
©Copyright 2024

Atharva Mattam

Efficient Gaussian Random Number Generators in HLS4ML

Atharva Mattam

A thesis

submitted in partial fulfillment of the

requirements for the degree of

Master of Science in Electrical Engineering

University of Washington

2024

Committee:

Scott Hauck

Shih-Chieh Hsu

Program Authorized to Offer Degree:

Department of Electrical and Computer Engineering

University of Washington

Abstract

Efficient Gaussian Random Number Generators in HLS4ML

Atharva Mattam

Chair of the Supervisory Committee:

Scott Hauck

Department of Electrical and Computer Engineering

Efficient hardware implementation of neural networks, such as Variational Au-

toencoders (VAEs), often relies on FPGAs for their balance of performance

and energy efficiency. VAEs require accurate Gaussian distributions for latent

space sampling, but traditional methods like the Central Limit Theorem (CLT)

are resource-intensive. The Multihat method combines combinational logic and

CLT to achieve high tail accuracy with reduced hardware costs. This thesis

discusses the Multihat method implemented using High-Level Synthesis (HLS),

optimized for scalability and integrated into HLS4ML as a custom layer for

FPGA deployment. Results show the Multihat GRNG generates statistically

accurate Gaussian distributions, with improved resource efficiency and perfor-

mance compared to CLT-based approaches.

1

Contents

1 Introduction 4

2 Background 4

2.1 Neural Networks . 4

2.2 Autoencoders . 6

2.3 Variational Autoencoders . 8

2.4 Vivado HLS Flow . 10

2.5 HLS4ML . 12

3 Multihat 13

3.1 Uniform Random Number Generator 14

3.2 Hat Generation . 16

3.2.1 The Standard Hat . 17

3.2.2 The Narrow Hat . 18

3.2.3 The Wide Hat . 19

3.2.4 The Tall and Short Hat 21

3.2.5 The “Multi” Hat . 22

3.3 Central Limit Theorem . 23

4 HLS Implementation 25

5 Integration into HLS4ML 26

6 Results 27

6.1 Configurable Bitwidths . 27

6.2 Statistical Properties . 29

6.3 Resource Utilization and Performance 30

2

6.4 Comparing a Second Implementation 32

7 Applications 33

8 Conclusion 35

9 My Contributions 36

3

1 Introduction

This research project explores the development and integration of a Gaussian

random number generator (GRNG) using the Multihat method [16] into the

HLS4ML framework [7] for use in Variational Autoencoders (VAEs). The mo-

tivation stems from the need to efficiently generate Gaussian distributions in

hardware to support neural network models such as VAEs. VAEs use Gaussian

distributions to sample latent space variables, which are key to generating and

reconstructing data. Traditional methods for generating Gaussian distributions

on hardware, such as the Central Limit Theorem (CLT), are resource-intensive,

especially when targeting extreme tail accuracy. The Multihat method offers a

resource-efficient alternative, combining several layers of transformation to ap-

proximate a Gaussian curve at a lower hardware cost, while maintaining high

accuracy in the tails of the distribution.

The work discusses in detail the structure and components of the Multihat

algorithm, including the uniform random number generator, the process of gen-

erating “hats” from uniform random distributions, and the use of the CLT to

refine the accuracy of the final Gaussian distribution. The work also examines

the challenges and advantages of integrating this GRNG into HLS4ML, a frame-

work that automates the deployment of machine learning models on FPGAs.

2 Background

2.1 Neural Networks

As the name suggests, neural networks are inspired by the brain and mimics

some behaviors of the human brain. Neural networks compose of several layers of

interconnected data processing nodes, or neurons, which are typically organized

4

into one input layer, one output layer, and several hidden layers based on the

complexity of the network and its goal. According to IBM [9], each individual

node can be thought of as being its own linear regression model, composed of

input data, weights, a bias, and an output.

Figure 1: Example of a Neural Network [13]

Figure 1 shows the mathematical computation that takes place within each

neuron [13]. Once the input to the neuron is established, each input is mul-

tiplied by its assigned weight. Inputs with larger magnitude weights typically

contribute more significantly to the final output of the layer, helping determine

the importance of a given neuron. Once the weighted inputs are calculated, a

summation of all the weighted inputs takes place, after which, the bias value of

the corresponding neuron is added to the final value. This result passes through

an activation function, which determines the final output of the neuron. If the

output surpasses a certain threshold, the neuron “fires”, allowing the data to

move to the next layer of the network. In this way, the output of one node

becomes the input for the next. This sequential process of passing data from

layer to layer is what characterizes the neural network as a feedforward network.

5

2.2 Autoencoders

Autoencoders aim to identify key components of an input (the latent variables)

by compressing, or encoding, the input data through a central bottleneck layer,

forcing the encoder to focus on extracting only the most critical information re-

quired to reconstruct, or decode, the original input. While different autoencoder

types adjust pieces of their architecture to suit specific data types or objectives,

they all share a core structure [2], which can be seen in figure 2.

Figure 2: A Standard Autoencoder [20]

The encoder consists of layers that progressively reduce the dimensionality

of the input data, forming a compressed representation. Typically, as the data

moves through the encoder, each hidden layer contains fewer nodes than the

previous one, resulting in a compression of the input data.

At the center of the network, the bottleneck, or “code,” holds the most

compressed version of the input and serves as the final output of the encoder

as well as the input to the decoder. A key design challenge in autoencoders

is determining the smallest set of features or dimensions needed to accurately

reconstruct the input. This latent space representation, or code, is passed into

the decoder.

The decoder is made up of layers with progressively more nodes, expand-

ing or “decoding” the compressed data back into its original form. The final

reconstructed output is then compared to the original input (referred to as the

“ground truth”) to evaluate the autoencoder’s performance. The difference be-

tween the output and the original input is known as the reconstruction error.

