n = 2, q = 2

is effectively a 3x2 multiply, instead of a 4x4 multiply. This
requires two half-adders, one full-adder, and six AND gates,
for a total of 15 2-LUTs. This behavior has been generalized
into formulas shown in Table II.

C. Model Verification

To verify our hardware models against real-world imple-
mentations, we implemented both the adder and multiplier
structures in Verilog on the Xilinx Virtex FPGA using vendor-
supplied place and route tools.

For the adder structure, we observe in Fig. 6 that our
model closely follows the actual implementation area, being at
worst within two percent of the actual Xilinx Virtex hardware
implementation. The number of bits substituted was the same
for each input at each data point.

TABLE II

MULTIPLIER AREA

Number Hardware

min(m, n) half-adder

mn − m − n full-adder

mn AND

p + q wire

0 2 4 6 8 10 12 14
0.5

0.6

0.7

0.8

0.9

1
Area of ADD32: Model vs. Xilinx Virtex

Number of zeros substituted

N
or

m
al

iz
ed

 a
re

a 
(L

U
T

s)

ADD32 Model
ADD32 Verilog

Fig. 6. Adder model verification.

0 2 4 6 8 10 12 14
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Area of MULT32: Model vs. Xilinx Virtex

Number of zeros substituted

N
or

m
al

iz
ed

 a
re

a 
(L

U
T

s)

MULT32 Model
MULT32 Verilog

Fig. 7. Multiplier model verification.

The multiplier in Fig. 7 has a similar result to the adder,
being at worst within 12 percent of the Xilinx Virtex im-
plementation. These results support the use of our simple 2-
LUT approximation of general island-style FPGAs to within
a reasonable degree of accuracy.

V. OPTIMIZATION METHODS

Using the models described in the previous sections, we can
now quantify the tradeoffs between area and error of various
optimization methodologies.

A. The Nature of Error

Looking at the typical error introduced into a data path using
the standard method of simple truncation, we see that the error
is skewed, or biased, only in the positive direction. As we
continue through datapath elements, if we maintain the same
truncation policy to reduce the area requirement of our circuits,
our lower-bound error will remain zero while our upper bound
will continue to skew toward larger and larger positive values.
This behavior also holds true for our own zero-substitution
policy in Fig. 1 and Fig. 2.

This error profile does not coincide with our natural un-
derstanding of error. In most cases we consider the error
of a result to be thenet distance from the correct value,



+ C

pmA 1

qnB 0

0)..12( −− p

12..0 −q

12)..12( −−− qp

+ C

pmA 1

qnB 0

0)..12( −− p

12..0 −q

12)..12( −−− qp

Fig. 8. Normalized error model of an adder.

* C

pmA 0

qnB 1

12..0 −p

0)..12( −− q

)2(
2

)..2(
2 q

p
p

q EB
E

EA
E

+−−

Fig. 9. Normalized error model of a multiplier.

implying that the error term can be either positive or nega-
tive. Unfortunately, neither straight truncation nor our zero-
substitution policy, as defined in previous sections, matches
this notion of error. Fortunately, substituting constants for the
least-significant bits allows us to manipulate their static values
and capture this more intuitive behavior of error. We call this
process “renormalization”.

B. Renormalization

It is possible for us to capture the more natural description
of error with our method of zero-substitution because the least-
significant bits are still present. We can use these bits to manip-
ulate the resultant error range. An example of renormalization
in an adder structure is shown in Fig. 8. We describe this
method as “in-line renormalization” as the error range is biased
during the calculation. It is accomplished by modifying one
of the input operands with one-substitution instead of zero-
substitution. This effectively flips the error range of that input
around zero. The overall effect is to narrow the resultant error
range, bringing the net distance closer to zero. Specifically, if
the number of substituted zeros and ones are equal, we achieve
an error range whose net distance from zero is half that if we
were to use zero substitution only. If instead truncation were
performed, no further shaping of the error range would be
possible, leaving us with a positively skewed error range not
consistent with our natural notion of error.

