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ABSTRACT 
While previous research has shown that FPGAs can efficiently 
implement many types of computations, their flexibility inherently 
limits their clock rate.  Several research groups have attempted to 
address this by developing new architectures that include 
registered switchpoints within their interconnect.  Unfortunately, 
this pipelined communication network presents a new and 
difficult problem for detailed routing tools.  Known as the N-
Delay Routing Problem, it has been proven to be NP-Complete.  
Although there have been two heuristics recently developed to 
address this issue, both have certain limitations and neither 
approach considers timing during the routing process.  While 
timing-driven conventional routing is largely considered to be a 
solved problem, there are several issues inherent to the N-Delay 
Routing problem make addressing timing particularly difficult.  In 
this paper we discuss the nature of these problems and present a 
new timing-driven pipeline-aware router that produces as much as 
60% better critical path delay than previous efforts. 

1. Introduction 
Although it has been long known that FPGAs effectively bridge 
the gap between flexible but relatively slow software running on 
general-purpose processors and extremely fast but costly ASICs, 
the programmable nature of FPGAs introduces significant 
inefficiencies that limit the clock frequency of mapped circuits.  
While this limitation might not affect designs typical of FPGAs’  
traditional role, such as control or glue logic, this commonly 
dissuades some designers from using FPGAs to perform 
computation-heavy datapath calculations.  However, research into 
reconfigurable computing platforms has shown that in many cases 
the advantages of flexibility, ease of programming, and ability to 
reuse silicon can overcome the speed penalties generally incurred 
when using reconfigurable devices. 

One constraint that hampers the further progress of reconfigurable 
computing systems is that designers would like to compensate for 
the naturally lower clock frequency of FPGAs by heavily 
pipelining, retiming, and C-slowing their computations when 
possible.  Unfortunately, these techniques often produce a large 
number of registers that conventional FPGA architectures and 
development tools cannot adequately deal with. Commercial 
reconfigurable devices are designed with average-case circuits in 
mind so they do not include any pipelining resources beyond 
those that might be found in unoccupied logic block locations.  
This generally restricts retiming and pipelining to fairly minor 
changes, such as the techniques seen in [8]. 

Multiple research groups have attempted to address this problem 
with specialized pipelined-FPGA architectures.  Since 
interconnect delay typically dominates most mapped circuits, one 
common solution has been to incorporate additional registering 

resources within the interconnect network itself.  HSRA [10], 
RaPiD [1], and an architecture by Singh and Brown [9] are good 
examples of this approach.  Unfortunately, the introduction of 
registers into the interconnect network can present some problems 
for existing CAD tools.  While register assignment can be handled 
during the normal course of placement for registers in logic block 
locations, this might not result in reasonable quality for registers 
within the interconnect network.  This is because these embedded 
registers will generally have very little or no flexibility in their 
connectivity.  Thus, assigning registers during placement could be 
tantamount to performing detailed routing during placement.  
Although this may not present a problem if the number of 
pipelined signals is kept very small, this will dramatically affect 
the routability of deeply pipelined netlists. 

While this would suggest that we should assign registers during 
the routing process, this fundamentally changes the problem of 
routing itself.  No longer is it simply a matter of finding a path 
between a source and sink, we now need to find a path between a 
source and sink that goes through exactly N registers.  Formally 
introduced in [7], this problem is known as the N-Delay Routing 
problem.  Although proven to be NP-Complete, the authors of [6] 
and [3] presented two different heuristics to discovering 
pipelining registers during routing: PipeRoute and QuickRoute, 
respectively.  Unfortunately, both of these approaches perform 
purely congestion-driven routing.  Since heavily pipelining the 
netlists and augmenting the architectures with additional 
registering resources were both originally motivated by timing 
concerns, not addressing timing during routing will likely lead to 
disappointing results. 

Although timing-driven heuristics have been well studied for 
conventional FPGA routing [4], as we will show, there are several 
details of the N-Delay Routing problem that prevent us from 
simply using conventional timing-driven cost formulations inside 
existing pipeline-aware algorithms.  In this paper we will discuss 
some subtle limitations inherent to prior pipelined-FPGA systems 
and describe a new timing-driven pipeline-aware router. 

2. N-Delay Routing Problem 
While PathFinder [4] and its predecessors demonstrated that the 
conventional routing problem of congestion resolution for multi-
net circuits is very difficult on most modern FPGA architectures, 
it breaks down into much simpler sub-problems.  For example, if 
we ignore congestion altogether, we can use Dijkstra’s shortest-
path algorithm to quickly find routes between all sources and 
sinks.  PathFinder borrows heavily from this and uses Dijkstra’s 
algorithm with one modification – it updates node costs between 
routing iterations to gradually penalize overused resources. 

Unfortunately, the N-Delay Routing problem adds the additional 
constraint of a required pipelining latency between source and 
sink.  This precludes the use of Dijkstra’s algorithm for two 
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Figure 1. Illustration of the N-Delay Routing Problem.  Circles 
denote normal routing nodes, squares denote pipelining 

registers nodes. 

reasons.  First, the shortest path from source to the sink may not 
meet the specified latency requirement.  More importantly, the 
shortest path to any given node along the way may not be the best 
path, since it may not even form the prefix of any legal route.  For 
example, in Figure 1 we would like to find a path between the 
source S and the sink K that goes through exactly one pipelining 
register.  If we assume a unit cost model, we can see that 
Dijkstra’s algorithm fails to find a valid one-latency path.  
Obviously, (S, d, e, f, K) is a zero-latency path, so it does not 
fulfill the one register requirement.  However, the reason that 
Dijkstra’s does not find the valid path through node b is because 
node f is explored first by the zero-latency search from (S, d, e).  
Since Dijkstra’s algorithm marks all nodes when they are visited, 
this prevents the initially more expensive (S, a, b, c) route from 
continuing on to the sink.  As discussed in [4], finding legal N-
Delay routes is NP-Complete.  Furthermore, this problem 
becomes even more complicated when we consider building 
Steiner Trees for multi-terminal, multi-latency nets. 