6

There is one fundamental problem with autoencoders. The applications of

standard autoencoders are fairly limited, because the latent space of standard

encoders do not allow for easy interpolation. For example, when an autoencoder

is trained on the MNIST dataset, visualizing the encodings from its latent space

will reveal distinct clusters, as seen in figure 3. This is beneficial when the goal

is to simply replicate the input images [20].

Figure 3: Latent Space Representation of an autoencoder trained on the MNIST
dataset. [20]

However, when developing a generative model, the objective shifts. Rather

than simply replicating input images, the focus is on randomly sampling from

the latent space or generating variations of an image. To achieve this, the latent

space must be continuous and smooth. Discontinuities in the latent space, such

as gaps between clusters, create challenges. Samples or variations taken from

7

these untrained regions typically produce unrealistic outputs, as the decoder

has not learned to generate meaningful data from these areas during training

[20].

2.3 Variational Autoencoders

A variational autoencoder (VAE) provides a probabilistic manner for describing

an observation in the latent space [11]. This means that, instead of mapping

the output of an encoder to a single vector, the VAE’s encoder maps its output

to a distribution. The VAE’s encoder achieves this by outputting two vectors:

the mean µ and the standard deviation σ, which is represented by figure 4.

Figure 4: An Example Variational Autoencoder [20]

After obtaining the mean µ and the standard deviation σ, the VAE incor-

porates a key step: sampling from the latent distribution. Instead of directly

using the encoded mean µ and standard deviation σ as inputs to the decoder,

the VAE introduces a random variable, z, from a Gaussian distribution. This

8

sampling step, also outlined in figure 4, allows for the generation of a variety of

potential outputs, even when encoding similar inputs.

However, there is one major problem with this architecture of a VAE. Train-

ing the VAE using backpropagation becomes impossible because calculating the

gradient with respect to the random variable z is mathematically undefined.

This is where the reparameterization trick comes into action. Instead of sam-

pling directly from the Gaussian distribution, an additional random variable, ϵ,

is introduced. The random variable ϵ is in charge of handling and creating a

Gaussian distribution with a mean µ of 0 and a standard deviation σ of 1, typi-

cally notated as ϵ ∼ N(0, 1). This simple yet powerful trick, when implemented

in the VAE, can be described by the below equation:

z = µ+ σ ∗ ϵ (1)

Figure 5: The Reparameterization Trick [10]

Equation 6 shows that the random variable z is calculated by first scaling

the Gaussian distribution ϵ with the model’s standard deviation σ. Then, the

scaled distributing is shifted by the model’s mean µ. This trick, as seen in figure

5, achieves the exact same functionality as before, with the crucial difference be-

ing that the model’s mean µ and standard deviation σ are deterministic values

[23], i.e, the mean and standard deviation do not change between runs when

the input data is consistent between runs. Not only are the mean and stan-

dard deviation deterministic now, but the random variable ϵ can be controlled

9

separately. The reparameterization trick captures the essence of the original

Gaussian distribution while maintaining the relationship between the mean and

standard deviation defined by the encoder [23]. Finally, this trick enables the

ability to backpropagate throughout the entire network, thus, allowing the VAE

to be trained end-to-end using standard gradient-based optimization techniques

like Adam [12].

Figure 6: The latent space representation of an autoencoder vs a variational
autoencoder [20]

This sampling mechanism is what distinguishes the VAE from traditional

autoencoders. Figure 6 shows the difference in the latent space representa-

tion between an autoencoder and a variational autoencoder. From the figure,

a standard autoencoder is directly encoded to specific coordinates, whereas a

variational autoencoder contains a probability distribution around the encod-

ing. It introduces an element of stochasticity, allowing the VAE to learn a more

robust and continuous latent space, as well as enabling the generation of novel

data points by sampling different latent variables.

A more in depth understanding of variational encoders can be found in Carl

Doersch’s “Tutorial on Variational Autoencoders.” [5]

2.4 Vivado HLS Flow

HLS or High-Level Synthesis is a hardware design methodology that automates

the process of converting high level programs into digital circuits rather than

10

using HDLs such as Verilog or VHDL. HLS allows for quicker and rapid pro-

totyping compared to HDLs, by allowing designers to work in programming

languages such as C/C++ or SystemC. HLS tools, then, synthesize the high

level programs into appropriate RTL code to be deployed onto FPGAs. Vivado

HLS is one such tool, developed by Xilinx, that eases the deployment of HLS

programs onto Xilinx FPGAs.

Once an algorithm is written in C/C++ or SystemC, HLS translates its be-

havioral description into a hardware model that can be synthesized into digital

logic. By focusing on functionality rather than hardware implementation de-

tails, HLS simplifies the traditionally complex RTL design process. This process

allows designers to explore various micro-architectural options, such as parti-

tioning resources, scheduling operations, or parallelizing tasks, without needing

to manually adjust RTL code. Such flexibility is especially valuable in the early

design phases, where rapidly evaluating different alternatives is key to finding

the best solution.

Figure 7: Vivado HLS Design Flow [24]

From Xilinx’s User Guide for High-Level Synthesis [24], the Vivado HLS

11

design flow is as follows: first, compile, execute and debug the C algorithm.

Second, Synthesize the C algorithm into an RTL implementation. Third, gen-

erate comprehensive reports and analyze the design. Fourth, verify the RTL

implementation. Finally, package the RTL implementation into a selection of

IP formats. The Vivado HLS tool requires a few inputs during the design flow.

