
Armada: Timing-Driven Pipeline-Aware Routing for FPGAs
Ken Eguro and Scott Hauck
Electrical Engineering Department

University of Washington
Seattle, WA

{eguro, hauck} @ee.washington.edu

ABSTRACT
While previous research has shown that FPGAs can efficiently
implement many types of computations, their flexibility inherently
limits their clock rate. Several research groups have attempted to
address this by developing new architectures that include
registered switchpoints within their interconnect. Unfortunately,
this pipelined communication network presents a new and
difficult problem for detailed routing tools. Known as the N-
Delay Routing Problem, it has been proven to be NP-Complete.
Although there have been two heuristics recently developed to
address this issue, both have certain limitations and neither
approach considers timing during the routing process. While
timing-driven conventional routing is largely considered to be a
solved problem, there are several issues inherent to the N-Delay
Routing problem make addressing timing particularly difficult. In
this paper we discuss the nature of these problems and present a
new timing-driven pipeline-aware router that produces as much as
60% better critical path delay than previous efforts.

1. Introduction
Although it has been long known that FPGAs effectively bridge
the gap between flexible but relatively slow software running on
general-purpose processors and extremely fast but costly ASICs,
the programmable nature of FPGAs introduces significant
inefficiencies that limit the clock frequency of mapped circuits.
While this limitation might not affect designs typical of FPGAs’
traditional role, such as control or glue logic, this commonly
dissuades some designers from using FPGAs to perform
computation-heavy datapath calculations. However, research into
reconfigurable computing platforms has shown that in many cases
the advantages of flexibility, ease of programming, and ability to
reuse silicon can overcome the speed penalties generally incurred
when using reconfigurable devices.

One constraint that hampers the further progress of reconfigurable
computing systems is that designers would like to compensate for
the naturally lower clock frequency of FPGAs by heavily
pipelining, retiming, and C-slowing their computations when
possible. Unfortunately, these techniques often produce a large
number of registers that conventional FPGA architectures and
development tools cannot adequately deal with. Commercial
reconfigurable devices are designed with average-case circuits in
mind so they do not include any pipelining resources beyond
those that might be found in unoccupied logic block locations.
This generally restricts retiming and pipelining to fairly minor
changes, such as the techniques seen in [8].

Multiple research groups have attempted to address this problem
with specialized pipelined-FPGA architectures. Since
interconnect delay typically dominates most mapped circuits, one
common solution has been to incorporate additional registering

resources within the interconnect network itself. HSRA [10],
RaPiD [1], and an architecture by Singh and Brown [9] are good
examples of this approach. Unfortunately, the introduction of
registers into the interconnect network can present some problems
for existing CAD tools. While register assignment can be handled
during the normal course of placement for registers in logic block
locations, this might not result in reasonable quality for registers
within the interconnect network. This is because these embedded
registers will generally have very little or no flexibility in their
connectivity. Thus, assigning registers during placement could be
tantamount to performing detailed routing during placement.
Although this may not present a problem if the number of
pipelined signals is kept very small, this will dramatically affect
the routability of deeply pipelined netlists.

While this would suggest that we should assign registers during
the routing process, this fundamentally changes the problem of
routing itself. No longer is it simply a matter of finding a path
between a source and sink, we now need to find a path between a
source and sink that goes through exactly N registers. Formally
introduced in [7], this problem is known as the N-Delay Routing
problem. Although proven to be NP-Complete, the authors of [6]
and [3] presented two different heuristics to discovering
pipelining registers during routing: PipeRoute and QuickRoute,
respectively. Unfortunately, both of these approaches perform
purely congestion-driven routing. Since heavily pipelining the
netlists and augmenting the architectures with additional
registering resources were both originally motivated by timing
concerns, not addressing timing during routing will likely lead to
disappointing results.

Although timing-driven heuristics have been well studied for
conventional FPGA routing [4], as we will show, there are several
details of the N-Delay Routing problem that prevent us from
simply using conventional timing-driven cost formulations inside
existing pipeline-aware algorithms. In this paper we will discuss
some subtle limitations inherent to prior pipelined-FPGA systems
and describe a new timing-driven pipeline-aware router.

2. N-Delay Routing Problem
While PathFinder [4] and its predecessors demonstrated that the
conventional routing problem of congestion resolution for multi-
net circuits is very difficult on most modern FPGA architectures,
it breaks down into much simpler sub-problems. For example, if
we ignore congestion altogether, we can use Dijkstra’s shortest-
path algorithm to quickly find routes between all sources and
sinks. PathFinder borrows heavily from this and uses Dijkstra’s
algorithm with one modification – it updates node costs between
routing iterations to gradually penalize overused resources.

Unfortunately, the N-Delay Routing problem adds the additional
constraint of a required pipelining latency between source and
sink. This precludes the use of Dijkstra’s algorithm for two

S
d

f
b c

K
e

a

S
d

f
b c

K
e

a X

X

Figure 1. Illustration of the N-Delay Routing Problem. Circles
denote normal routing nodes, squares denote pipelining

registers nodes.

reasons. First, the shortest path from source to the sink may not
meet the specified latency requirement. More importantly, the
shortest path to any given node along the way may not be the best
path, since it may not even form the prefix of any legal route. For
example, in Figure 1 we would like to find a path between the
source S and the sink K that goes through exactly one pipelining
register. If we assume a unit cost model, we can see that
Dijkstra’s algorithm fails to find a valid one-latency path.
Obviously, (S, d, e, f, K) is a zero-latency path, so it does not
fulfill the one register requirement. However, the reason that
Dijkstra’s does not find the valid path through node b is because
node f is explored first by the zero-latency search from (S, d, e).
Since Dijkstra’s algorithm marks all nodes when they are visited,
this prevents the initially more expensive (S, a, b, c) route from
continuing on to the sink. As discussed in [4], finding legal N-
Delay routes is NP-Complete. Furthermore, this problem
becomes even more complicated when we consider building
Steiner Trees for multi-terminal, multi-latency nets.