3. Pipelined FPGAs and Register Assignment 
Given that the N-Delay Routing problem is so difficult, and 
workable solutions [3][6] have only been developed recently, how 
have previous research efforts dealt with this issue?  Primarily, the 
problem has been avoided entirely by careful planning at the 
design level.  For example, despite notable differences between 
the architectures, HSRA [10] and the pipelined-FPGA 
architecture proposed by Singh and Brown [9] both make specific 
architectural and toolflow decisions outside of the router to ensure 
legal pipelined paths.  Unfortunately, these techniques ultimately 
limit the overall efficiency of the devices for heavily pipelined 
applications. 

HSRA is a hierarchical FPGA in which some fraction of the 
switchpoints are optionally registered.  In addition, pipelining 
resources are provided at each logic block to balance the path 
latency acquired in the interconnect – all LUT inputs have a large 
bank of optional flip-flops.  By making the depth of these register 
banks equal to maximum number of pipelining stages along the 
longest path in the interconnect network, the HSRA designers 
avoid the N-Delay Routing problem.  This is because if sufficient 
latency cannot be accumulated along a given path within the 
interconnect network itself because it does not traverse enough 
registered switchpoints, the deficit can be satisfied by using the 
bank of registers at the destination pin.  Unfortunately, this 
arrangement requires a huge number of registers on logic block 
inputs.  For deeply pipelined netlists, as shown in [10], this incurs 

 

Figure 2.  Illustration of a RaPiD Cell.  Logic blocks populate 
the top of the array with short and long tracks below.  Small 
squares represent optionally registered switchpoints between 

long tracks.  Larger arrays can be formed by abutting multiple 
RaPiD cells side-by-side. 

a hefty 2x to 5x area penalty. 

Similarly, the system developed by Singh and Brown ensures that 
register assignment can be ignored during routing.  However, their 
overall approach is slightly different.  Their architecture is an 
island-style track-graph FPGA in which some fraction of the 
routing planes have optionally registered switchpoints creating 
pipelined and unpipelined track domains.  In their toolflow, a 
designer first conventionally routes a circuit, then retimes the 
netlist after it is routed.  In this case, to ensure sufficient 
pipelining resources along already determined paths, the authors 
constrain the number of registers that can be pushed onto a given 
link during the retiming process to the number of optional 
registers that currently exist along the route.  Although this 
approach is a concise, closed form solution, this technique greatly 
limits many of the advantages of retiming itself.  Not only does 
this restrict the retiming of long paths to the available balancing 
resources that might be along associated short paths, we cannot 
take full advantage of many of the registers that the architecture 
already provides.  Links that would like additional latency cannot 
acquire it even if there are unused interconnect registers 
neighboring the existing route.  

To develop an efficient pipelined-FPGA architecture and to make 
best use of the provided registers likely requires a solution to the 
N-Delay Routing problem.  In contrast to the previous 
architectures and their associated CAD tool suites, RaPiD [1] 
meets this problem head-on and was the inspiration of previous 
pipelined routing research efforts.  RaPiD is a coarse-grain, one-
dimensional array with a word-width interconnect network.  As 
seen in Figure 2, it contains a mixture of both short and long-
distance tracks.  Although short tracks cannot be concatenated to 
make longer routes and cannot pick up retiming latency, long 
tracks can be concatenated for up to chip-wide routes and can 
acquire between zero and three retiming latencies at each 
switchpoint, also known as a bus connector.  

In the existing toolflow, a high-level language compiler produces 
a retimed netlist that must be placed and routed on an architecture 
given specific link latency requirements.  Although an architecture 
might have many long tracks that contain a wealth of pipelining 
locations, any specific bus connector can only communicate with 
the two wires immediate to the left and right.  In this way, we can 
see that register assignment cannot be performed during 
placement.  Deciding exactly which registers should be used also 
mostly determines the detailed routing for all pipelined signals.  



Unfortunately, deferring register assignment until routing also 
presents a problem since it is not obvious how to find a route 
between each source and sink that contains exactly the number of 
pipelining registers prescribed by the retimer.  We cannot utilize a 
conventional router because we have limited pipelining resources 
that determine the overall characteristics of each path.  For 
example, logic blocks that are physically placed close to each 
other may not be able to be connected via the most direct route.  If 
the connection between these blocks requires multiple pipelining 
delays, will need to take a long, circuitous route to acquire 
sufficient registering. 

4. Pipeline-Aware Routing Heuristics 
As far as we are aware, only two research efforts have been made 
to address the N-Delay Routing problem: PipeRoute [6] and 
QuickRoute[3].  Although both utilize PathFinder’s iterative 
Negotiated Congestion cost formulation in an outer loop to 
gradually discourage sharing, they have each modified 
PathFinder’s inner loop in somewhat different manners to 
discover pipelined paths. 

4.1 PipeRoute 
PipeRoute forms multiple latency paths by iteratively combining 
single-register routes.  Since the authors show that they can find 
optimal one-latency routes in polynomial time, they use this to 
their advantage.  As seen in Figure 3, to find a two-latency path 
from the source S to the sink K, they first attempt to find a one-
latency path.  If we assume that this initial single-register route 
elects to use register i, the next step is to attempt to replace either 
the link from S to i or the link from i to K with its own one-
latency route and select the lowest cost alternative.  In our 
example, the routes (S �  e�  i) and (S �  g �  i) would compete 
with each other.  Unfortunately, this is a greedy accumulation 
process.  Clearly, we can see that if we required a three-latency 
route and we selected an interim two-latency path using registers 
g and i, we would be unable to find a valid route.  This is because 
there is no way for the links (S �  g), (g �  i), or  (i �  K) to be 
replaced with its own single latency link.  While this may present 
a problem, particularly on track-graph architectures, of far greater 
concern is the problems PipeRoute might run into in finding the 
initial single-latency paths themselves. 