For the first step, the tool requires the C function written in C/C++, or Sys-

temC which may contain subfunctions. Along with the C function, the tool

also requires constraints with information about the clock and FPGA, the C

testbench and other utility files, and optionally directives that can direct the

tool to implement a specific behavior. After synthesis, the tool outputs the RTL

implementation files in VHDL (IEEE 1076-2000) and Verilog (IEEE 1364-2001)

(as of Vivado HLS 2019.2) [24] along with report files with information about

area (LUTs, registers, BRAMs and DSPs), latency, and initiation interval. The

C testbench is then used to verify the RTL output using C/RTL Cosimulation

and ends with its own report files. Other tools in the Xilinx Design Flow can

use the implementation files as IP blocks. Using logic synthesis, the packaged

IP can be synthesized into a bitstream to be deployed on an FPGA.

2.5 HLS4ML

HLS4ML [7] takes the design flow one level higher by supporting Python.

HLS4ML works by translating models from traditional open-source machine

learning packages into HLS. This Python package is geared towards machine

learning inference in FPGAs.

Figure 8 shows the HLS4ML workflow. An ML model built using Keras, for

example, is converted into HLS, which then synthesizes into RTL in one auto-

mated process. Additionally, HLS4ML allows for fine-tuning in every step for

better optimization or performance of the design. While HLS enables rapid pro-

12

Figure 8: HLS4ML Workflow [6]

totyping compared to traditional RTL design, HLS4ML further accelerates the

process, specifically for neural networks. In addition to quicker prototyping and

deployment of neural networks on FPGAs, HLS4ML also provides users with

control over size/compression, precision, dataflow/ resource reuse and quanti-

zation aware training for their models.

3 Multihat

A survey on various hardware architectures on Gaussian random number gener-

ators [16] introduced a new architecture called the Multihat. The study shows

that the Multihat algorithm for Gaussian random number generation was not

only the best in terms of hardware resource utilization, but also achieved a tail

accuracy of 8σ, meaning, the algorithm generated accurate values 8 standard

deviations away from the mean. The motivation to create a Gaussian random

number generator comes from here.

As mentioned in the previous sections, equation 6 represents the math re-

quired within a VAE, where µ represents the mean, σ represents the standard

deviation, ϵ represents the generated random number, and z represents the

sampled latent representation. This is where the Multihat method [16] comes

in with its ability to generate Gaussian random numbers with a long tail at a

very low hardware cost. A long tail refers to the ability to generate rare, extreme

13

values that occur far from the mean, which is important for accurately modeling

distributions with seldomly occurring yet significant outliers. The architecture

of the Multihat algorithm can be divided into three distinct parts: the uniform

random number generator, the hat generation, and the central limit theorem.

3.1 Uniform Random Number Generator

Data and noise generation in digital systems typically requires a sequence of

random numbers. A widely used algorithm for generating these sequences is the

multiplicative congruential generator (MCG), which produces a pseudorandom

sequence with a uniform distribution and a long repeating period. A com-

mon hardware implementation of the MCG is the linear feedback shift register

(LFSR), which, as seen in figure 9 consists of interconnected single-bit storage

registers and a feedback logic network with an additional combinational XOR

between two or more bits, also known as the LFSR’s tap [4]. This feedback net-

work and tap locations are typically modeled by what is known as the generating

polynomial.

Figure 9: 4-bit LFSR with a tap point between 0 and 1 [4]

However, there is one major flaw with a typical implementation of LFSR,

when used for the MCG algorithm: successive values in the generated sequence

are correlated. From figure 9, it can be seen why values are correlated; with

simple bitwise shifting and one XOR computation. This correlation is also seen

in larger LFSRs, for example, a 168 bit LFSR contains similar bitwise shifting

14

and only four XOR computations [1]. Out of the many ways to mitigate this

issue with the traditional LFSR, the Multihat method utilizes a technique known

as the multi-bit skip-ahead. While the multi-bit skip-ahead technique is more

efficient in terms of performance, it consumes more resources as the feedback

network must implement the generating polynomial multiple times. Figure 10

shows a 4-bit LFSR with a skip-ahead of 3. This skipping ahead effectively

improves the randomness of the pseudorandom number sequence of the LFSR,

making it more uniform and less predictable.

Figure 10: 4-bit LFSR with a skip-ahead of 3 [4]

Colavito’s and Silage’s “Efficient PGA LFSR Implementation Whitens Pseu-

dorandom Numbers” [4] contains a deeper dive into the workings behind the ar-

chitecture of a skip-ahead LFSR. Considering a 20-bit LFSR whose generating

polynomial is as follows:

q0 = q19 ⊕ q16 (2)

15

Equation 2 says that the 0th bit of this LFSR is an XOR computation of the

20th and 17th bit. For this LFSR, a skip-ahead of 5 would cause the generating

polynomial to be represented by the below equations:

q4 = q19 ⊕ q16

q3 = q18 ⊕ q15

q2 = q17 ⊕ q14

q1 = q16 ⊕ q13

q0 = q15 ⊕ q12

(3)

As seen in equation 3, the skip-ahead of 5 causes the original XOR computation

from equation 2 to move bits in front. Along with moving the original XOR

computation, the skip-ahead creates XOR computations that trail the jump

from the 20th bit to the 5th bit.

The Multihat algorithm utilizes a 130-bit LFSR with a skip-ahead of 120.

This 130-bit LFSR has an effective repetition period of 2123 [17]. Even though

this skip-ahead LFSR has a smaller period when compared with the traditional

130-bit LFSR, the great advantage comes in the form of uncorrelated uniform

random numbers, thus finishing the first step in the Multihat algorithm of cre-

ating a uniform random number generator.

3.2 Hat Generation

The fundamental idea behind the Multihat method is that it is possible to

change the probability density of a uniformly distributed random sequence by

introducing an extra bit and using a multiplexer [16]. The modified distribution

begins to represent the shape of a hat, which can be adjusted using basic logic

cells such multiplexers and simple gates. Taking a randomly generated 2’s com-

plement 16-bit number into consideration, forcing the 15th bit of the number

16

to be equal to the 16th bit, drops the range by a factor of 2. Assuming this

number is distributed between (-1, 1), this 16-bit number would contain one

integer bit and 15 fractional bits. When the 15th bit is forced to be equal to the

16th bit, the new range of the number becomes (-0.5, 0.5). A similar principle,

used in conjunction with the muxes help in the generation of “hats,” which will

be described in the following sections in further detail.