3. Pipelined FPGAs and Register Assignment
Given that the N-Delay Routing problem is so difficult, and
workable solutions [3][6] have only been developed recently, how
have previous research efforts dealt with this issue? Primarily, the
problem has been avoided entirely by careful planning at the
design level. For example, despite notable differences between
the architectures, HSRA [10] and the pipelined-FPGA
architecture proposed by Singh and Brown [9] both make specific
architectural and toolflow decisions outside of the router to ensure
legal pipelined paths. Unfortunately, these techniques ultimately
limit the overall efficiency of the devices for heavily pipelined
applications.

HSRA is a hierarchical FPGA in which some fraction of the
switchpoints are optionally registered. In addition, pipelining
resources are provided at each logic block to balance the path
latency acquired in the interconnect – all LUT inputs have a large
bank of optional flip-flops. By making the depth of these register
banks equal to maximum number of pipelining stages along the
longest path in the interconnect network, the HSRA designers
avoid the N-Delay Routing problem. This is because if sufficient
latency cannot be accumulated along a given path within the
interconnect network itself because it does not traverse enough
registered switchpoints, the deficit can be satisfied by using the
bank of registers at the destination pin. Unfortunately, this
arrangement requires a huge number of registers on logic block
inputs. For deeply pipelined netlists, as shown in [10], this incurs

Figure 2. Illustration of a RaPiD Cell. Logic blocks populate
the top of the array with short and long tracks below. Small
squares represent optionally registered switchpoints between

long tracks. Larger arrays can be formed by abutting multiple
RaPiD cells side-by-side.

a hefty 2x to 5x area penalty.

Similarly, the system developed by Singh and Brown ensures that
register assignment can be ignored during routing. However, their
overall approach is slightly different. Their architecture is an
island-style track-graph FPGA in which some fraction of the
routing planes have optionally registered switchpoints creating
pipelined and unpipelined track domains. In their toolflow, a
designer first conventionally routes a circuit, then retimes the
netlist after it is routed. In this case, to ensure sufficient
pipelining resources along already determined paths, the authors
constrain the number of registers that can be pushed onto a given
link during the retiming process to the number of optional
registers that currently exist along the route. Although this
approach is a concise, closed form solution, this technique greatly
limits many of the advantages of retiming itself. Not only does
this restrict the retiming of long paths to the available balancing
resources that might be along associated short paths, we cannot
take full advantage of many of the registers that the architecture
already provides. Links that would like additional latency cannot
acquire it even if there are unused interconnect registers
neighboring the existing route.

To develop an efficient pipelined-FPGA architecture and to make
best use of the provided registers likely requires a solution to the
N-Delay Routing problem. In contrast to the previous
architectures and their associated CAD tool suites, RaPiD [1]
meets this problem head-on and was the inspiration of previous
pipelined routing research efforts. RaPiD is a coarse-grain, one-
dimensional array with a word-width interconnect network. As
seen in Figure 2, it contains a mixture of both short and long-
distance tracks. Although short tracks cannot be concatenated to
make longer routes and cannot pick up retiming latency, long
tracks can be concatenated for up to chip-wide routes and can
acquire between zero and three retiming latencies at each
switchpoint, also known as a bus connector.

In the existing toolflow, a high-level language compiler produces
a retimed netlist that must be placed and routed on an architecture
given specific link latency requirements. Although an architecture
might have many long tracks that contain a wealth of pipelining
locations, any specific bus connector can only communicate with
the two wires immediate to the left and right. In this way, we can
see that register assignment cannot be performed during
placement. Deciding exactly which registers should be used also
mostly determines the detailed routing for all pipelined signals.

Unfortunately, deferring register assignment until routing also
presents a problem since it is not obvious how to find a route
between each source and sink that contains exactly the number of
pipelining registers prescribed by the retimer. We cannot utilize a
conventional router because we have limited pipelining resources
that determine the overall characteristics of each path. For
example, logic blocks that are physically placed close to each
other may not be able to be connected via the most direct route. If
the connection between these blocks requires multiple pipelining
delays, will need to take a long, circuitous route to acquire
sufficient registering.

4. Pipeline-Aware Routing Heuristics
As far as we are aware, only two research efforts have been made
to address the N-Delay Routing problem: PipeRoute [6] and
QuickRoute[3]. Although both utilize PathFinder’s iterative
Negotiated Congestion cost formulation in an outer loop to
gradually discourage sharing, they have each modified
PathFinder’s inner loop in somewhat different manners to
discover pipelined paths.

4.1 PipeRoute
PipeRoute forms multiple latency paths by iteratively combining
single-register routes. Since the authors show that they can find
optimal one-latency routes in polynomial time, they use this to
their advantage. As seen in Figure 3, to find a two-latency path
from the source S to the sink K, they first attempt to find a one-
latency path. If we assume that this initial single-register route
elects to use register i, the next step is to attempt to replace either
the link from S to i or the link from i to K with its own one-
latency route and select the lowest cost alternative. In our
example, the routes (S � e� i) and (S � g � i) would compete
with each other. Unfortunately, this is a greedy accumulation
process. Clearly, we can see that if we required a three-latency
route and we selected an interim two-latency path using registers
g and i, we would be unable to find a valid route. This is because
there is no way for the links (S � g), (g � i), or (i � K) to be
replaced with its own single latency link. While this may present
a problem, particularly on track-graph architectures, of far greater
concern is the problems PipeRoute might run into in finding the
initial single-latency paths themselves.

Although the authors show a method to find optimal one-latency
routes in polynomial time, this approach has some subtle yet
serious limitations. They begin by showing that a normal breadth-
first search is not sufficient considering the difference between
pre-register and post-register routing. As seen in the top
illustration in Figure 4, if S is both the source and sink, we will
not find a valid one-latency path if we simply mark nodes visited
or not visited. This is because neither search can pass the other
to complete a path around the ring. Instead, we must also note the
associated latency phase when a node is explored. That is, a post-
register wave can expand to a given node even if it has already
been explored by a pre-register wave. This is called a Combined-
Phased-BFS. However, the authors go on to show that even this
is not entirely adequate. If we consider the bottom illustration in
Figure 4, we can see that even if we allow nodes to be visited both
at latency zero and latency one separately, we can enter a similar
deadlock. In [7] the authors show these problems can be avoided
and they can guarantee optimality if we allow nodes to be visited
once at latency zero and twice at latency one. This is called a
2Combined-Phased-BFS.