Although the authors show a method to find optimal one-latency 
routes in polynomial time, this approach has some subtle yet 
serious limitations.  They begin by showing that a normal breadth-
first search is not sufficient considering the difference between 
pre-register and post-register routing.  As seen in the top 
illustration in Figure 4, if S is both the source and sink, we will 
not find a valid one-latency path if we simply mark nodes visited 
or not visited.   This is because neither search can pass the other 
to complete a path around the ring.  Instead, we must also note the 
associated latency phase when a node is explored.  That is, a post-
register wave can expand to a given node even if it has already 
been explored by a pre-register wave.  This is called a Combined-
Phased-BFS.  However, the authors go on to show that even this 
is not entirely adequate.  If we consider the bottom illustration in 
Figure 4, we can see that even if we allow nodes to be visited both 
at latency zero and latency one separately, we can enter a similar 
deadlock.  In [7] the authors show these problems can be avoided 
and they can guarantee optimality if we allow nodes to be visited 
once at latency zero and twice at latency one.  This is called a 
2Combined-Phased-BFS. 
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Figure 3.  Illustration of the PipeRoute Algorithm. 
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Figure 4.  Different Search Styles.  Breadth-first search (top) 
and Combined-Phased-BFS (bottom).  Notations indicate 

latency phase of visitation.  
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Figure 5. Limitations of PipeRoute.  Self-intersection (left) and 

symmetrical architectures (right).   

Unfortunately, their definition of an optimal path allows a route to 
cross over itself.  In the left illustration of Figure 5 we see that a 
route that visits a register, then doubles onto itself is actually the 
shortest one-latency path.  However, this is clearly not a valid 
physical route since one node must simultaneously carry a value 
from the current clock cycle and the previous one.  The authors 
justify their definition of an optimal path by indicating that since 
they use PathFinder in their outer loop, its natural congestion 
avoidance will resolve these problems over multiple iterations.  
Unfortunately, we believe that PathFinder may not be able to 
discourage this type of path self-intersection on many common 
architectures. 



First, present sharing cost cannot play a role regardless of 
architecture design. PathFinder does not update the present 
sharing of any node until we have found a complete route from a 
source to sink.  Thus, an exploration will not feel the effects of 
present sharing between the phase zero and phase one routes until 
we have already completed the search.  Furthermore, we cannot 
update this on-line since a phase one exploration has no efficient 
way of distinguishing between when it is wrapping back onto 
itself versus attempting to explore a node that was used at latency 
zero by a completely different exploration.  Likewise, this 
problem cannot be settled by history cost.  If we consider a 
symmetrical architecture as shown in the right illustration of 
Figure 5, we can see that the self-intersecting problem will simply 
alternate between the top and bottom loop – never realizing that a 
valid alternative exists.   

By this characteristic alone, we believe that PipeRoute cannot be 
used on the majority of modern FPGA architectures.  First, the 
interconnection flexibility of current-generation reconfigurable 
devices will encourage the self-intersecting path problem.  That is, 
high connectivity allows a routing node to easily re-discover itself 
after going through a pipelining resource.  Second, it is not 
unreasonable to believe that the majority of interconnection 
networks will have a great deal of symmetry.  One routing track is 
likely to have the same access to pipelining resources as 
neighboring tracks. 

4.2 QuickRoute 
Instead of gradually assembling higher latency routes from 
multiple smaller latency segments, QuickRoute attempts to find 
full N-latency routes directly.  Although performed for latencies 
higher than only zero and one, it is similar to the Combined-
Phased-BFS from PipeRoute in that we must record the phase of 
an exploration when a node is visited.  In this case, a wave is 
allowed to explore a given node if the node has been visited by 
fewer than k other waves at the same latency.  For example, in the 
top illustration of Figure 6, if we assume k=2, the paths (S, a, b) 
and (S, e, b) would both be considered.   

However, unlike PipeRoute, QuickRoute does not allow paths to 
intersect themselves.  To accomplish this, they record the 
upstream nodes for every exploratory wave and do not allow an 
exploration to revisit a node already used by itself earlier in the 
search.  In the bottom illustration of Figure 6, a path that goes 
through b will not consider it again for subsequent exploration.  
This exploration process is simply continued until the sink is 
discovered at the appropriate latency. 

Of course, since the problem is still NP-Complete, this cannot 
guarantee a solution.  For example, if we make a slight 
modification to the graph, as in Figure 7, we run into problems.  If 
we assume that k=1 and we would like to go from S to K 
accumulating two registers, we will fail to find a solution.  This is 
because node b is initially used by a doomed route that, in turn, 
prevents the correct route from exploring d.  Unfortunately, no 
matter how large we make k, we can always construct a graph that 
will self-block by adding registered paths between b and d.   

However, we believe that QuickRoute still holds multiple 
advantages over PipeRoute.  Not only does QuickRoute defend 
itself from the self-intersection problem of PipeRoute, it has the 
flexibility to improve its routing ability on a given architecture by 
simply increasing the k factor.  Furthermore, as we will touch on 
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Figure 6. Illustration of QuickRoute Algorithm.  Multiple 
visitation (top) and self-intersection (bottom). 
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Figure 7.  Illustration of QuickRoute Self-Blocking. 

later, we believe that QuickRoute will generally encounter the 
self-blocking problem in very specific situations that we can deal 
with during placement. 

5. Cost Formulation and Link Criticality 
Unfortunately, neither PipeRoute nor QuickRoute provide delay-
driven routing.  This might be particularly surprising considering 
that PathFinder showed us how to simultaneous balance 
congestion and timing over a decade ago.  However, there are 
multiple differences between the conventional routing problem 
and the pipelined routing problem that prevent us from leveraging 
PathFinder’s timing-driven cost formulation. 

PathFinder takes timing into account by allowing timing-critical 
nets to follow fast, congested paths while encouraging non-critical 
nets to seek slower, lower congestion alternatives. In [4], the 
authors define Eq. 1 – the cost of a node (Cn) is not only related to 
its delay (dn) and congestion (cn), but also dependent on the 
criticality of the source/sink pair (Aij) as determined in the last 
routing iteration. 

 nijnijn cAdAC )1( ���  [4] (1)  

Since Aij falls between zero and one, a timing-critical net (Aij=1) 
only considers the delay of a node without considering its 
congestion cost.  In this way, it will naturally seek the fastest 
possible route between source and sink.  However, a less critical 
net will consider both delay and congestion.  As Aij approaches 
zero, the congestion cost will pay a larger role in determining 
which path is taken. 