3.2.1 The Standard Hat

Figure 11 shows the conversion of a uniform distribution to a hat distribution.

A 16-bit number represented by x15:x0, uniformly distributed between (-1, 1)

is directly mapped to the output z15:z0. Since this 16-bit number is distributed

between (-1, 1), it is a fixed-point number that can be represented in the Q

format, where Q(m.n) denotes m bits for the integer part and n bits for the

fractional part. For this Q(1.15) number, the probability of all values occurring

are the same: 2−16, therefore, creating a probability density function with a

height of 0.5 as seen in figure 11.

This 16-bit number is manipulated such that a mux decides z14’s value be-

tween x15 and x14 where the select bit of the mux is x16. Assuming every bit

has a probability of 50%, the distribution of z will change such that 50% of

the edge values will map to the center, increasing the height of the PDF in the

center.

Table 1 helps to visualize the shift in probabilities. The mux transforms the

input bits x15x14 such that, the 3/8 of all output values begin with output z15z14

being 00 or 11, and 1/8 of all output values begin with z15z14 as 01 or 10. This

means that values from 16’b11 00000000000000 to 16’b11 11111111111111 (-

0.5, ∼0) and values from 16’b00 00000000000000 to 16’b00 11111111111111 (0,

∼0.5) now have an updated probability of 3/8 ∗ 2−14 with the remaining values

having a probability of 1/8 ∗ 2−14. This change in probabilities can be seen in

17

Figure 11: Converting a uniform distribution to a hat [16]

Table 1: Transformed Outputs of the Standard Hat from Figure 11

Output z15z14 Mux bit x16 Input x15x14

00
0 00
1 00
1 01

11
0 11
1 10
1 11

01 0 01
10 0 10

the transformed probability density function in figure 11 where the middle part

has a height of 3/8 and the edges have a height of 1/8.

3.2.2 The Narrow Hat

Building off the standard hat distribution, it is possible to further decrease the

width of the middle to create the narrow hat distribution. As seen in figure 12,

rather than having one mux between the input x and output z, there are now

two muxes. Similar to the standard hat, the first mux drives z14, whereas now

the second mux drives the 14th bit z13.

18

Figure 12: Converting a standard hat distribution to a narrow hat [16]

This effectively creates new probabilities which can be visualized from table

2. For a 16 bit output with the same representation as the standard hat of

Q(1.15), 5/16 of all output values begin with output z15z14z13 as 000 or 111, and

1/16 of all output values begin with z15z14z13 as 001, 010, 011, 100, 101, or 110.

Therefore, all values from 16’b000 0000000000000 to 16’b000 1111111111111 (0,

∼0.25) and all values from 16’b111 0000000000000 to 16’b111 1111111111111 (-

0.25, ∼0) now have an updated probability of 5/16 ∗ 2−13 with the remaining

values having a probability of 1/16 ∗ 2−13. This change in probabilities can be

seen in the transformed probability density function in figure 12.

3.2.3 The Wide Hat

On the other hand, it is also possible to widen the distribution of the middle

part, in what is called the wide hat distribution. As noticed in the narrow hat

distribution, adding more muxes will only decrease the width, so to widen the

distribution of the hat from (-0.5, ∼0.5) to (-0.75, ∼0.75) the wide distribution

has the first instance of elementary logic gates in addition to two additional

bits.

19

Table 2: Transformed Outputs of the Narrow Hat from Figure 12

Output z15z14z13 Mux bit x16 Input x15x14x13

000

0 000
1 000
1 001
1 010
1 011

111

0 111
1 100
1 101
1 110
1 111

001 0 001
010 0 010
011 0 011
100 0 100
101 0 101
110 0 110

Figure 13 shows a simple digital circuit consisting of three gates - an XNOR,

an XOR, an AND. Taking the top three bits of the 16-bit input in Q(1.15)

format, the circuitry outputs true for two only cases - when x15x14x13 is 011 or

100. For the case of x15x14x13 being 011, the circuit outputs true for all values

greater than or equal to 0.75. Similarly, for the case of when x15x14x13 being

100, the circuit outputs true for all values less than -0.75. This circuit then

drives a mux that either replaces the 14th and 15th bit with two new bits of

50% probability or feeds through the input to the output. These additional bits

decreases the probability of numbers greater than 0.75 and numbers less than

-0.75 from 1/4 ∗ 2−13 to 1/4 ∗ 0.5 ∗ 0.5 ∗ 2−13 [16]. Similar to the narrow hat

of adding more muxes, the wide hat can be made wider by using more XOR,

XNOR, and AND circuits recursively.

20

Figure 13: Converting a standard hat distribution to a wide hat [16]

3.2.4 The Tall and Short Hat

In addition to widening and narrowing the middle part of the hat, it is also

possible to shorten and lengthen the middle part of the hat. As seen in the

standard hat section and table 1, a mux bit with a 50% probability changed

the probabilities of the edges and the middle by forcing outer samples of the

uniform distribution inward [16]. As seen from the previous sections, a URNG

typically outputs each bit with a 50% probability. However, using combinational

circuitry, this 50% probability can be manipulated.

P (AandB) = P (A) ∗ P (B) (4)

P (AorB) = 1− (P (A) ∗ P (B)) (5)

From equation 4 and 5, it is apparent that using an AND gate will lower the

probability at the output, whereas using an OR gate will raise the probability

at the output. In figure 14, the muxes of narrow hat distribution receives a

second bit x17 which is AND-ed with the existing x16. As seen above, AND-ing

two bits will decrease the probability, thus decreasing the height of the narrow

hat.