S d

c

Kf

a

e

h i

S d

c

Kf

a

e

h i

b

b

g

g

S d

c

Kf

a

e

h i

b

g

Figure 3. Illustration of the PipeRoute Algorithm.

0/10 1
S

0/10
1

10 1
S

00 0
X

XX

Figure 4. Different Search Styles. Breadth-first search (top)
and Combined-Phased-BFS (bottom). Notations indicate

latency phase of visitation.

S S

Figure 5. Limitations of PipeRoute. Self-intersection (left) and

symmetrical architectures (right).

Unfortunately, their definition of an optimal path allows a route to
cross over itself. In the left illustration of Figure 5 we see that a
route that visits a register, then doubles onto itself is actually the
shortest one-latency path. However, this is clearly not a valid
physical route since one node must simultaneously carry a value
from the current clock cycle and the previous one. The authors
justify their definition of an optimal path by indicating that since
they use PathFinder in their outer loop, its natural congestion
avoidance will resolve these problems over multiple iterations.
Unfortunately, we believe that PathFinder may not be able to
discourage this type of path self-intersection on many common
architectures.

First, present sharing cost cannot play a role regardless of
architecture design. PathFinder does not update the present
sharing of any node until we have found a complete route from a
source to sink. Thus, an exploration will not feel the effects of
present sharing between the phase zero and phase one routes until
we have already completed the search. Furthermore, we cannot
update this on-line since a phase one exploration has no efficient
way of distinguishing between when it is wrapping back onto
itself versus attempting to explore a node that was used at latency
zero by a completely different exploration. Likewise, this
problem cannot be settled by history cost. If we consider a
symmetrical architecture as shown in the right illustration of
Figure 5, we can see that the self-intersecting problem will simply
alternate between the top and bottom loop – never realizing that a
valid alternative exists.

By this characteristic alone, we believe that PipeRoute cannot be
used on the majority of modern FPGA architectures. First, the
interconnection flexibility of current-generation reconfigurable
devices will encourage the self-intersecting path problem. That is,
high connectivity allows a routing node to easily re-discover itself
after going through a pipelining resource. Second, it is not
unreasonable to believe that the majority of interconnection
networks will have a great deal of symmetry. One routing track is
likely to have the same access to pipelining resources as
neighboring tracks.

4.2 QuickRoute
Instead of gradually assembling higher latency routes from
multiple smaller latency segments, QuickRoute attempts to find
full N-latency routes directly. Although performed for latencies
higher than only zero and one, it is similar to the Combined-
Phased-BFS from PipeRoute in that we must record the phase of
an exploration when a node is visited. In this case, a wave is
allowed to explore a given node if the node has been visited by
fewer than k other waves at the same latency. For example, in the
top illustration of Figure 6, if we assume k=2, the paths (S, a, b)
and (S, e, b) would both be considered.

However, unlike PipeRoute, QuickRoute does not allow paths to
intersect themselves. To accomplish this, they record the
upstream nodes for every exploratory wave and do not allow an
exploration to revisit a node already used by itself earlier in the
search. In the bottom illustration of Figure 6, a path that goes
through b will not consider it again for subsequent exploration.
This exploration process is simply continued until the sink is
discovered at the appropriate latency.

Of course, since the problem is still NP-Complete, this cannot
guarantee a solution. For example, if we make a slight
modification to the graph, as in Figure 7, we run into problems. If
we assume that k=1 and we would like to go from S to K
accumulating two registers, we will fail to find a solution. This is
because node b is initially used by a doomed route that, in turn,
prevents the correct route from exploring d. Unfortunately, no
matter how large we make k, we can always construct a graph that
will self-block by adding registered paths between b and d.

However, we believe that QuickRoute still holds multiple
advantages over PipeRoute. Not only does QuickRoute defend
itself from the self-intersection problem of PipeRoute, it has the
flexibility to improve its routing ability on a given architecture by
simply increasing the k factor. Furthermore, as we will touch on

S
a

e

b c d
K

f g h

S
a

e

b c d
K

f g h

X

Figure 6. Illustration of QuickRoute Algorithm. Multiple
visitation (top) and self-intersection (bottom).

X
S

a

e

b c d

f g h

K X

Figure 7. Illustration of QuickRoute Self-Blocking.

later, we believe that QuickRoute will generally encounter the
self-blocking problem in very specific situations that we can deal
with during placement.

5. Cost Formulation and Link Criticality
Unfortunately, neither PipeRoute nor QuickRoute provide delay-
driven routing. This might be particularly surprising considering
that PathFinder showed us how to simultaneous balance
congestion and timing over a decade ago. However, there are
multiple differences between the conventional routing problem
and the pipelined routing problem that prevent us from leveraging
PathFinder’s timing-driven cost formulation.

PathFinder takes timing into account by allowing timing-critical
nets to follow fast, congested paths while encouraging non-critical
nets to seek slower, lower congestion alternatives. In [4], the
authors define Eq. 1 – the cost of a node (Cn) is not only related to
its delay (dn) and congestion (cn), but also dependent on the
criticality of the source/sink pair (Aij) as determined in the last
routing iteration.

 nijnijn cAdAC)1(��� [4] (1)

Since Aij falls between zero and one, a timing-critical net (Aij=1)
only considers the delay of a node without considering its
congestion cost. In this way, it will naturally seek the fastest
possible route between source and sink. However, a less critical
net will consider both delay and congestion. As Aij approaches
zero, the congestion cost will pay a larger role in determining
which path is taken.

However, we cannot use this type of timing versus congestion cost
formulation to determine pipelined routes. If we compare the N-
Delay Routing problem to the conventional routing problem we
can see that there are multiple difficulties in determining the
appropriate criticality to use for a given exploration. Primarily,
these issues stem from the fact that, in the classical sense, we
continuously change the very nature of the netlist during the
pipelined routing process.

As seen on the left of Figure 8, the conventional methodology of
placing all of the blocks, then routing them produces relatively
consistent iteration-to-iteration criticality. In our example, the
placement tool has decided that LUT a must route to LUT b
before going to LUT c. As routing progresses, Pathfinder can
carry over the criticality of the last route found to determine the
next route. In this way, PathFinder hinges upon the fact that the
routing will not drastically change between iterations. It is
unlikely that consecutive routing iterations will choose vastly
faster or slower routes from a to b or b to c. However, if this
somehow does occur, we will over or under-penalize the
congestion versus delay contribution to the overall path cost.