For example, in Fig. 1, a substitution ofp, q zeros results in
an error range of[0..2p + 2q − 2]. By using renormalization,
this same net distance from the real value can be achieved
with more bit substitutions,p + 1, q + 1, on the input. This
will yield a smaller area requirement for the adder. Likewise,
the substitution ofp, q zeros with renormalization now incurs
half the error on the output,[−(2p − 1)..2q − 1], as shown in
Fig. 8.

As with the adder structure, renormalization of the multi-
plier is possible by using different values for least-significant
bit substitution, yielding an error range that can be biased. Fig.
9 depicts a normalization centered on zero by substituting ones
instead of zeros for inputB. The derivation of the resultant

+ C

pmA 0

qnB 0

12..0 −p

12..0 −q

222..0 −+ qp

+

q1

12)..12( −−− pq

C

Fig. 10. Inserting a constant add performs an “active renormalization”.

error range is as follows in (3):

C = (A− Ep)(B + Eq)
= AB + AEq −BEp − EpEq

= AB + AEq − (BEp + EpEq)

= AB + AEq −
EpEq

2
−

(
BEp +

EpEq

2

)
= AB +

Eq

2
(2A− Ep)−

Ep

2
(2B + Eq)

(3)

Another method of renormalization can be accomplished
after an operation, or operations, have been completed. By
inserting a constant addition, we can accomplish a very
similar biasing of error range, this time referred to as “active
renormalization”. An example is shown in Fig. 10.

C. Renormalization Area Impact

The benefits of renormalization can come very cheaply in
terms of area for the “in-line” method. Our adder structure
example in Fig. 3 originally requires 19 2-LUTs and has an
error range of[0..16]. We can achieve a completely negative
bias of [−16..0] without an area penalty by modifying the
structure of the least-significant half-adder to have a constant
carry-in of 1. At the 24 bit position, this effectively adds 16
to the addition without incurring an area penalty. This has the
same effect as using the “active renormalization”, where an
explicit addition is performed to change the error bias of the
datapath. Alternatively, if we wanted to balance the error, we
could achieve an error range of[−8..8] by doing the same
thing but at one bit position lower,23. Unfortunately, since
there is no existing half-adder hardware to modify for this bit
position, we must create a half-adder structure at the23 bit
position to add together the value from inputA and a constant
“1”. We also must change the existing half-adder at the24

position into a full-adder to compensate for the possibility of
a carry-out from the newly added half-adder. Together, this
increases the area requirement of this adder by 5 2-LUTs.

Finally, we can do a smaller renormalization by substituting
a “1” for one of the least-significant bits on one of the inputs.
This would yield an output error range of[−1..15]. While
not particularly biased, it doesn’t incur any area penalty as
the newly substituted “1” lines up with a zero from the other
input, requiring no computational hardware.

Even when substituted ones and zeros on the inputs com-
pletely overlap, consideration must be made for downstream
operations, as we now have ones in the least-significant bit
positions which may need to be operated upon in subsequent



   A  A  A  A
           x  B  B  B  B
           -------------

   AB AB AB AB
          AB AB AB AB
       AB AB AB AB
+   AB AB AB AB
------------------------

Remove
Fig. 11. A truncated multiplier removes least-significant columns from the
partial product array.

operations. This may adversely impact the overall area of
the circuit, at which point “active” renormalization should be
considered as an alternative that can be implemented cheaply
later in the datapath to “fix up” the error range using a constant
bias.

The behavior of renormalization in multiplier structures is
equally interesting. As can be seen in Fig. 4, zeros substituted
at the least-significant end of either the multiplier or the
multiplicand “fall” all the way through to the result. For the
multiplication Am0p ∗ Bn1q, p zeros will be present at the
least-significant end of the result. With this behavior, we can
obtain a renormalized error result while still providing zero-
substituted bit positions that will not have to be operated
upon in downstream operations. This is important in providing
opportunities for area savings throughout the datapath. As with
the adder structure, we pay a penalty for this renormalization.
For the multiplier, we must put back an inner row and
column for each one-substitution present in the multiplier and
multiplicand, respectively.