21

Figure 14: Converting a narrow hat distribution to a narrow and short hat [16]

Nevertheless, more complex combinational circuitry using ANDs and ORs

can be created to achieve an arbitrary probability at the output. For example,

in figure 15, assuming the inputs to the gates are from the URNG, with a

probability of 50% each, the output of the AND gate will contain a probability

of 12.5%, and the output of the first OR gate will contain a probability of 75%.

Together, the final output will contain a probability of 90.625%.

Figure 15: Boolean logic to manipulate bit probabilities [16]

3.2.5 The “Multi” Hat

Finally, the “Multi” hat stage combines multiple hat distribution techniques to

create a prototype Gaussian curve. The Multihat algorithm, aptly, receives its

name from the combination of all the different hat distribution techniques.

22

Figure 16: Combining hat distributions to generate a Gaussian-looking curve
[16]

From figure 16, the combination of the narrow, standard, and wide hats

yield a pyramid looking distribution that starts to resemble a Gaussian curve.

Arbitrarily increasing and editing the steps can lead to a much more Gaussian-

looking curve compared to figure 16. However, one obvious downside to in-

creasing the complexity of the “Multi” hat is the explosion of hardware resource

utilization. This explosion is due to the resources of the combinational circuit

becoming larger with increased complexity. The creators of the Multihat algo-

rithm, chose to limit the “Multi” hat stage to four steps and use the Central

Limit Theorem to generate high tail Gaussian Random numbers [16].

3.3 Central Limit Theorem

“The Central Limit Theorem is one of those beautiful examples in nature, where

a mathematical relationship can be directly associated to real-life observations”

[17]. The CLT offers a cost-effective method of transforming uniform random

numbers into a Gaussian distribution. According to the CLT, the sum of n

independent random variables with a finite mean and variance approximates

a Gaussian distribution as n increases [18]. Even though the CLT is as sim-

ple as solely relying on addition operations, CLT is rarely used to generate

high tail Gaussian random numbers. “Error in tail regions of the Probability

Density Function (PDF), is inversely proportional to the number of samples to

23

be added.” [18] While multiple studies show the extent of using a CLT-based

approach to generate Gaussian Random Numbers, the common issue is high

resource usage that arises from the need to correct the error in the tail regions.

Figure 17: Multihat Block Diagram [16]

However, as mentioned in the previous section, the Multihat algorithm as

a whole, uses the best of both worlds. Using the “Multi” hat approach com-

bined with the power of the Central Limit Theorem, the Multihat algorithm is

able to generate high-tail Gaussian Random Numbers at relatively low resource

utilization. From figure 17, we can see that four Multihat blocks convert the

LFSR’s uniform distribution to a pyramid distribution. Each Multihat block

uses a total of 27 bits, 16 bits for the input and 11 bits that dictate the overall

shape of the pyramid distribution. Breaking it down, 4 bits generate a thin hat,

3 bits generate a standard hat, and 4 bits generate a wide hat with relevant

shortening and raising. The adder blocks then sum up all the Multihat block,

covering the CLT part of the Multihat algorithm. Additionally, if the variance

of an individual block is unity, the variance of the resultant distribution remains

unity if the final number is divided by
√
n [17][16]. Since four Multihat blocks

are added together, the final output needs to be divided by 2, which is a trivial

task in fixed point representation.

24

4 HLS Implementation

The Multihat algorithm was recreated in HLS, with the original VHDL design

taken into consideration. Using a class-based approach, the HLS Multihat algo-

rithm consisted of its three core components: The LFSR-based uniform random

number generator, the “Multi” hat pyramid distribution generator, and the

central limit theorem. Next, further modifications were made to the overall de-

sign that allowed the creation of multiple Multihat Gaussian Random Number

Generators. Each “GRNG” block is made out of the core Multihat algorithm

components, as visualized in figure 17. Multiple “GRNG”s create their own in-

stance of the “Multihat block.” However, one issue in creating multiple GRNGs

is the initial state for each of the LFSRs. N different GRNGs would require N

different initial states for the N LFSRs. In addition to requiring N different

initial states, each state must be uncorrelated to ensure each GRNG outputs an

uncorrelated Gaussian random number. This was tackled by giving one input

“SEED” to the system, which, uses Katio Udagawa’s [22] SplitMix32 algorithm

to create N different initial seeds for N GRNGs. The SplitMix32 is an extremely

cheap function that is based on an algorithm known as SplitMix included in Java

JDK8 [3]. By performing several XORs and shifts, this function essentially the

seeds inputted to the GRNGs.

Additionally, the implementation taking place in Xilinx’s Vivado HLS 2019.2

allows for easier optimization in comparison to writing HDL. Various pragmas

such as array partitioning, loop unrolling, and pipelining aided in designing a

highly optimized N Gaussian Random Number Generators.

25

5 Integration into HLS4ML

As mentioned in previous sections, the motivation to create an efficient Gaus-

sian random number generator comes from the need to create and deploy a

Variational Autoencoder on an FPGA. With HLS4ML’s ability to translate tra-

ditional open-source machine learning package models into HLS, the next step

was to integrate the Multihat Gaussian random number generator into HLS4ML

by creating a custom layer.

The custom Gaussian layer, modeled after Keras’ implementation of a sam-

pling layer, gives the HLS4ML Gaussian layer two inputs that aid in producing

the accurate value at the output of the Gaussian layer. Equation 6 from a

previous section is slightly modified to the below equation:

z = µ+ e(0.5∗ln(σ
2)) ∗ ϵ (6)

The Gaussian layer receives two inputs - the mean, µ, and the log var, ln(σ2),

for a certain input. Since the layer receives a log var value, to account for

accurate scaling, the value needs to be converted to its respective standard

deviation. This was achieved in the HLS implementation of Multihat by creating

a look-up table to perform the exponential calculation. With a default size of

1024 entries and a binary representation of Q(8.10), the LUT produces a good

approximation for the exponential calculation.