If we consider the same netlist in a pipeline-aware routing
framework, as shown on the right of Figure 8, we see that
registers have been removed from the netlist and replaced by
latency annotation on edges. In this situation, we know that LUT
a must be connected to LUT c by a single latency link. However,
the criticality of the individual links between a and the register
and the register and c will heavily depend upon the route that we
take. For example, the relative criticality of the two links will
change completely if we choose to register at LUT i versus LUT
ii. This criticality inaccuracy will cause timing oscillation as
opposite sides of a register along critical or nearly critical paths
vie for dominance.

If the first iteration chooses to register at LUT i we can guarantee
that the second iteration will choose to register at LUT ii, despite
that fact that it would be more advantageous, from a timing
standpoint, to select either of the middlemost positions. This
occurs because the pre-register link will have a very low
criticality, making delay on this segment very inexpensive.
Conversely, the post-register link will have a very high criticality
making delay very costly. If we assume for the moment that there
is no congestion in the system, we can see that the post-register
link will want to become as short as possible at the expense of the
pre-register link. Because of this, we will alternately select
equally poor register locations and never find the best solution.

Essentially, this type of behavior occurs because the criticality of
a link to a register used in one iteration has no bearing if we select
a different register during the next iteration. Looking at the
problem from a larger scope, we should not be surprised that this
occurs. The conventional routing problem only has to contend
with between-iteration criticality inaccuracy on a secondary level
because the endpoints of all blocks that can affect timing are fixed
by the placement before routing begins. If we look at the
pipelined routing problem from the standpoint of conventional
routing, it is as if we can change the placement of all the registers
between every routing iteration.

We can see that this problem becomes further complicated if we
consider multi-terminal and multi-latency nets. As shown in
Figure 9, there are certain situations in which sinks may want to
share registers to reduce congestion. However, depending upon
their relative placements and if this net becomes critical or near
critical, each sink might wish to use a separate register.
Unfortunately, it becomes unclear what criticality to assign any of
the nets to allow these “zipped” and “unzipped” paths to exist in
consecutive iterations and still produce high-quality results.
Should the criticality of all latency-N segments be averaged?
Should the worst criticality of any segment define the criticality of
all links? This becomes an issue because we are fundamentally

a cb a c

a a i

1

b c cii

Figure 8. Register Assignment and Criticality. Conventional
placement of registers (left) and discovering registers during

routing (right). Numbers on edges represent the required
latency between source and sink.

a b
1

c
1

a b

c

a b

c

Figure 9. Multi-Terminal Criticality Problem.

changing the nature of the netlist during routing. Similar to
before, in conventional terms it is as if we are performing a
limited form of logic synthesis or, at the very least, register
duplication between routing iterations.

6. Determining Link Criticality
Clearly, if we would like to obtain high quality timing results, we
cannot use criticality information gleaned from previous routing
iterations to guide future exploration. However, PathFinder has
shown us that we still need some mechanism to allow more
timing-significant links to trade congestion for delay and less
important signals to trade delay for congestion. Our solution
relies on each exploration to discover its own criticality.

PathFinder manages to route all signals of a circuit in an order-
independent fashion by routing each net once disregarding
congestion, then ripping up a single net at a time and routing it in
the presence of all other nets. While we would normally obtain
the timing importance of the signal from the previous routing
iteration, we have shown that this cannot be done for pipelined
signals. One possible alternative is for an exploration to build its
own criticality based upon the delay it has seen thus far. In this
scenario, we start with a very low criticality at the source when
the exploration has not accumulated any delay and gradually
increase the timing significance as the search continues and paths
becomes slower. Unfortunately, while this may work for low and
mid-criticality links, this will not perform well for high criticality
segments. This is because the early portion of all searches will
meander to avoid congestion. As the path becomes longer, the
search will opt for more direct routes to the sink. Unfortunately
for critical nets, the damage has already been done and they will
never obtain the congestion-blind routes that they should.

Instead, we suggest that an exploration decides the proper
criticality for a route at the only point that the decision can
actually be made – when it arrives at the sink. In this formulation,
we start AC independent waves from the source, each assuming a
different criticality from 1/AC to 1.0. In this manner, we will have

multiple simultaneous searches that each emphasis delay versus
congestion in a slightly different way. The first exploration to
reach the sink will be the least expensive and, thus, represent
approximately the proper balance of congestion versus delay.
Furthermore we can trade off runtime for timing accuracy by
increasing AC. However, if we use this assumed criticality
methodology in its existing form, we can still suffer from grossly
incorrect routing. To understand why, we must return to
PathFinder’s cost formulation.

Looking at Eq. 1, we can see that high criticality emphasizes low
delay and low criticality emphasizes low congestion. Because of
this relationship, depending upon the relative values of the
architecture’s delay and congestion costs, our assumed criticality
searches can easily degenerate to always selecting either the
lowest or highest assumed criticality for all nets. This is because
if the delay values along most paths from the source to the sink
are coincidentally larger in magnitude than their congestion
counterparts, searches that assume a criticality of 1.0 will always
be the cheapest path, regardless as to whether they are truly timing
critical. A similar situation occurs for the minimum assumed
criticality if the relative values are reversed. While this problem
could be addressed by ensuring that the delay and congestion
values are always balanced, this is not a feasible solution as the
congestion values must be able to grow as the routing progresses.
Instead, we can solve this issue by using the assumed criticality
values to calculate the cost of route up to, but not including, the
sink. When we reach a sink, we can re-calculate the cost of the
route based upon the actual criticality of path that we have found.

The complete assumed criticality search methodology, as seen in
Figure 10, has several attractive features. First, we have solved
the problem of routing inaccuracy due to iteration-to-iteration
variance in path criticality. Not only is this clearly an issue for
pipelined routing algorithms, this may even appear in
conventional routing problems on FPGA architectures with
particularly heterogeneous routing structures. Second, this
approach does not dramatically increase the computational effort
of routing.