Finally, active renormalization has an area penalty. As it
is simply an addition between an input value and a constant
positive bias, the impact is simply the area requirement of the
biasing adder.

D. Alternative Arithmetic Structures

As discussed in previous sections, our zero-substitution
method for multipliers gives a reduced area footprint at the
cost of increased error in the output over an exact arithmetic
multiplication. An alternative to this method of area/error
tradeoff is one described in [8]. This work, and the work of
others ([9], [10]), focuses on removing a number of least-
significant columns of the partial-product array.

As described in [9], by removing then least-significant
columns from an array-multiplier multiplication, we save (for
n ≥ 2) n(n+1)

n AND gates,(n−1)(n−2)
2 full adders, and(n−1)

half adders. The column removal is depicted in Fig. 11.
This method has a different area-to-error tradeoff profile,

and is shown in Fig. 12 for a 32-bit multiplier, and in Fig. 13
for a range of differently-sized multipliers.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−15

10
−10

10
−5

10
0

32−bit Multipliers: Zero Substitution vs. Truncated

N
or

m
al

iz
ed

 E
rr

or

Normalized Area (2−LUTs)

Zero Sub
Truncated

Fig. 12. Error to area profile of zero-substitution 32-bit multiplier and
truncated 32-bit multiplier.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
10

0

10
5

10
10

10
15

10
20

10
25

10
30

Zero Substituted vs. Truncated Multipliers: 8  16  24  32  48  64−bit

Area (2−LUTs)

E
rr

or

Zero−8
Trunc−8
Zero−16
Trunc−16
Zero−24
Trunc−24
Zero−32
Trunc−32
Zero−48
Trunc−48
Zero−64
Trunc−64

Fig. 13. Error to area profile of zero-substitution multipliers and truncated
multipliers.

While the truncated multipliers have a more favorable area-
to-error profile, one drawback in their use is that they require
the full precision of both operands to be present at the inputs of
the multiplier. This has the effect of requiring higher precision
on upstream computations, possibly negating the area gain
at a particular instance of a multiplier by requiring larger
operations at upstream nodes. This makes it more valuable
in multiplications closer to the inputs than those closer to the
outputs.

VI. A UTOMATED OPTIMIZATION

We have presented in the previous section several optimiza-
tion methods designed to allow more control of the area/error
profile of our datapath. Unfortunately, due to the strongly
interconnected nature of datapaths and dataflow graphs in
general, it is hard to analytically quantify the impact of each
method on the overall profile of the system. Making a small
change, such as increasing the number of zero-substituted
bits at a particular primary input, will impact the breadth of
possible optimizations available at every node.

Fortunately, we have provided a model that can accurately
determine the area and error of each node within the datapath.
With these measurements and optimization “moves”, we can
utilize simulated annealing [11] to choose how to use our



palette of optimizations to achieve an efficient implementation
area under a user-specified error constraint. We have developed
an automated approach using simulated annealing principles
similar to those found in [12] to area-optimize a dataflow
graph. Simulated annealing has shown to produce good results
on often intractable problems, and is a good candidate for our
design challenge.

The possible moves in our system are the various opti-
mization methods. At each temperature we choose randomly
between altering the amount of zero-substitution at the inputs
and changing multiplier structures. Our cost function for
determining the quality of moves is determined by the area
estimate of the entire datapath combined with a user-specified
error constraint. This error constraint is identified as an error
range at a particular node, dubbed the error node. Our cost
function is defined in (4), whereerror is the absolute value of
the difference between the maximum error and the target error
at the error node. We have determined through experimentation
that β = 0.25 gives a good balance between an area efficient
implementation and meeting the error constraint.

cost = β ∗ area + (1− β) ∗ error (4)

When modifying an input, we allow the annealer to ran-
domly choose to increase or decrease the number of bits
substituted with constants by one bit. Thus, an inputA502

can move toA601 or A403.
When modifying the structure of a multiplier, we randomly

choose a multiplier and adjust its degree of truncation. As with
the inputs, we allow the annealer to increase or decrease by
one the number of columns truncated from the partial product
array. This allows a smooth transition from the traditional array
multiplier to a highly-truncated multiplier.