26

6 Results

This section will discuss in more detail the output bitwidth of the Multihat

Gaussian random number generator, the statistical properties of the generated

Gaussian, resource utilization and performance, and a comparison with a dif-

ferent implementation of a GRNG.

(a) Generated output of “Multi” hat
block

(b) Output of “Multi” hat block from
the Multihat paper [16]

Figure 18: Comparison of 1 million HLS generated output of one “Multi” hat
block vs the paper’s output.

6.1 Configurable Bitwidths

The first step in verifying the functionality of the Multihat algorithm was to

verify the functionality of the “Multi” hat block itself.

Figure 18 shows a comparison of the output at one “Multi” hat block. Figure

18a contains 1 million outputs from the HLS code, whereas Figure 18b is the

pyramid distribution from an ideal Gaussian curve described in the Multihat

paper [16]. As can be seen, the HLS output very closely mimics the shape of

the pyramid distribution from an ideal Gaussian curve. This single “Multi”

hat block achieved a mean, µ, of 0.000389, a standard deviation, σ, of 1.08535,

and a variance, σ2 of 1.17800. This implies, the 16-bit output of the “Multi”

27

hat block is in a binary representation of Q(3.13) with a maximum possible

value of 3.9998779296875 and a minimum value of -4. Looking back at figure

17, this means that the final output after all the CLT additions has a binary

representation of Q(5.11). However, the last step as part of the CLT process

- “if the variance of an individual block is unity, the variance of the resultant

distribution remains unity if the final number is divided by
√
n [17][16].” Note,

the variance is not exactly unity, showcasing the Multihat method is not an exact

method, but, rather an approximate method. Since the design has four blocks,

the final Q(5.11) output is right shifted by one, to divide by two. This effectively

means that the final output of the Gaussian random number generator is in the

format Q(4.12).

Looking back at figure 17, one can notice that each “Multi” hat block re-

ceives 27 bits, totaling to 108 bits, whereas the LFSR is 130 bits wide. In reality,

each “Multi” hat block receives 32 bits in total. The base engine for each block

uses only 27 bits, but the HLS algorithm has been designed in a way to achieve

variable bitwidths, specifically for three cases - extending the fractional bits up

to 17 (by the 5 unused bits) fractional bits for a representation Q(4.17), trun-

cating the fractional bits to reduce precision, and truncating the integer bits.

The primary use case of this added support is for greater flexibility for quan-

tization. HLS4ML users typically quantize their designs, which is the process

of reducing the numerical precision of the weights, biases, and activations in a

neural network model.

However, extending the integer bits has not been implemented. The base

Multihat Algorithm generates an output of Q(4.12) which accounts for a tail

accuracy of 8σ. Increasing the bitwidth to Q(5.12), for example, may seem

desirable but is “only symbolic”[17]. From one CLT-based GRNG study that

achieved a tail accuracy of 12σ, they emphasized “the probability of occurrence

28

of an event around 12σ is so low that a GRNG producing 1-G samples per

second will take roughly 1024 years to exhibit”. With a bitwidth of Q(5.12),

a tail accuracy of 16σ could be achieved, however, the occurrence of an event

would generally only be seen after an unimaginably long period of time.

6.2 Statistical Properties

Several tests were conducted to validate the quality of the GRNG. Figure 19a

shows the distribution of one million random numbers generated using the

GRNG. Even though the figure clearly shows a normal distribution, it is not

reliable because the bin sizes in such plots are arbitrary. This can lead to normal

distribution-shaped plots without the properties of normal distribution.

Next, Figure 19b shows the QQ plot of the same one million values. The QQ

plot compares the generated values against the theoretical normal distribution,

which is represented by the red line. While this is another visual check, the QQ

plot allows for a better check of the tail behavior compared to the histogram

from Figure 19a. Here, we can see some slight discrepancies from the theoretical

normal distribution. As mentioned in the previous section, the Multihat method

is not an exact method; however, it is possible to further reduce the discrepancy

by increasing the number of steps in the “Multi” hat pyramid distribution, and

increasing the addition operations in the CLT part.

Statistically, there are two numerical values that can test the normality of

data: skewness and Kurtosis. According to the skewness test, for normally dis-

tributed data, the skewness should be about 0. This is because skewness is a

measure of the asymmetry of the probability distribution of a random variable

about its mean. On the other hand, the Kurtosis test compares the height and

sharpness of the central peak, relative to that of a bell curve. The Kurtosis

of a normal distribution is 0, if following Fisher’s definition of Kurtosis. For

29

(a) Histogram Representation.

(b) QQ Plot

Figure 19: Two different visual representations of one million numbers generated
by GRNG

the same data used in Figure 19a and Figure 19b, the skewness and Kurto-

sis tests returned values of -0.00086 and -0.04518, respectively. Some studies

suggest that skewness and Kurtosis values of less than 1.0 indicate “slight non-

normality,” whereas other studies suggest values up to absolute 1.0 indicate

normality [19]. So, based on the skewness and Kurtosis results, we can conclude

that the generated data are Gaussian.

6.3 Resource Utilization and Performance

Another property of HLS4ML that comes into play during resource utilization

and performance analysis is the reuse factor. The reuse factor is an important

30

configuration parameter of HLS4ML that is set for each layer, including the new

Gaussian layer. The reuse factor, essentially, determines how many resources of

a certain type are used.

