

APHYDS: The Academic Physical Design Skeleton

Scott Hauck
Department of Electrical Engineering

University of Washington, Seattle, WA 98195, USA
hauck@ee.washington.edu

Abstract

Physical Design is a complex CAD topic, which is
difficult to teach to electrical and computer engineers. I
have developed a complete skeleton for teaching basic
algorithms such as Fiduccia-Mattheyses partitioning,
variable node size sliceable floorplanning, simulated
annealing placement, maze router based global routing,
and left-edge algorithm channel routing. The Java-based
toolset is portable, flexible, and provides a powerful
interactive graphics interface.

Introduction
Today’s electronics rely heavily on Computer-Aided

Design (CAD) tools to support their design. As such,
CAD has become a complex field, with a large amount of
new, fundamental algorithms that need to be mastered. It
also spans both electrical engineering and computer
science; while electrical and computer engineers will need
to understand how the tools work in order to understand
how to use them effectively, much of the underlying
theory and design requires fundamental concepts of
computer science. As such, it is an important yet difficult
subject to teach to undergraduates and graduate students.

When I joined the Department of Electrical
Engineering in 1999 I began teaching a course on Physical
Design, the portion of CAD after logic synthesis that
concentrates on converting netlists into physical
realizations. My first offering was based heavily on a
course taught at Northwestern University by Majid
Sarrafzadeh, which made use of the DISPLAY tool [1].
DISPLAY is a simple program that takes commands from
a text file of simple primitives (rectangles, text, etc.) to
display diagrams in X-windows. To use the tool for a
physical design class, students are responsible for creating
the entire system: this ranges from file reading and data
structure development to writing complete complex
algorithms, culminating in the emitting of a control file
that DISPLAY uses to show the results.

After my first quarter of struggling with compiler bugs,
compatibility issues, and the overall complexities of CAD
development faced by electrical engineers in a 10-week
class, I realized an alternative was needed. This paper
describes the result: APHYDS, an integrated, Java
physical design CAD toolsuite optimized for education

purposes. It provides visualization and I/O routines, as
well as basic data structures and interactivity, for the
“canonical” standard algorithms in physical design.
Students then focus strictly on implementing the aspects of
the algorithms that are most important from a learning
perspective. With the portability and interactivity of Java,
and the guidance of a premade skeleton, the class has
become significantly more effective and compelling.

Approach
My goal in developing Aphyds was to allow students

who have a basic programming background to master
multiple algorithms in a single academic quarter. Also, I
felt that graphical display and interactivity was essential to
a functioning CAD tool, and having a complete end-to-end
system integrated together would be motivating for the
students. A final design goal was to concentrate on
fundamental, important algorithms from Physical Design,
skipping the “latest and greatest” to focus on inculcating
the background for future in-depth research.

In order to test-drive the system, and to help in
development, an entire working toolsuite - including
implementations of all algorithms students will eventually
develop –was created over a 6 month period. Note that
this also yielded a working system that has become a
primary tool in lecture for demonstrating working
algorithms, as well as a comparison target when students
develop their own code. The system is approximately
14,800 lines of Java code. Special care was paid to
parameter checking, assertion checking, and general error
detection to make the system as bullet-proof as possible.

I examined each algorithm to identify the important
subroutines, from an intellectual standpoint, which I then
removed. Next, I comprehensively documented these
procedures and the routines they required, as well as
inserting additional diagnostic code around these routines.

The system was developed in Java for multiple reasons:
• Java is portable – students can develop code on PCs,

Macs, UNIX, etc. without any code alterations. This
includes portable graphics operations.

• The basics of Java are very close to C/C++, making it
possible for students to learn the language on their own
in a week or two.

• Java has good error detection & response facilities.

• Java’s strong typing and memory model avoid common,
pernicious bugs.

• Java’s built-in documentation facility, JavaDoc, helps
makes easily documented code.

• Java’s iterators allow the encapsulation of complex data
structure searches and other operations into simple
objects.