At each temperature, after the move has been completed,
we perform a greedy renormalization. Recalling from previ-
ous sections, there are several instances where the effect of
renormalization can be achieved without an area impact. For
each adder that may be renormalized without area penalty, we
perform renormalization and observe the impact on the error
node of interest. The adder that exhibits the most reduction
in maximum error at the error node through renormalization
is renormalized. This process is repeated until either our list
of candidate adders is exhausted, or there can be no error
improvement through renormalization. After the annealer has
finished, we optionally apply active renormalization at the
error node if it yields a lower overall implementation cost.

VII. E XPERIMENTAL RESULTS

We have implemented our automated optimization tech-
niques as a subset of our design-time tool presented in [1].
To test the effectiveness of our methodologies, we have used
our technique to optimize several benchmark image processing
kernels. These include a matrix multiply, wavelet transform,
CORDIC, and a one-dimensional discrete cosine transform.

A typical use of our methods would begin with the user
performing basic truncation. As mentioned before, while basic
truncation does afford an area savings throughout the datapath,

0 2 4 6 8 10 12 14 16 18
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

N
or

m
al

iz
ed

 A
re

a

Normalized Error

Automatically Optimized Matrix Multiply

Optimized
Basic Truncation

Fig. 14. Optimized results for matrix multiply.

there is very little guidance as to which inputs to manipulate,
and how changes might affect the overall performance of
the implementation. The starting points we have used in our
experiments are truncating zero, one, and two bits from every
input. These can be seen in Figs. (14-19) as the “Basic
Truncation” points on the plots.

From these initial estimates of area and error, we performed
the automated optimization using these points as guidelines
for error constraints. The flexibility of our methods allows us
to choose any error constraint, giving us far more area/error
profiles to consider for implementation. As can be seen in
the plots, the automated optimization method is able to obtain
better area/error tradeoffs than the basic truncation method,
except in a few cases in the wavelet transform and 1-D discrete
cosine transform. We attribute this to the need for further
tuning of some of the parameters in our simulated annealing
algorithm. In particular, tuning theβ parameter to adjust the
weighting of meeting the error constraint vs. obtaining an area-
efficient datapath. In the future, perhaps this parameter could
be influenced by the user.

Careful observation will note a difference in performance
between Figs. (16,17) and Figs. (18,19). In the experiements
for the latter figures, we performed a slightly different exper-
iment to determine whether or not our tool would be able to
more aggressively optimize a single “precision critical path”
in a circuit. In both the CORDIC and DCT, there were several
output nodes to be considered. In our experiments for (18,19),
we only constrained the error on one output node. From the
plots it can be seen that the tool was able to maintain the
desired precision at the output nodes of interest while finding
more area efficient implementations. This type of optimization
can be very useful when the developer is aware of varying
degrees of precision required at the outputs.

VIII. C ONCLUSIONS ANDFUTURE WORK

We have described and motivated the need to investigate
the optimization of the least-significant bit position. In order
to do so, we have proposed models of area and error for an
alternative area reduction technique to straight truncation—
constant substitution. Using this method and models, we have



0 20 40 60 80 100 120
0.8

1

1.2

1.4

N
or

m
al

iz
ed

 A
re

a

Normalized Error

Automatically Optimized Wavelet Transform

Optimized
Basic Truncation

Fig. 15. Optimized results for wavelet transform.

0 2 4 6 8 10 12 14 16 18
1

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

 A
re

a

Normalized Error

Automatically Optimized CORDIC (All Outputs Optimized)

Optimized
Basic Truncation

Fig. 16. Optimized results for CORDIC, all outputs optimized.

proposed several optimization techniques aimed at giving
the developer more control over the area-to-error tradeoff
during datapath precision optimization that would not be
available if simple truncation were used. We have proposed
techniques for area-efficient renormalization, allowing us to
more effectively capture our intuitive notion of error. We have
introduced the use of alternative arithmetic structures, such
as the truncated multiplier, in datapath optimization. Finally,
we have implemented our techniques in an automated tool
that is able to optimize a datapath subject to a user-supplied
error constraint. More importantly, our techniques and tools
give the user a broader range of options to consider, as well
as a mechanism to achieve specific area/error targets when
performing implementations.