However, we cannot use this type of timing versus congestion cost 
formulation to determine pipelined routes.  If we compare the N-
Delay Routing problem to the conventional routing problem we 
can see that there are multiple difficulties in determining the 
appropriate criticality to use for a given exploration.  Primarily, 
these issues stem from the fact that, in the classical sense, we 
continuously change the very nature of the netlist during the 
pipelined routing process. 



As seen on the left of Figure 8, the conventional methodology of 
placing all of the blocks, then routing them produces relatively 
consistent iteration-to-iteration criticality.  In our example, the 
placement tool has decided that LUT a must route to LUT b 
before going to LUT c.  As routing progresses, Pathfinder can 
carry over the criticality of the last route found to determine the 
next route.  In this way, PathFinder hinges upon the fact that the 
routing will not drastically change between iterations.  It is 
unlikely that consecutive routing iterations will choose vastly 
faster or slower routes from a to b or b to c.  However, if this 
somehow does occur, we will over or under-penalize the 
congestion versus delay contribution to the overall path cost.   

If we consider the same netlist in a pipeline-aware routing 
framework, as shown on the right of Figure 8, we see that 
registers have been removed from the netlist and replaced by 
latency annotation on edges.  In this situation, we know that LUT 
a must be connected to LUT c by a single latency link.  However, 
the criticality of the individual links between a and the register 
and the register and c will heavily depend upon the route that we 
take.  For example, the relative criticality of the two links will 
change completely if we choose to register at LUT i versus LUT 
ii. This criticality inaccuracy will cause timing oscillation as 
opposite sides of a register along critical or nearly critical paths 
vie for dominance. 

If the first iteration chooses to register at LUT i we can guarantee 
that the second iteration will choose to register at LUT ii, despite 
that fact that it would be more advantageous, from a timing 
standpoint, to select either of the middlemost positions.  This 
occurs because the pre-register link will have a very low 
criticality, making delay on this segment very inexpensive.  
Conversely, the post-register link will have a very high criticality 
making delay very costly.  If we assume for the moment that there 
is no congestion in the system, we can see that the post-register 
link will want to become as short as possible at the expense of the 
pre-register link.  Because of this, we will alternately select 
equally poor register locations and never find the best solution. 

Essentially, this type of behavior occurs because the criticality of 
a link to a register used in one iteration has no bearing if we select 
a different register during the next iteration.  Looking at the 
problem from a larger scope, we should not be surprised that this 
occurs.  The conventional routing problem only has to contend 
with between-iteration criticality inaccuracy on a secondary level 
because the endpoints of all blocks that can affect timing are fixed 
by the placement before routing begins.  If we look at the 
pipelined routing problem from the standpoint of conventional 
routing, it is as if we can change the placement of all the registers 
between every routing iteration. 

We can see that this problem becomes further complicated if we 
consider multi-terminal and multi-latency nets.  As shown in 
Figure 9, there are certain situations in which sinks may want to 
share registers to reduce congestion.  However, depending upon 
their relative placements and if this net becomes critical or near 
critical, each sink might wish to use a separate register.   
Unfortunately, it becomes unclear what criticality to assign any of 
the nets to allow these “zipped” and “unzipped” paths to exist in 
consecutive iterations and still produce high-quality results. 
Should the criticality of all latency-N segments be averaged?  
Should the worst criticality of any segment define the criticality of 
all links?  This becomes an issue because we are fundamentally 
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Figure 8.  Register Assignment and Criticality.  Conventional 
placement of registers (left) and discovering registers during 

routing (right).  Numbers on edges represent the required 
latency between source and sink. 
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Figure 9. Multi-Terminal Criticality Problem. 

changing the nature of the netlist during routing.  Similar to 
before, in conventional terms it is as if we are performing a 
limited form of logic synthesis or, at the very least, register 
duplication between routing iterations. 

6. Determining Link Criticality 
Clearly, if we would like to obtain high quality timing results, we 
cannot use criticality information gleaned from previous routing 
iterations to guide future exploration.  However, PathFinder has 
shown us that we still need some mechanism to allow more 
timing-significant links to trade congestion for delay and less 
important signals to trade delay for congestion.  Our solution 
relies on each exploration to discover its own criticality. 

PathFinder manages to route all signals of a circuit in an order-
independent fashion by routing each net once disregarding 
congestion, then ripping up a single net at a time and routing it in 
the presence of all other nets.  While we would normally obtain 
the timing importance of the signal from the previous routing 
iteration, we have shown that this cannot be done for pipelined 
signals.  One possible alternative is for an exploration to build its 
own criticality based upon the delay it has seen thus far.  In this 
scenario, we start with a very low criticality at the source when 
the exploration has not accumulated any delay and gradually 
increase the timing significance as the search continues and paths 
becomes slower.  Unfortunately, while this may work for low and 
mid-criticality links, this will not perform well for high criticality 
segments.  This is because the early portion of all searches will 
meander to avoid congestion.  As the path becomes longer, the 
search will opt for more direct routes to the sink.  Unfortunately 
for critical nets, the damage has already been done and they will 
never obtain the congestion-blind routes that they should. 

Instead, we suggest that an exploration decides the proper 
criticality for a route at the only point that the decision can 
actually be made – when it arrives at the sink.  In this formulation, 
we start AC independent waves from the source, each assuming a 
different criticality from 1/AC to 1.0.  In this manner, we will have 



multiple simultaneous searches that each emphasis delay versus 
congestion in a slightly different way.  The first exploration to 
reach the sink will be the least expensive and, thus, represent 
approximately the proper balance of congestion versus delay.   
Furthermore we can trade off runtime for timing accuracy by 
increasing AC.  However, if we use this assumed criticality 
methodology in its existing form, we can still suffer from grossly 
incorrect routing.  To understand why, we must return to 
PathFinder’s cost formulation. 

Looking at Eq. 1, we can see that high criticality emphasizes low 
delay and low criticality emphasizes low congestion.  Because of 
this relationship, depending upon the relative values of the 
architecture’s delay and congestion costs, our assumed criticality 
searches can easily degenerate to always selecting either the 
lowest or highest assumed criticality for all nets.  This is because 
if the delay values along most paths from the source to the sink 
are coincidentally larger in magnitude than their congestion 
counterparts, searches that assume a criticality of 1.0 will always 
be the cheapest path, regardless as to whether they are truly timing 
critical.  A similar situation occurs for the minimum assumed 
criticality if the relative values are reversed.  While this problem 
could be addressed by ensuring that the delay and congestion 
values are always balanced, this is not a feasible solution as the 
congestion values must be able to grow as the routing progresses.  
Instead, we can solve this issue by using the assumed criticality 
values to calculate the cost of route up to, but not including, the 
sink.  When we reach a sink, we can re-calculate the cost of the 
route based upon the actual criticality of path that we have found. 