Table 3: Resource utilization and Performance based on the reuse factor for 32
GRNGs

Reuse Factor DSP FF LUT Latency Interval
1 32 15594 16232 4 1
2 32 10138 8264 5 2
4 32 7412 4280 7 4
8 32 6056 2300 11 8
16 32 5390 1380 19 16
32 32 5081 989 35 32

Table 3 shows the resource utilization of the Multihat algorithm, with the

inclusion of the additional math required to accurately scale the mean and

standard deviation. With a reuse factor of 1, the system uses the most amount

of resources, but has the best performance with an interval of only 1. This means

that for 32 GRNGs, the system is instantiating 32 different GRNG blocks that

are each capable of generating a new random number every single cycle. On the

other hand, as expected, an increase in reuse factor decreases the total resource

with an almost-half decrease for the LUTs. The drawback of a higher reuse

factor comes in the form of performance where the system needs four cycles,

in case of reuse factor four, per random number because the system generates

eight GRNGs and uses each 4 times.

To achieve minimal latency, this designed contained several optimization

techniques in HLS such as array partitioning, loop unrolling, and pipelining.

However, due to these techniques, the DSP utilization remained consistent no

matter the reuse factor. Other techniques to force the reusing of the DSP

involved non-pipelining the design, which exploded the latency and interval,

proving to be very inefficient.

31

6.4 Comparing a Second Implementation

An HLS GRNG implementation by CERN [15] allows for a deeper understand-

ing of not only the Multihat algorithm, but also the HLS tools. The CERN

GRNG approach is a CLT-based approach which uses a pseudo random num-

ber generator to generate an array of uniform samples. Then, the samples are

summed up, according to the Central Limit Theorem. Finally, the output is

divided by the variance to get the proper range.

Table 4: Resource utilization and Performance Comparison at 32 Samples per
Cycle

Approach DSP FF LUT Clock Latency Interval
Multihat 32 15594 16232 5ns 4 Cycles 1 Cycles
CLT-based 128 9378 18129 10ns 2 Cycles 2 Cycles

Table 4 shows a detailed comparison between the two approaches. For both

designs outputting 32 samples per cycle, the CLT-based approach uses fewer

flip-flops than the Multihat algorithm, the Multihat algorithm utilizer fewer

DSPs, LUTs, and has a faster performance. In terms of statistical properties,

it can be seen from figure 20a that the data is in a Gaussian shaped curve.

However, when figure 20b comes into play, the significant discrepancy in the

tail can be seen, especially when compared to the Multihat algorithm’s QQ Plot

19b. Additionally, the skewness and Kurtosis tests returned values of -0.0021

and -0.1525, respectively. This may be considered Gaussian data, however, the

Multihat algorithm outperforms it once again.

32

(a) Histogram Representation.

(b) QQ Plot

Figure 20: Two different visual representations of one million numbers generated
by GRNG

7 Applications

As mentioned previously, the primary motivation for the Gaussian random num-

ber generator comes from the need of creating VAE through HLS4ML. One such

VAE is the Latent Factor Analysis via Dynamical Systems (LFADS) [14]. Neu-

roscience is currently undergoing a data revolution, with the ability to record

the activity of hundreds or even thousands of neurons simultaneously. LFADS

is a new approach designed to reveal latent dynamics from high-dimensional,

single-trial neural spiking data recorded across multiple neurons. LFADS is a se-

33

quential model based on a variational autoencoder framework, which integrates

a dynamical systems perspective to model the generation of the observed data.

By reducing the high-dimensional spiking data into a set of low-dimensional

temporal factors, trial-specific initial conditions, and inferred external inputs,

LFADS provides a more interpretable representation [21]. An existing non-

Gaussian HLS implementation of LFADS was modified to account for the new

Gaussian layer. The inclusion of this layer also saw the inclusion of several other

layers to account for the extra computation. This, obviously, led to an increase

in resources Table 5 represents the extra hardware costs from these additional

layers.

Table 5: LFADS Hardware Cost with GRNG and additional layers post place-
and-route for device xcu50fsvh2104-2L.

Gaussian Layer BRAM18K DSP48E FF LUT
Yes 31.29% 37.90% 14.49% 29.16%
No 29.09% 35.75% 12.82% 26.65%

Overall, VAEs have become a powerful tool in various domains of machine

learning and artificial intelligence due to their ability to generate new data that

resembles the distribution of the training data. In image processing, VAEs are

widely used for tasks like image generation, inpainting (filling in missing parts

of images), and style transfer. By learning a compressed latent representation of

an image, VAEs can sample new data points from this latent space to generate

novel images, enabling creative applications in art, fashion, and design. Ad-

ditionally, VAEs are used in anomaly detection, where they model the normal

data distribution and can flag outliers or unusual data points that deviate from

this learned distribution.

In natural language processing, VAEs are applied in text generation, machine

translation, and dialogue systems, where they help generate relevant and ap-

propriate sentences by learning low-dimensional representations of text. Their

34

ability to model uncertainty in data and generate diverse outputs has led to

their use in drug discovery, where they can explore chemical space by gener-

ating novel molecular structures with desired properties. VAEs have also been

applied in time-series prediction, such as for forecasting stock prices or weather

patterns, by learning complex dependencies in sequential data [25][8].

8 Conclusion

In conclusion, the Multihat method proves to be an effective approach for Gaus-

sian random number generation in FPGA implementations of machine learning

models. By leveraging simple combinational logic and the Central Limit Theo-

rem, the Multihat algorithm can generate highly accurate Gaussian distributions

with efficient resource utilization.

The Multihat method stands out for its ability to balance resource con-

straints and performance. While other methods like the CLT-based approach

offer competitive performance, the Multihat method’s combination of simplicity

and accuracy ensures its relevance in applications where hardware efficiency is

the biggest priority. As VAEs and similar models continue to gain prominence,

the role of efficient hardware-implemented GRNGs like the Multihat method

will likely expand, contributing to faster, more energy-efficient deployments in

various fields such as image processing, time-series analysis, and anomaly de-

tection.

35

9 My Contributions

The development of the Multihat algorithm was originally started by Jeffery Xu

who translated the Multihat algorithm’s original VHDL design to SystemVer-

ilog.