In future work, we will incorporate more optimizations to
further expand the design space. We will implement more
of the renormalization techniques presented here in our auto-
mated tool. This will require a more comprehensive renormal-
ization routine that will attempt the transformations that may
increase the cost of a design. We hope to incorporate further al-
ternative structures, such as floating-point and pseudo-floating-
point to allow for high-precision (and high-area) portions of
the datapath to be realized.

0 5 10 15 20 25 30 35 40
0.9

1

1.1

1.2

1.3

1.4

1.5

N
or

m
al

iz
ed

 A
re

a

Normalized Error

Automatically Optimized 1−D DCT (All Outputs Optimized)

Optimized
Basic Truncation

Fig. 17. Optimized results for 1-D discrete cosine transform, all outputs
optimized.

0 5 10 15 20 25 30
1

1.2

1.4

1.6

1.8

2

2.2

2.4

N
or

m
al

iz
ed

 A
re

a

Normalized Error

Automatically Optimized CORDIC

Optimized
Basic Truncation

Fig. 18. Optimized results for CORDIC, single output selected for optimiza-
tion.

0 2 4 6 8 10 12 14 16 18 20
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

N
or

m
al

iz
ed

 A
re

a

Normalized Error

Automatically Optimized 1−D DCT

Optimized
Basic Truncation

Fig. 19. Optimized results for 1-D discrete cosine transform, single output
selected for optimization.



REFERENCES

[1] M. L. Chang and S. Hauck, “Précis: A design-time precision analysis
tool,” in IEEE Symposium on Field-Programmable Custom Computing
Machines, 2002, pp. 229–238.

[2] M. Stephenson, J. Babb, and S. Amarasinghe, “Bitwidth analysis with
application to silicon compilation,” inProceedings of the SIGPLAN
conference on Programming Language Design and Implementation, June
2000.

[3] M. W. Stephenson, “Bitwise: Optimizing bitwidths using data-range
propagation,” Master’s thesis, Massachusetts Institute of Technology,
May 2000.

[4] W. Sung and K.-I. Kum, “Simulation-based word-length optimization
method for fixed-point digital signal processing systems,”IEEE Trans-
actions on Signal Processing, vol. 43, no. 12, pp. 3087–3090, December
1995.

[5] S. Kim, K.-I. Kum, and W. Sung, “Fixed-point optimization utility for
C and C++ based digital signal processing programs,” inWorkshop on
VLSI and Signal Processing, Osaka, 1995.

[6] A. Nayak, M. Haldar,et al., “Precision and error analysis of MATLAB
applications during automated hardware synthesis for FPGAs,” inDesign
Automation & Test, March 2001.

[7] G. A. Constantinides, P. Y. Cheung, and W. Luk, “The multiple
wordlength paradigm,” inIEEE Symposium on Field-Programmable
Custom Computing Machines, 2001.

[8] Y. Lim, “Single-precision multiplier with reduced circuit complexity
for signal processing applications,”IEEE transactions on Computers,
vol. 41, no. 10, pp. 1333–1336, October 1992.

[9] M. J. Schulte and J. Earl E. Swartzlander, “Truncated multiplication with
correction constant,” inVLSI Signal Processing VI, IEEE Workshop on
VLSI Signal Processing, October 1993, pp. 388–396.

[10] K. E. Wires, M. J. Schulte, and D. McCarley, “FPGA resource reduction
through truncated multiplication,” inProceedings of the 11th Inter-
national Conference on Field Programmable Logic and Applications,
August 2001, pp. 574–583.

[11] S. Kirkpatrick, J. C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,”Science, vol. 220, no. 4598, pp. 671–680, May 13
1983.

[12] V. Betz and J. Rose, “VPR: A new packing, placement and routing
tool for FPGA research,” inProceedings of the Seventh International
Workshop on Field-Programmable Logic and Applications, 1997, pp.
213–222.