The complete assumed criticality search methodology, as seen in 
Figure 10, has several attractive features.  First, we have solved 
the problem of routing inaccuracy due to iteration-to-iteration 
variance in path criticality.  Not only is this clearly an issue for 
pipelined routing algorithms, this may even appear in 
conventional routing problems on FPGA architectures with 
particularly heterogeneous routing structures.  Second, this 
approach does not dramatically increase the computational effort 
of routing.   

Obviously, if we conducted AC completely independent searches 
for each source/sink pair, this would only invoke PathFinder’s 
inner loop AC-1 additional times.  However, we can easily run all 
of these searches simultaneously and prune non-productive 
explorations along the way.  Of course, once one search has 
reached the sink, we can end all exploration.  However, we can 
even prune incomplete searches.  For example, for AC=5 we will 
launch five explorations with criticalities (0.2, 0.4, 0.6, 0.8, 1.0).  
If the current critical path is 10, paths with a delay of 4 or more do 
not need to be explored by the 0.2 assumed criticality wave. 
Those paths will be better serviced by the 0.4 assumed criticality 
exploration.  Thus, with the exception of the highest criticality 
wave, we can prune a search when the current path delay would 
make the exploration’s criticality larger than the next higher 
assumed criticality search. 

7. Timing-Driven Pipeline Routing 
Now that we have a methodology to search for routes without a 
priori knowledge of link criticality, we can incorporate this into 
the QuickRoute algorithm.  To accomplish this, we must first 
modify the search to assign a routing order to all pipelined nets’  
sinks.  Much like PathFinder’s pure Negotiated Congestion 
algorithm, QuickRoute does not search from the source to any 

AC BFS(source, sink, numAC, critPath)
1 for i = 1 to numAC
2 push source into PQ, crit=i/numAC at cost=0
3 while !PQ.empty
4 remove cheapest node N, crit CR from PQ
5 if N == sink, exit  //Found complete path with cost based on real criticality
6 else if N.visited[CR] == true, continue
7 else
8 N.visited[CR] = true  //Mark node explored at current AC
9 for each neighbor X of N
10 if !X.visit[CR]
11 if X != sink  //Continue calculating cost based on AC
12 if CR != 1.0 && X.delay>(CR+1/numAC)* critPath
13 continue
14 else
15 push X, crit=CR into PQ at cost=N.cost+X.cost(CR)
16 end if
17 else  //We have found the sink so we don’ t have to assume crit anymore
18 calculate actual crit of path source�X CR’
19 push X, crit = CR into PQ at cost= source�X .cost(CR’ )
20 end if
21 end if
22 end for
23 end if
24end while
25return failure  

Figure 10.  Assumed Criticality Breadth-First Search. 

S K

KS

 
Figure 11.  Register-Aware Assumed Criticality Search 

particular sink.  Instead, it merely stops when it finds any sink at 
the proper latency and reinitializes the priority queue with all 
existing paths. However, to give priority to higher criticality links, 
we sort each net’s sinks first by non-decreasing order of latency (# 
of registers required on the path), then by non-increasing order of 
maximum link criticality found in the previous iteration.  In this 
way, the most timing-critical sinks with the fewest chances to 
amortize path delay over multiple clock cycles determine the 
earliest stages of the routing tree. 

Next, we need to augment our assumed criticality methodology to 
deal with pipelined routes.  In addition to recalculating the true 
criticality of a link when we discover a sink, we must also do so 
when we encounter a register.  Furthermore, registers must also 
launch their own series of multi-criticality searches.  As shown in 
Figure 11, if we would like to find a one-latency path between S 
and K, we begin at the source with AC=3 assumed criticality 
searches.  When one of these waves encounters a register, it 
recalculates the path cost based upon the real criticality required 
to reach the register along the given path.  When the cheapest path 
to the register is popped from the priority queue, it launches a new 
series of AC=3 assumed criticality searches of its own at latency 
one.  Notice that although all three zero-latency searches may 
reach the register and push it into the priority queue, only one 
path will be deemed the least expensive and, thus, the best way to 
use this particular register.  Only this path will continue on with 
one-latency explorations. 



Of course, this means that we must define the cost of a multiple 
latency route.  In our example, eventually both registers in the 
architecture will launch their own set of one-latency explorations.  
As they near the sink, we need to determine which path best 
balances not only the congestion and delay of their zero and one-
latency paths individually, but the combination of the two.  Since 
each time we encounter a register we can determine the actual 
criticality of the link, we can define the cost of an L-latency path 
to be the total of the timing and congestion costs of all zero to L-
latency segments, as shown in Eq. 2. 
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Furthermore, to build successive multi-terminal routes we must 
also define how pre-existing routes should initialize the priority 
queue.  As seen in Figure 12, after we have found a one-latency 
route to K, we need to push this existing route into the priority 
queue to reflect all of the possible routing options to the 2-latency 
sink J.  While building a link from b would allow for the 
maximum register sharing and will likely cause the minimum 
congestion impact, developing a wholly new path may offer some 
timing benefits.  Borrowing a concept from timing-driven 
PathFinder, we consider existing routes to be free in terms of 
congestion, and we only consider their delay impact on further 
sinks.  Based upon the model discussed in Eq. 2, we push nodes 
along existing routes into the priority queue by summing only the 
timing cost of all upstream zero to L-latency segments.  For our 
example in Figure 12, to combine this concept with our assumed 
criticality methodology, all nodes along a would be pushed into 
the priority queue AC times using different assumed criticalities to 
determine their timing cost.  While all nodes along b would also 
be added to the priority queue AC times, they would all share 
some common portion of their cost – the zero-latency timing cost 
incurred along a. 