Obviously, if we conducted AC completely independent searches
for each source/sink pair, this would only invoke PathFinder’s
inner loop AC-1 additional times. However, we can easily run all
of these searches simultaneously and prune non-productive
explorations along the way. Of course, once one search has
reached the sink, we can end all exploration. However, we can
even prune incomplete searches. For example, for AC=5 we will
launch five explorations with criticalities (0.2, 0.4, 0.6, 0.8, 1.0).
If the current critical path is 10, paths with a delay of 4 or more do
not need to be explored by the 0.2 assumed criticality wave.
Those paths will be better serviced by the 0.4 assumed criticality
exploration. Thus, with the exception of the highest criticality
wave, we can prune a search when the current path delay would
make the exploration’s criticality larger than the next higher
assumed criticality search.

7. Timing-Driven Pipeline Routing
Now that we have a methodology to search for routes without a
priori knowledge of link criticality, we can incorporate this into
the QuickRoute algorithm. To accomplish this, we must first
modify the search to assign a routing order to all pipelined nets’
sinks. Much like PathFinder’s pure Negotiated Congestion
algorithm, QuickRoute does not search from the source to any

AC BFS(source, sink, numAC, critPath)
1 for i = 1 to numAC
2 push source into PQ, crit=i/numAC at cost=0
3 while !PQ.empty
4 remove cheapest node N, crit CR from PQ
5 if N == sink, exit //Found complete path with cost based on real criticality
6 else if N.visited[CR] == true, continue
7 else
8 N.visited[CR] = true //Mark node explored at current AC
9 for each neighbor X of N
10 if !X.visit[CR]
11 if X != sink //Continue calculating cost based on AC
12 if CR != 1.0 && X.delay>(CR+1/numAC)* critPath
13 continue
14 else
15 push X, crit=CR into PQ at cost=N.cost+X.cost(CR)
16 end if
17 else //We have found the sink so we don’ t have to assume crit anymore
18 calculate actual crit of path source�X CR’
19 push X, crit = CR into PQ at cost= source�X .cost(CR’)
20 end if
21 end if
22 end for
23 end if
24end while
25return failure

Figure 10. Assumed Criticality Breadth-First Search.

S K

KS

Figure 11. Register-Aware Assumed Criticality Search

particular sink. Instead, it merely stops when it finds any sink at
the proper latency and reinitializes the priority queue with all
existing paths. However, to give priority to higher criticality links,
we sort each net’s sinks first by non-decreasing order of latency (#
of registers required on the path), then by non-increasing order of
maximum link criticality found in the previous iteration. In this
way, the most timing-critical sinks with the fewest chances to
amortize path delay over multiple clock cycles determine the
earliest stages of the routing tree.

Next, we need to augment our assumed criticality methodology to
deal with pipelined routes. In addition to recalculating the true
criticality of a link when we discover a sink, we must also do so
when we encounter a register. Furthermore, registers must also
launch their own series of multi-criticality searches. As shown in
Figure 11, if we would like to find a one-latency path between S
and K, we begin at the source with AC=3 assumed criticality
searches. When one of these waves encounters a register, it
recalculates the path cost based upon the real criticality required
to reach the register along the given path. When the cheapest path
to the register is popped from the priority queue, it launches a new
series of AC=3 assumed criticality searches of its own at latency
one. Notice that although all three zero-latency searches may
reach the register and push it into the priority queue, only one
path will be deemed the least expensive and, thus, the best way to
use this particular register. Only this path will continue on with
one-latency explorations.

Of course, this means that we must define the cost of a multiple
latency route. In our example, eventually both registers in the
architecture will launch their own set of one-latency explorations.
As they near the sink, we need to determine which path best
balances not only the congestion and delay of their zero and one-
latency paths individually, but the combination of the two. Since
each time we encounter a register we can determine the actual
criticality of the link, we can define the cost of an L-latency path
to be the total of the timing and congestion costs of all zero to L-
latency segments, as shown in Eq. 2.

)Costcongestiont(timingCos
0

ii

L

i

C ���
�

 (2)

Furthermore, to build successive multi-terminal routes we must
also define how pre-existing routes should initialize the priority
queue. As seen in Figure 12, after we have found a one-latency
route to K, we need to push this existing route into the priority
queue to reflect all of the possible routing options to the 2-latency
sink J. While building a link from b would allow for the
maximum register sharing and will likely cause the minimum
congestion impact, developing a wholly new path may offer some
timing benefits. Borrowing a concept from timing-driven
PathFinder, we consider existing routes to be free in terms of
congestion, and we only consider their delay impact on further
sinks. Based upon the model discussed in Eq. 2, we push nodes
along existing routes into the priority queue by summing only the
timing cost of all upstream zero to L-latency segments. For our
example in Figure 12, to combine this concept with our assumed
criticality methodology, all nodes along a would be pushed into
the priority queue AC times using different assumed criticalities to
determine their timing cost. While all nodes along b would also
be added to the priority queue AC times, they would all share
some common portion of their cost – the zero-latency timing cost
incurred along a.

The final modification that we must consider is to the congestion
versus timing cost formulation itself. As already mentioned in our
discussion of potential pitfalls of the assumed criticality
methodology, the lowest cost path obtained by using Eq. 1 heavily
depends upon the relative values of an architecture’s delay and
congestion costs. Unfortunately, this will cause some further
undesirable behavior when we consider routing pipelined paths.

Looking at Figure 13, we see two potential one-latency paths from
S to K. Both paths have the same total congestion and delay, but
the top path has unbalanced delays, with the post-register path
being very close to critical. Thus, the top path is a relatively poor
choice. If we use Eq. 1 to determine the relative cost of these two
alternatives, we get the results shown in Eq. 3 and 4:

 cdcdcd ����� 2.8)(1.0)9(9.0)(9.0)(1.0 (3)

 c dcdc)(.d)(. 55)5(5.0)5(5.0550550 ����� (4)

From this, we can see that the selection of balanced versus
unbalanced paths also depends upon the relative values of c and d,
an architecture’s delay and congestion cost. In our example, the
more balanced path is only selected if c < 0.8d. Even if we could
somehow guarantee that we correctly scaled the base-cost of all
routing nodes so that we initially selected more balanced paths,
the natural congestion cost escalation of PathFinder will cause
later iterations to tend toward worse selections. Not only do these

KS
J

a b

Figure 12. Re-initializing PQ for Multi-Terminal Nets

KS
1d:1c 9d:9c

5d:5c 5d:5c

Figure 13. Congestion Versus Timing Cost Dependency of
PathFinder Cost Formulation. Notation is (delay:congestion)

and we assume a circuit-wide critical path of 10d.

unbalanced paths create a more difficult timing problem, they can
actually reverse PathFinder’s attempts at congestion resolution.
This problem occurs because the delay and congestion
contributions to the overall path cost are linked. While the Aij
versus (1-Aij) terms guarantee that paths can trade delay for
congestion and vice-versa, this intertwines the two components
making their relative values very sensitive.