Algorithms covered
Our goal is to introduce fundamental physical design

algorithms, both to illustrate the constraints and to give
students the background that is assumed by most CAD
research efforts. These are organized in 6 programming
assignments. Listed below are the assignment details,
including the number of lines of code the students have to
write (based on the solution I produced, including blank
lines and comments) and the average amount of time it
took to write in the most recent class offering.

Assignment 1: Learn Java and the basic Aphyds data
structures by writing a topological sort to determine
critical path length (43 lines, 15 hours).

Assignment 2: Fidducia-Mattheyses bipartitioning.
Students produce a function to compute the single net gain
function, and the FM main partitioning loop. The bucket
data structure is provided to them. (113 lines, 20 hours).

Assignment 3: Floorplanning sliceable floorplans with
variable node sizes. Students write subroutines to create
vertically and horizontally split floorplans from sub-
floorplans, and to merge the two lists. The slicing trees
are pre-made. (119 lines, 13 hours).

Assignment 4: Simulated Annealing placement.
Students write a semi-perimeter cost function, a move
function, and the main simulated annealing loop. A semi-
adaptive cooling schedule is provided, as is a greedy
iterative improvement placer as a model for the annealer.
(138 lines, 11 hours).

Assignment 5: Global routing via maze routing.
Students develop a complete router. The routing tree data
structure, and iterators to encapsulate the routing channel
neighbor function are provided. (150 lines, 20 hours).

Assignment 6: Channel router. Students create a left-
edge algorithm by inserting arcs into the vertical and
horizontal constraint graphs, and write the main left-edge
algorithm routine. The HCG and VCG data structures are
provided. Unrouteable conflicts are avoided by moving
some branches to polysilicon. (53 lines, 9 hours).

Classroom experiences
I have taught the class three times at the University of

Washington – the first year with DISPLAY, and the
following two with Aphyds. The fourth offering will be
this winter quarter. The tool has been a significant
success. While unscientific, trends in student evaluations
and enrollment over the years are illuminating:

 99-00 00-01 01-02 02-03
Enrollment 23 13 24 32
Ave. Rating 4.5/5.0 4.8/5.0 4.8/5.0 ---

The student evaluations are consistently higher for the
APHYDS version of the class, and the enrollment numbers
have been consistently rising since the introduction of
APHYDS. There are a large number of complicating
factors that make this data suspect, but it does provide
interesting datapoints.

There are several things I have learned about the
system from the last two years, some good and some not.
Aphyds advantages
• By handling the graphics and basic data structures, a

much greater range of applications can be covered.
• Interactivity can be added to the tools, for realism and

exploration. For example, facilities exist in Aphyds to
allow students to move nodes by hand in the partitioning
and placement phases, allowing students to explore.

• Tools can be augmented with statistics and graphs to
illuminate concepts. For example graphs of cutsize
during partitioning, and cost function during annealing,
graphically expose how the programs work in practice.

• The completed instructor version becomes a compelling
lecture aid. The tool can be run in class to show features
of the covered algorithms.

• Continuous improvement has significantly improved the
tool. A $50/homework bug-hunt in the first year
exposed tool limitations and error checking omissions
that I have corrected for future classes. Also, a redesign
of an excessively hard task (global routing) via more
intuitive data structures approximately halved student
development time, bringing it in line with other
assignments, and boosted success rates.

Aphyds disadvantages
• Integrating complex, unstructured final projects for a

semester course is difficult, because students have no
exposure to the GUI design necessary to add a new tool.

• The original class provided a programming “boot camp”
for some students, forcing them to become better
programmers due to the sheer bulk of work.

Conclusions
I have developed a toolsuite for teaching Physical

Design CAD algorithms to electrical engineering students.
It provides an infrastructure supporting portable graphics,
and basic I/O and data structures, to allow students to
focus on the essential, intellectual portions of the CAD
algorithms. The system has been proven highly effective
in two offerings of the class.

References
[1] M. Sarrafzadeh, C. K. Wong, An Introduction to VLSI
Physical Design, McGraw-Hill, 1996