The final modification that we must consider is to the congestion 
versus timing cost formulation itself.  As already mentioned in our 
discussion of potential pitfalls of the assumed criticality 
methodology, the lowest cost path obtained by using Eq. 1 heavily 
depends upon the relative values of an architecture’s delay and 
congestion costs.  Unfortunately, this will cause some further 
undesirable behavior when we consider routing pipelined paths. 

Looking at Figure 13, we see two potential one-latency paths from 
S to K.  Both paths have the same total congestion and delay, but 
the top path has unbalanced delays, with the post-register path 
being very close to critical.  Thus, the top path is a relatively poor 
choice.  If we use Eq. 1 to determine the relative cost of these two 
alternatives, we get the results shown in Eq. 3 and 4: 

 cdcdcd ����� 2.8)(1.0)9(9.0)(9.0)(1.0   (3)  

 c dcdc)(.d)(. 55)5(5.0)5(5.0550550 �����   (4) 

From this, we can see that the selection of balanced versus 
unbalanced paths also depends upon the relative values of c and d, 
an architecture’s delay and congestion cost.  In our example, the 
more balanced path is only selected if c < 0.8d.  Even if we could 
somehow guarantee that we correctly scaled the base-cost of all 
routing nodes so that we initially selected more balanced paths, 
the natural congestion cost escalation of PathFinder will cause 
later iterations to tend toward worse selections.  Not only do these 
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Figure 12. Re-initializing PQ for Multi-Terminal Nets 
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Figure 13. Congestion Versus Timing Cost Dependency of 
PathFinder Cost Formulation.  Notation is (delay:congestion) 

and we assume a circuit-wide critical path of 10d. 

unbalanced paths create a more difficult timing problem, they can 
actually reverse PathFinder’s attempts at congestion resolution.  
This problem occurs because the delay and congestion 
contributions to the overall path cost are linked.   While the Aij 
versus (1-Aij) terms guarantee that paths can trade delay for 
congestion and vice-versa, this intertwines the two components 
making their relative values very sensitive. 

To address this issue, we propose making a subtle change that 
removes this vulnerability.  If we divide Eq. 1 through by (1-Aij), 
we obtain Eq. 5: 
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This does not change path selection for conventional non-
pipelined routing, since all routes from a given source to sink will 
evenly scaled by (1-A)-1.  However, this does change the behavior 
for pipelined signals.  If we revisit our example from Figure 13 
and substitute the new cost formulation we get the results shown 
in Eq. 6 and 7: 

 c dcdc(d) 1011.819)9(911.0 �����  (6)  

 c dcdcd)( 10105)5(1551 �����   (7) 

Since both the congestion and delay costs are necessarily positive 
numbers, we can see that more balanced paths are now selected 
over unbalanced paths without the need to meticulously adjust the 
relative values of an architecture’s congestion and delay costs.  
However, the router still has the option of selecting the 
unbalanced path should this path become less congested in future 
routing iterations. 

Now, we can see that the cost of an entire L-latency path becomes 
the summation of the congestion encountered plus the relative 
delay of each link adjusted by its individual criticality.  This 
ensures that a link with high criticality will not be able to mask 
high congestion.  
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If we combine all of these techniques we get the Armada timing-
driven pipeline routing algorithm.  This begins with PathFinder’s 
basic timing-driven congestion resolution engine in an outer loop.  
Taking a suggestion from [1], we saturate link criticality at 0.99.  
However, we then depart from the conventional routing problem 
entirely by adding in a modified QuickRoute inner loop, shown in 



Figure 14, that has been enhanced with our timing-driven sink 
ordering, assumed criticality methodology and new timing-driven 
cost formulation. 

8. Results 
To determine the effectiveness of the Armada algorithm, we 
follow PipeRoute and QuickRoute’s lead and test our codebase 
within the RaPiD framework.  Our evaluation encompasses ten 
RaPiD netlists, shown in Table 1, with a wide range of pipeline 
requirements. These are mapped to three different RaPiD 
architectures: the original architecture that contains 16 logic 
blocks per cell, length-4 short tracks, length-16 long tracks, and 
three optional registers at each bus connector, and two other 
architectures that use a similar arrangement but substitute long 
tracks of length 4 and 8.  These modified architectures allow us to 
test harder timing-driven routing problems by increasing the 
number of pipelining resources and, therefore, the number of 
registering options. 

To gather our results, we first ran all ten netlists through the 
placer from the original PipeRoute work [6], which provides a 
fixed, pipelining-aware placement as a starting point for all three 
algorithms.  While conventional placement always attempts to 
group interconnected blocks as closely as possible, this is not 
necessarily favorable on pipelined architectures.  This is because, 
as mentioned earlier, high latency connections may need to take a 
circuitous route if there are not enough pipelining resources 
between the logic blocks to acquire the appropriate registering. 

For the PipeRoute router, we use the version from [5] that 
augmented the original PipeRoute algorithm with a rudimentary 
timing-driven formulation.  In the new methodology, the 
maximum criticality encountered by any link between a given 
source and sink is used during the following routing iteration to 
determine the timing versus congestion significance.  For 
example, if a given three-latency pipelined signal is connected 
from the source to the sink by four segments of delay (1, 1, 1, 3), 
the criticality passed on to PathFinder’s timing-driven cost 
formulation will be three divided by the critical path delay for all 
PipeRoute explorations between the source/sink pair.  Of course, 
this introduces some inaccuracies into the system.  Not only does 
this methodology suffer from the relative cost interrelationship 
between congestion and timing that inspired our modified cost 
formulation, it also suffers from the false link criticality 
predictions that we addressed with our assumed criticality 
approach. 

Testing began with the original RaPiD architecture.  We first 
performed six independent PipeRoute placement and routing runs 
and gathered the best results.  The placements from these results 
were then routed using congestion-driven QuickRoute, the 
Armada algorithm, and the Armada algorithm substituting in the 
original PathFinder cost formulation.  Although we followed [3]’s 
suggestion of k=1 for both QuickRoute and Armada, we 
arbitrarily set the number of assumed criticality searches for both 
Armada runs to AC=10. 