To address this issue, we propose making a subtle change that
removes this vulnerability. If we divide Eq. 1 through by (1-Aij),
we obtain Eq. 5:

 nn
ij

ij

ij

nij

ij

nij

ij

n
cd

A

A

A

cA

A

dA

A

C
�

�
�

�

�
�

�
�

� 11

)1(

11
 (5)

This does not change path selection for conventional non-
pipelined routing, since all routes from a given source to sink will
evenly scaled by (1-A)-1. However, this does change the behavior
for pipelined signals. If we revisit our example from Figure 13
and substitute the new cost formulation we get the results shown
in Eq. 6 and 7:

 c dcdc(d) 1011.819)9(911.0 ����� (6)

 c dcdcd)(10105)5(1551 ����� (7)

Since both the congestion and delay costs are necessarily positive
numbers, we can see that more balanced paths are now selected
over unbalanced paths without the need to meticulously adjust the
relative values of an architecture’s congestion and delay costs.
However, the router still has the option of selecting the
unbalanced path should this path become less congested in future
routing iterations.

Now, we can see that the cost of an entire L-latency path becomes
the summation of the congestion encountered plus the relative
delay of each link adjusted by its individual criticality. This
ensures that a link with high criticality will not be able to mask
high congestion.

 ��
��

��
L

i

ii

L

i

C
00

CostcongestiontimingCost (8)

If we combine all of these techniques we get the Armada timing-
driven pipeline routing algorithm. This begins with PathFinder’s
basic timing-driven congestion resolution engine in an outer loop.
Taking a suggestion from [1], we saturate link criticality at 0.99.
However, we then depart from the conventional routing problem
entirely by adding in a modified QuickRoute inner loop, shown in

Figure 14, that has been enhanced with our timing-driven sink
ordering, assumed criticality methodology and new timing-driven
cost formulation.

8. Results
To determine the effectiveness of the Armada algorithm, we
follow PipeRoute and QuickRoute’s lead and test our codebase
within the RaPiD framework. Our evaluation encompasses ten
RaPiD netlists, shown in Table 1, with a wide range of pipeline
requirements. These are mapped to three different RaPiD
architectures: the original architecture that contains 16 logic
blocks per cell, length-4 short tracks, length-16 long tracks, and
three optional registers at each bus connector, and two other
architectures that use a similar arrangement but substitute long
tracks of length 4 and 8. These modified architectures allow us to
test harder timing-driven routing problems by increasing the
number of pipelining resources and, therefore, the number of
registering options.

To gather our results, we first ran all ten netlists through the
placer from the original PipeRoute work [6], which provides a
fixed, pipelining-aware placement as a starting point for all three
algorithms. While conventional placement always attempts to
group interconnected blocks as closely as possible, this is not
necessarily favorable on pipelined architectures. This is because,
as mentioned earlier, high latency connections may need to take a
circuitous route if there are not enough pipelining resources
between the logic blocks to acquire the appropriate registering.

For the PipeRoute router, we use the version from [5] that
augmented the original PipeRoute algorithm with a rudimentary
timing-driven formulation. In the new methodology, the
maximum criticality encountered by any link between a given
source and sink is used during the following routing iteration to
determine the timing versus congestion significance. For
example, if a given three-latency pipelined signal is connected
from the source to the sink by four segments of delay (1, 1, 1, 3),
the criticality passed on to PathFinder’s timing-driven cost
formulation will be three divided by the critical path delay for all
PipeRoute explorations between the source/sink pair. Of course,
this introduces some inaccuracies into the system. Not only does
this methodology suffer from the relative cost interrelationship
between congestion and timing that inspired our modified cost
formulation, it also suffers from the false link criticality
predictions that we addressed with our assumed criticality
approach.

Testing began with the original RaPiD architecture. We first
performed six independent PipeRoute placement and routing runs
and gathered the best results. The placements from these results
were then routed using congestion-driven QuickRoute, the
Armada algorithm, and the Armada algorithm substituting in the
original PathFinder cost formulation. Although we followed [3]’s
suggestion of k=1 for both QuickRoute and Armada, we
arbitrarily set the number of assumed criticality searches for both
Armada runs to AC=10.

In our tables, Best Track results are the average track
requirements and timing when each tools searches separately for
the minimum routable architecture for all ten netlists. Match PR
results are obtained when each tool is given the same number of
tracks that PipeRoute requires for a given netlist. Match Tracks
results are obtained when each tool is given the maximum number

Armada(net, numAC, maxK,critPath)
1 for all nodes N in architecture, for all latencies L, for all assumed

criticalities CFac, clear n.visited[L][CFac]
2 sort net.sinks by non-decreasing latency, non-increasing criticality
3 insert source into net.routingTree
4 for all sinks K in net.sinks

Initialize PQ with existing routes
5 for all nodes N in net.routingTree, for CFac = 1/numAC to 0.99
7 if CFac != 0.99 && N.delay>(CFac +1/numAC)*critPath
8 continue
9 else
10 insert N into PQ at N.timingCost(CFac), latency N.latency
11 end if
12 end for

Search for L-latency route to sink
13 while !PQ.empty
14 remove cheapest node N, latency L, assumed crit. CFac from PQ
15 if N == K && L == K.latency
16 add route to net.routingTree, empty PQ, clear all n.visited
17 continue next sink
18 else if N.visited[L][CFac] == maxK, continue
19 else
20 N.visited[L][CFac]++
21 for each neighbor X of N
22 if X.visited[L][CFac] < maxK
23 if X != K && X != register
24 if CFac != 0.99 && X.delay>(CFac +1/numAC)*critPath
25 continue
26 else
27 push X into PQ at X.timingCongestionCost(CFac),

latency L
28 end if
29 else
30 calculate actual crit CR to X
31 if X == register && K.latency <= L + 1
32 push X into PQ at X.timingCongestionCost(CR),

latency L + 1
33 else
34 push X into PQ at X.timingCongestionCost(CR),

latency L
35 end if
36 end if
37 end if
38 end for
39 end if
40 end while
41 return failure
42end for

Figure 14. Armada Timing-Driven Pipeline Net Router.