After taking over, I implemented the Multihat algorithm in HLS with the

aforementioned features. Once I achieved a working GRNG, I edited the algo-

rithm to generate an array of N GRNGs while performing HLS-related opti-

mization techniques to create a design with minimal latency.

After synthesizing the design and verifying the statistical properties, I inte-

grated the design into HLS4ML as a custom layer. This included minor code

adjustments to fit in the HLS4ML framework, and the creation of a Python

notebook that registered the custom layer as an HLS4ML layer.

Additionally, to test the design within LFADS, I modified the LFADS design

with the help of the LFADS team (Chi-Jui Chen and Xiaohan Liu) to use the

Multihat algorithm and performed various comparisons of LFADS with and

without the GRNG.

36

References

[1] AMD. Efficient shift registers, lfsr counters, and long pseudo-random se-

quence generators. XAPP052, July 1996. Document ID: XAPP052, Revi-

sion 1.1, English.

[2] Dave Bergmann and Cole Stryker. What is an autoencoder?, 2024.

[3] Bryc. Prngs - pseudorandom number generators.

[4] Leonard Colavito and Dennis Silage. Efficient pga lfsr implementation

whitens pseudorandom numbers. In 2009 International Conference on Re-

configurable Computing and FPGAs, pages 308–313, 2009.

[5] Carl Doersch. Tutorial on variational autoencoders, 2021.

[6] Javier Duarte et al. Fast inference of deep neural networks in FPGAs for

particle physics. JINST, 13(07):P07027, 2018.

[7] FastML Team. fastmachinelearning/hls4ml, 2023.

[8] Saba Hesaraki. Navigating the world of variational autoencoders: From

architecture to applications, 2024.

[9] IBM. What is a neural network?, Oct 2024.

[10] Dilith Jayakody. The reparameterization trick clearly explained, Dec 2023.

[11] Jeremy Jordan. Variational autoencoders., Mar 2023.

[12] Diederik P. Kingma and Max Welling. An introduction to variational au-

toencoders. Foundations and Trends in Machine Learning, 12(4):307–392,

2019.

37

[13] Kiprono Elijah Koech. The basics of neural networks (neural network

series)-part 1, May 2022.

[14] Xiaohan Liu, ChiJui Chen, YanLun Huang, LingChi Yang, Elham E

Khoda, Yihui Chen, Scott Hauck, Shih-Chieh Hsu, and Bo-Cheng Lai.

Fpga deployment of lfads for real-time neuroscience experiments, 2024.

[15] Vladimir Loncar. Personal communication, 2024.

[16] Jamshaid Sarwar Malik and Ahmed Hemani. Gaussian random number

generation: A survey on hardware architectures. ACM Comput. Surv.,

49(3), November 2016.

[17] Jamshaid Sarwar Malik, Ahmed Hemani, Jameel Nawaz Malik, Ben Sil-

mane, and Nasirud Din Gohar. Revisiting central limit theorem: Accurate

gaussian random number generation in vlsi. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 23(5):842–855, 2015.

[18] Jamshaid Sarwar Malik, Jameel Nawaz Malik, Ahmed Hemani, and N.D.

Gohar. Generating high tail accuracy gaussian random numbers in hard-

ware using central limit theorem. In 2011 IEEE/IFIP 19th International

Conference on VLSI and System-on-Chip, pages 60–65, 2011.

[19] Fatih ORCAN. Parametric or non-parametric: Skewness to test normal-

ity for mean comparison. International Journal of Assessment Tools in

Education, 7(2):255–265, Jun 2020.

[20] Irhum Shafkat. Intuitively understanding variational autoencoders, Oct

2021.

[21] David Sussillo, Rafal Jozefowicz, L. F. Abbott, and Chethan Pandarinath.

Lfads - latent factor analysis via dynamical systems, 2016.

38

[22] UmiReon. splitmix32.c. https://github.com/umireon/my-random-

stuff/blob/master/xorshift/splitmix32.c.

[23] Dagang Wei. Demystifying neural networks: Variational autoencoders, Mar

2024.

[24] Inc. Xilinx. Vivado Design Suite User Guide: High-Level Synthesis, Oct

2019. UG902 (v2019.2).

[25] Renda Zhang. Variational autoencoders series 4: Beyond images - the

multidomain applications of vaes, 2024.

39

Acknowledgements

I would like to express my deepest gratitude to my advisor, Dr. Scott Hauck,

whose guidance, encouragement, and insight have been invaluable both inside

and outside the research world. Working with you over the past two years has

been a truly rewarding experience. I am also deeply appreciative of Dr. Shih-

Chieh Hsu for serving on my thesis committee, for your insightful feedback and

support, and for having me as a part of the A3D3 institute.

A huge thank you to all the members of the ACME lab, past and present, and

HLS4ML community for helping me with the various questions I bombarded you

with. A special thank you to Yilin Shen, Xiaohan Liu, Chi-Jui Chen, Zhixing

”Ethan” Jiang, Jeffery Xu, Geoff Jones and Vladimir Loncar.

To my parents, siblings, grandparents, friends, and my biggest cheerleader,

thank you all for your constant unwavering support and encouragement through-

out this entire journey.

40

	Introduction
	Background
	Neural Networks
	Autoencoders
	Variational Autoencoders
	Vivado HLS Flow
	HLS4ML

	Multihat
	Uniform Random Number Generator
	Hat Generation
	The Standard Hat
	The Narrow Hat
	The Wide Hat
	The Tall and Short Hat
	The ``Multi" Hat

	Central Limit Theorem

	HLS Implementation
	Integration into HLS4ML
	Results
	Configurable Bitwidths
	Statistical Properties
	Resource Utilization and Performance
	Comparing a Second Implementation

	Applications
	Conclusion
	My Contributions