In our tables, Best Track results are the average track 
requirements and timing when each tools searches separately for 
the minimum routable architecture for all ten netlists.  Match PR 
results are obtained when each tool is given the same number of 
tracks that PipeRoute requires for a given netlist.  Match Tracks 
results are obtained when each tool is given the maximum number 

Armada(net, numAC, maxK,critPath)
1 for all nodes N in architecture, for all latencies L, for all assumed 

criticalities CFac, clear n.visited[L][CFac]
2 sort net.sinks by non-decreasing latency, non-increasing criticality
3 insert source into net.routingTree
4 for all sinks K in net.sinks

Initialize PQ with existing routes
5 for all nodes N in net.routingTree, for CFac = 1/numAC to 0.99
7 if CFac != 0.99 && N.delay>(CFac +1/numAC)*critPath
8 continue
9 else
10 insert N into PQ at N.timingCost(CFac), latency N.latency
11 end if
12 end for

Search for L-latency route to sink
13 while !PQ.empty
14 remove cheapest node N, latency L, assumed crit. CFac from PQ
15 if N == K && L == K.latency
16 add route to net.routingTree, empty PQ, clear all n.visited
17 continue next sink
18 else if N.visited[L][CFac] == maxK, continue
19 else
20 N.visited[L][CFac]++
21 for each neighbor X of N
22 if X.visited[L][CFac] < maxK
23 if X != K && X != register
24 if CFac != 0.99 && X.delay>(CFac +1/numAC)*critPath
25 continue
26 else
27 push X into PQ at X.timingCongestionCost(CFac), 

latency L
28 end if
29 else 
30 calculate actual crit CR to X
31 if X == register && K.latency <= L + 1
32 push X into PQ at X.timingCongestionCost(CR), 

latency L + 1
33 else
34 push X into PQ at X.timingCongestionCost(CR), 

latency L
35 end if
36 end if
37 end if
38 end for
39 end if
40 end while
41 return failure
42end for  

Figure 14.  Armada Timing-Driven Pipeline Net Router. 

Table 1.  RaPiD Netlist Characteristics.  Min Registers is the 
minimum number of registers a netlist needs assuming 
maximum register sharing.  Max Latency refers to the largest 
pipelining depth for a single sink. 

Netlist RaPiD Cells Min Registers Max Latency 
decsnr 8 0 0 
firtm 16 20 16 
fft16 12 40 3 
sobel 18 49 5 

matmult4 16 129 31 
imagerapid 14 149 11 

sort_rb 11 159 31 
sort_g 11 159 32 

cascade 16 226 21 
firsymeven 16 377 31 

 

of tracks required by any of the QuickRoute-derivative tools for a 
given netlist.   Match Tracks results do not include results for 
PipeRoute as the provided codebase does not allow the placement 
and routing steps to be separated.  Given a different architecture, 
PipeRoute will also change the placement. 

As seen in Table 2, our first surprise is that the original 
congestion-driven QuickRoute actually performs nearly as well as 
the new timing-driven PipeRoute formulation.  Although based 
upon the results in [3] we would expect QuickRoute to provide 
marginally better track counts, we believe that the similar timing 
results indicate that the timing-driven PipeRoute formulation is 



Table 2.  Normalized Results for Original RaPiD Architecture.  
All results normalized to the best Armada run. 

 Routing Algorithm Tracks Crit. Path 
Best Track PipeRoute-TD 1.08 1.51 
 QuickRoute 1.03 1.59 
 Armada 1.00 1.00 
 Armada-PathFinder 1.03 1.18 

Match PR PipeRoute-TD 1.08 1.51 
 QuickRoute 1.08 1.68 
 Armada 1.08 1.00 
 Armada-PathFinder 1.08 1.17 

Match Tracks QuickRoute 1.05 1.67 
 Armada 1.05 0.99 
 Armada-PathFinder 1.05 1.18 

Table 3.  Normalized Results for Length-8 Long Tracks.  All 
results normalized to the best Armada run. 

 Routing Algorithm Tracks Crit. Path 
Best Track PipeRoute-TD 1.00 1.60 
 QuickRoute 0.97 1.59 
 Armada 1.00 1.00 
 Armada-PathFinder 1.02 1.27 

Match Tracks QuickRoute 1.02 1.64 
 Armada 1.02 1.00 
 Armada-PathFinder 1.02 1.28 

Table 4.  Normalized Results for Length-4 Long Tracks.  All 
results normalized to the best Armada run. 

 Routing Algorithm Tracks Crit. Path 
Best Track PipeRoute-TD 1.01 1.54 
 QuickRoute 1.02 1.49 
 Armada 1.00 1.00 
 Armada-PathFinder 1.05 1.19 

Match Tracks QuickRoute 1.05 1.50 
 Armada 1.05 0.99 
 Armada-PathFinder 1.05 1.19 

 

largely ineffective.  As predicted, it is likely that inaccuracies 
within the timing-driven formulation itself greatly limit the ability 
for optimization. 

In contrast, the Armada algorithm finds vastly superior timing 
results with essentially identical routability.  Clearly, Armada is 
able to improve timing by roughly 40-60% over previous 
approaches – even occasionally using fewer tracks.  This is likely 
because the timing-driven cost formulation provides additional 
direction to the QuickRoute-like searches avoiding some 
occurrences of self-blocking.  Furthermore, we can also see that 
our new timing-driven cost formulation functions as intended 
when we substitute PathFinder’s into the Armada algorithm.  We 
can see that this alone is responsible for at least a 15% 
performance gain. 

As seen in Table 3 and Table 4, this trend continues if we migrate 
to more difficult routing problems.  We repeated the testing 
methodology used on the original RaPiD architecture on 
architectures with double and quadruple the number of pipelined 
switch opportunities.  First, we can see that the problem becomes 
more difficult from the standpoint of congestion resolution.  Long 
tracks have been split into multiple independent segments, so 
although the routing can be compressed into fewer tracks, 
contention for these resources becomes fiercer.  This is shown by 
the fact that the track gap between PipeRoute and the 
QuickRoute-derivatives mostly closed.  This is also the reason 

Table 5.  Normalized Results for Armada, k=1, 2, 4.  All 
results normalized to k=1 values 

  Tracks Crit. Path 
16-Length k = 1 1.00 1.00 
 k = 2 0.99 1.00 
 k = 4 1.00 0.99 

8-Length k = 1 1.00 1.00 
 k = 2 1.00 0.95 
 k = 4 0.99 0.97 

4-Length k = 1 1.00 1.00 
 k = 2 1.01 0.97 
 k = 4 1.01 0.97 
Table 6.  Normalized Results for Armada, AC=10, 8, 6, 4, 2.  