Table 1. RaPiD Netlist Characteristics. Min Registers is the
minimum number of registers a netlist needs assuming
maximum register sharing. Max Latency refers to the largest
pipelining depth for a single sink.

Netlist RaPiD Cells Min Registers Max Latency
decsnr 8 0 0
firtm 16 20 16
fft16 12 40 3
sobel 18 49 5

matmult4 16 129 31
imagerapid 14 149 11

sort_rb 11 159 31
sort_g 11 159 32

cascade 16 226 21
firsymeven 16 377 31

of tracks required by any of the QuickRoute-derivative tools for a
given netlist. Match Tracks results do not include results for
PipeRoute as the provided codebase does not allow the placement
and routing steps to be separated. Given a different architecture,
PipeRoute will also change the placement.

As seen in Table 2, our first surprise is that the original
congestion-driven QuickRoute actually performs nearly as well as
the new timing-driven PipeRoute formulation. Although based
upon the results in [3] we would expect QuickRoute to provide
marginally better track counts, we believe that the similar timing
results indicate that the timing-driven PipeRoute formulation is

Table 2. Normalized Results for Original RaPiD Architecture.
All results normalized to the best Armada run.

 Routing Algorithm Tracks Crit. Path
Best Track PipeRoute-TD 1.08 1.51
 QuickRoute 1.03 1.59
 Armada 1.00 1.00
 Armada-PathFinder 1.03 1.18

Match PR PipeRoute-TD 1.08 1.51
 QuickRoute 1.08 1.68
 Armada 1.08 1.00
 Armada-PathFinder 1.08 1.17

Match Tracks QuickRoute 1.05 1.67
 Armada 1.05 0.99
 Armada-PathFinder 1.05 1.18

Table 3. Normalized Results for Length-8 Long Tracks. All
results normalized to the best Armada run.

 Routing Algorithm Tracks Crit. Path
Best Track PipeRoute-TD 1.00 1.60
 QuickRoute 0.97 1.59
 Armada 1.00 1.00
 Armada-PathFinder 1.02 1.27

Match Tracks QuickRoute 1.02 1.64
 Armada 1.02 1.00
 Armada-PathFinder 1.02 1.28

Table 4. Normalized Results for Length-4 Long Tracks. All
results normalized to the best Armada run.

 Routing Algorithm Tracks Crit. Path
Best Track PipeRoute-TD 1.01 1.54
 QuickRoute 1.02 1.49
 Armada 1.00 1.00
 Armada-PathFinder 1.05 1.19

Match Tracks QuickRoute 1.05 1.50
 Armada 1.05 0.99
 Armada-PathFinder 1.05 1.19

largely ineffective. As predicted, it is likely that inaccuracies
within the timing-driven formulation itself greatly limit the ability
for optimization.

In contrast, the Armada algorithm finds vastly superior timing
results with essentially identical routability. Clearly, Armada is
able to improve timing by roughly 40-60% over previous
approaches – even occasionally using fewer tracks. This is likely
because the timing-driven cost formulation provides additional
direction to the QuickRoute-like searches avoiding some
occurrences of self-blocking. Furthermore, we can also see that
our new timing-driven cost formulation functions as intended
when we substitute PathFinder’s into the Armada algorithm. We
can see that this alone is responsible for at least a 15%
performance gain.

As seen in Table 3 and Table 4, this trend continues if we migrate
to more difficult routing problems. We repeated the testing
methodology used on the original RaPiD architecture on
architectures with double and quadruple the number of pipelined
switch opportunities. First, we can see that the problem becomes
more difficult from the standpoint of congestion resolution. Long
tracks have been split into multiple independent segments, so
although the routing can be compressed into fewer tracks,
contention for these resources becomes fiercer. This is shown by
the fact that the track gap between PipeRoute and the
QuickRoute-derivatives mostly closed. This is also the reason

Table 5. Normalized Results for Armada, k=1, 2, 4. All
results normalized to k=1 values

 Tracks Crit. Path
16-Length k = 1 1.00 1.00
 k = 2 0.99 1.00
 k = 4 1.00 0.99

8-Length k = 1 1.00 1.00
 k = 2 1.00 0.95
 k = 4 0.99 0.97

4-Length k = 1 1.00 1.00
 k = 2 1.01 0.97
 k = 4 1.01 0.97
Table 6. Normalized Results for Armada, AC=10, 8, 6, 4, 2.

All results normalized to AC = 10 values

 Tracks Crit. Path
16-Length AC = 10 1.00 1.00
 AC = 8 0.98 1.04
 AC = 6 1.00 0.97
 AC = 4 0.99 1.02
 AC = 2 1.00 0.98
 AC = 1 1.10 1.18

8-Length AC = 10 1.00 1.00
 AC = 8 0.99 0.95
 AC = 6 1.02 0.96
 AC = 4 1.00 0.99
 AC = 2 1.02 0.97
 AC = 1 1.12 1.32

4-Length AC = 10 1.00 1.00
 AC = 8 1.01 0.99
 AC = 6 1.01 0.99
 AC = 4 0.99 1.04
 AC = 2 1.00 1.09
 AC = 1 1.38 1.59

that we no longer show Match PR results.

Although we have proven that Armada can obtain significantly
better pipelined routing results than any of its predecessors, there
are still two outstanding questions regarding its effectiveness.
First, as mentioned earlier, the maximum visitation factor that we
used in our testing (k=1) was suggested by the original
QuickRoute paper. Even though we are operating within the same
architectural framework, the timing-driven nature of our problem
formulation might make more thorough explorations attractive.
As seen in Table 5, there is some correlation between k and the
quality of results, but the change is relatively minor. While it
seems there is some advantage to increasing k to two or four, this
is likely highly architecture-specific.