All results normalized to AC = 10 values 

  Tracks Crit. Path 
16-Length AC = 10 1.00 1.00 
 AC = 8 0.98 1.04 
 AC = 6 1.00 0.97 
 AC = 4 0.99 1.02 
 AC = 2 1.00 0.98 
 AC = 1 1.10 1.18 

8-Length AC = 10 1.00 1.00 
 AC = 8 0.99 0.95 
 AC = 6 1.02 0.96 
 AC = 4 1.00 0.99 
 AC = 2 1.02 0.97 
 AC = 1 1.12 1.32 

4-Length AC = 10 1.00 1.00 
 AC = 8 1.01 0.99 
 AC = 6 1.01 0.99 
 AC = 4 0.99 1.04 
 AC = 2 1.00 1.09 
 AC = 1 1.38 1.59 

 

that we no longer show Match PR results. 

Although we have proven that Armada can obtain significantly 
better pipelined routing results than any of its predecessors, there 
are still two outstanding questions regarding its effectiveness.  
First, as mentioned earlier, the maximum visitation factor that we 
used in our testing (k=1) was suggested by the original 
QuickRoute paper.  Even though we are operating within the same 
architectural framework, the timing-driven nature of our problem 
formulation might make more thorough explorations attractive.  
As seen in Table 5, there is some correlation between k and the 
quality of results, but the change is relatively minor.  While it 
seems there is some advantage to increasing k to two or four, this 
is likely highly architecture-specific. 

Second, we completely arbitrarily chose the number of assumed 
criticality searches that we would use (AC=10).  Since the 
assumed criticality completely controls how paths weigh 
congestion versus delay for the majority of a given route, we 
expect the quality of the timing to heavily depend upon the 
granularity of our assumed criticality factors.  However, looking 
at Table 6, we see that even decreasing the number of assumed 
criticality searches to merely two (only 0.5 and 0.99), does not 
dramatically affect results unless we are on the architecture with 
the shortest long tracks and, thus, the largest number of registered 
switchpoints. 

Although this may seem counter-intuitive, looking at the routed 
results found by Armada we see this is actually an artifact of the 



original RaPiD design philosophy.  In almost all cases, the critical 
path reaches some architectural limit – two to three bus 
connector-to-bus connector delays or less.  If we consider that 
RaPiD was built to be a deeply pipelined architecture, this should 
not be particularly surprising.  In this case, the router is merely 
finding exactly the types of routes that the original designers had 
anticipated.  If the router achieves such an extremely low critical 
path delay, all signals actually become either 50% or 100% 
critical making AC=2 work exceedingly well.  In fact, it is only 
when we shrink the length of long tracks considerably and add a 
huge number of registers that we begin to produce paths that do 
not register at almost every switchpoint they traverse.  However, 
we expect this is also highly architecture-specific.  The majority 
of systems do not have the extremely predictable routing 
characteristics of the RaPiD architecture and we expect more 
conventional pipelined FPGAs to be far more sensitive to the 
number of assumed criticality searches. 

9. Future Work 
Although Armada performed very well on the RaPiD architecture, 
the experiments outlined in this paper relied heavily on the 
existing PipeRoute codebase.  Other FPGA architectures, like the 
pipelined island-style devices proposed by Singh and Brown, 
raise a serious unanswered question for a pipeline-aware CAD 
toolflow as a whole.  While the Armada router itself operates on 
an architecture-independent graph, the quality of results depends 
wholly upon the quality of the placement.  Although the 
placements obtained for our experiments were certainly sufficient, 
the pipeline-aware placement problem itself is largely 
unanswered. 

PipeRoute addresses pipeline requirements during its placement 
phase by first assuming that all pipelined sinks for a given net will 
share as many registers as possible.  To calculate the quality of a 
given placement, it temporarily binds these registers to real 
locations in the architecture.  While this appears to function 
adequately for RaPiD, this will likely be too rudimentary for more 
flexible or complex architectures.  Not only does RaPiD’s 1-D 
nature make the placement problem already very simple, RaPiD 
has a very regular, predictable and pipelining-rich routing 
structure.  Thus, any inaccurate assumptions made in the 
placement phase can likely be compensated for easily during the 
routing phase. 

However, we expect that better placement algorithms will be 
necessary for the majority of other pipelined architectures in order 
to make the pipelined routing problem tractable.  Not only does 
the 2-D nature of island-style FPGAs automatically make the 
routing problem more difficult, we believe that errors in the 
placement can dramatically increase the likelihood that 
QuickRoute-derivative searches will run into problems with self-
blocking sub-optimality. 

10. Conclusions 
Although we have shown in this paper that a timing-driven 
solution to the N-Delay Routing problem is necessary to build fast 
and efficient pipelined FPGAs, previous solutions have serious 
limitations.  At the expense of both system area and timing, early 
pipelined architectures avoided the problem altogether by 
constraining their retiming tools and the fundamental design of 
the architectures themselves.  Although later attempts tackled the 
N-Delay Routing problem head-on, these had several 

shortcomings including limited routability on modern FPGA 
architectures and poor timing performance.   

Primarily, the timing-driven N-Delay Routing problem is difficult 
because, from the viewpoint of conventional CAD tools, it 
contains aspects of both placement and register duplication that 
must be solved simultaneously with the normal routing problem.  
To address these issues we developed a new methodology to 
determine path criticality and a new timing-driven cost 
formulation.  Leveraging aspects from a host of previous routers 
we combined these to form the Armada timing-driven pipeline-
aware routing algorithm.  On three RaPiD architectures, this 
algorithm was shown to provide up to 60% better average timing 
results without dramatically affecting routability.   

Although there are still some unanswered questions regarding a 
complete timing-driven pipeline-aware FPGA CAD tool suite, we 
believe that the Armada routing algorithm is the first step towards 
developing modern pipelined reconfigurable computing devices. 
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