Second, we completely arbitrarily chose the number of assumed
criticality searches that we would use (AC=10). Since the
assumed criticality completely controls how paths weigh
congestion versus delay for the majority of a given route, we
expect the quality of the timing to heavily depend upon the
granularity of our assumed criticality factors. However, looking
at Table 6, we see that even decreasing the number of assumed
criticality searches to merely two (only 0.5 and 0.99), does not
dramatically affect results unless we are on the architecture with
the shortest long tracks and, thus, the largest number of registered
switchpoints.

Although this may seem counter-intuitive, looking at the routed
results found by Armada we see this is actually an artifact of the

original RaPiD design philosophy. In almost all cases, the critical
path reaches some architectural limit – two to three bus
connector-to-bus connector delays or less. If we consider that
RaPiD was built to be a deeply pipelined architecture, this should
not be particularly surprising. In this case, the router is merely
finding exactly the types of routes that the original designers had
anticipated. If the router achieves such an extremely low critical
path delay, all signals actually become either 50% or 100%
critical making AC=2 work exceedingly well. In fact, it is only
when we shrink the length of long tracks considerably and add a
huge number of registers that we begin to produce paths that do
not register at almost every switchpoint they traverse. However,
we expect this is also highly architecture-specific. The majority
of systems do not have the extremely predictable routing
characteristics of the RaPiD architecture and we expect more
conventional pipelined FPGAs to be far more sensitive to the
number of assumed criticality searches.

9. Future Work
Although Armada performed very well on the RaPiD architecture,
the experiments outlined in this paper relied heavily on the
existing PipeRoute codebase. Other FPGA architectures, like the
pipelined island-style devices proposed by Singh and Brown,
raise a serious unanswered question for a pipeline-aware CAD
toolflow as a whole. While the Armada router itself operates on
an architecture-independent graph, the quality of results depends
wholly upon the quality of the placement. Although the
placements obtained for our experiments were certainly sufficient,
the pipeline-aware placement problem itself is largely
unanswered.

PipeRoute addresses pipeline requirements during its placement
phase by first assuming that all pipelined sinks for a given net will
share as many registers as possible. To calculate the quality of a
given placement, it temporarily binds these registers to real
locations in the architecture. While this appears to function
adequately for RaPiD, this will likely be too rudimentary for more
flexible or complex architectures. Not only does RaPiD’s 1-D
nature make the placement problem already very simple, RaPiD
has a very regular, predictable and pipelining-rich routing
structure. Thus, any inaccurate assumptions made in the
placement phase can likely be compensated for easily during the
routing phase.

However, we expect that better placement algorithms will be
necessary for the majority of other pipelined architectures in order
to make the pipelined routing problem tractable. Not only does
the 2-D nature of island-style FPGAs automatically make the
routing problem more difficult, we believe that errors in the
placement can dramatically increase the likelihood that
QuickRoute-derivative searches will run into problems with self-
blocking sub-optimality.

10. Conclusions
Although we have shown in this paper that a timing-driven
solution to the N-Delay Routing problem is necessary to build fast
and efficient pipelined FPGAs, previous solutions have serious
limitations. At the expense of both system area and timing, early
pipelined architectures avoided the problem altogether by
constraining their retiming tools and the fundamental design of
the architectures themselves. Although later attempts tackled the
N-Delay Routing problem head-on, these had several

shortcomings including limited routability on modern FPGA
architectures and poor timing performance.

Primarily, the timing-driven N-Delay Routing problem is difficult
because, from the viewpoint of conventional CAD tools, it
contains aspects of both placement and register duplication that
must be solved simultaneously with the normal routing problem.
To address these issues we developed a new methodology to
determine path criticality and a new timing-driven cost
formulation. Leveraging aspects from a host of previous routers
we combined these to form the Armada timing-driven pipeline-
aware routing algorithm. On three RaPiD architectures, this
algorithm was shown to provide up to 60% better average timing
results without dramatically affecting routability.

Although there are still some unanswered questions regarding a
complete timing-driven pipeline-aware FPGA CAD tool suite, we
believe that the Armada routing algorithm is the first step towards
developing modern pipelined reconfigurable computing devices.

11. References
[1] Betz, Vaughn, Jonathan Rose, and Alexander Marquardt,

Architecture and CAD for Deep-Submicron FPGAs, Kluwer
Academic Publishers, 1999.

[2] C. Ebeling, D. Cronquist and P. Franklin. “RaPiD -
Reconfigurable Pipelined Datapath” . 6th International
Workshop on Field-Programmable Logic and Applications,
1996: 126-35.

[3] S. Li and C. Ebeling. “QuickRoute: A Fast Routing
Algorithm for Pipelined Architectures” . IEEE International
Conference on Field-Programmable Technology, 2004: 73-
80.

[4] L. McMurchie and C. Ebeling. “PathFinder: A negotiation-
based performance-driven router for FPGAs”. ACM/SIGDA
Symposium on Field-Programmable Gate Arrays, 1995:
473-82.

[5] A. Sharma, Place and Route Techniques for FPGA
Architecture Advancement, Ph.D. Thesis, University of
Washington, Dept. of EE, 2005.

[6] A. Sharma, C. Ebeling and S. Hauck. "PipeRoute: A
Pipelining-Aware Router for FPGAs". ACM/SIGDA
Symposium on Field-Programmable Gate Arrays, 2003: 68-
77.

[7] A. Sharma, C. Ebeling, S. Hauck, "PipeRoute: A Pipelining-
Aware Router for FPGAs", University of Washington, Dept.
of EE Technical Report UWEETR-2002-0018, 2002.

[8] D. Singh and S. Brown. “ Integrated Retiming and Placement
for Field Programmable Gate Arrays” . ACM/SIGDA
Symposium on Field-Programmable Gate Arrays, 2002: 67-
76.

[9] D. Singh and S. Brown. “The Case for Registered Routing
Switches in Field Programmable Gate Arrays” . ACM/SIGDA
Symposium on Field-Programmable Gate Arrays, 2001:
161-9.

[10] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung,
O. Rowhani, V. George, J. Wawrzynek, and A. DeHon.
"HSRA: High-Speed, Hierarchical Synchronous
Reconfigurable Array". ACM/SIGDA Symposium on Field
Programmable Gate Arrays, 1999: 125-34.

