

Active Learning Techniques in a CAD Course
Scott Hauck <hauck@ee.washington.edu>

Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA

Abstract
Physical Design is a complex CAD topic, which can be

challenging to teach to electrical and computer engineers.
This paper covers simple techniques for adding active
learning into a CAD classroom. These techniques are
easily integrated into offerings at other institutions.

Introduction
I teach a course on Physical Design called EE541:

Automated Layout of Integrated Circuits. This course,
intended primarily for graduate students in the electrical
engineering (and some computer science), serves as a
quick introduction to most aspects of physical design. The
goal is to quickly get students conversant on the major
classical algorithms in the field, and how the individual
pieces fit together into an integrated whole. The course
covers Partitioning, Floor-planning, Placement, Global
and Detailed Routing, Compaction, and Retiming. It runs
for 2 hours a day, twice a week, for 10 weeks.

The tendency in a course like this is to show the
techniques in their fully-formed versions, meaning
students don’t grasp the process of how to create these
algorithm, or how to approach new problems. A solution I
have adopted is that of active learning; simply put, find
ways for students to teach themselves the concepts, instead
of just receiving the information as given from the
lecturer. Note that while active learning techniques do
form the starting point of all topics, via somewhat ill-
constrained optimization problems done by students in
class, and the end-point, via programming assignments,
lecture is still used for perhaps 90% of the class time.

The active learning techniques split into three major
categories, each of which will be described in the sections
that follow: programming assignments in Java via the
Aphyds framework, pencil-and-paper optimization
problems done in class, and wooden-block based
optimization problems also done in class.

CAD Programming: Aphyds
Just as many others do, I ask my students to program up

several classical algorithms. This is done within the
Aphyds framework [Hauck03], a 14k line Java program
that includes file I/O, graphics, basic data structures, and
the wrapper for the algorithms. Students put in the guts of
the major algorithms, each of which involves 10-20 hours
of programming and about 100-200 lines of code. The
programs are: (1) static timing estimator (used as an easy
introduction to Java and Aphyds for the students); (2)
Fidducia-Mattheyses bipartitioning; (3) Floorplanning

sliceable floorplans with variable node sizes; (4)
Simulated Annealing placement; (5) A maze global router;
(6) channel routing via the left-edge algorithm.

The completed Aphyds system is also given to students
in an encrypted, compiled Java JAR. This allows students
to check their work, and also serves as demonstrations
during lecture to help show students how the algorithms
work. Details of Aphyds are presented in [Hauck03]. The
code is freely available to other educators.

Pencil-and-Paper Exercises
Although complete CAD algorithms are complex

optimization tools, most of the basic concepts are quite
intuitive for students, and students’ natural approaches to
these problems are generally very good. Often all that is
necessary is some time to reason through the problem to
get a solution. However, traditional lectures do not
generally give students this time.

To deal with this, before starting any of the major
sections of the class I first give the students a simple, often
ill-defined, problem to solve in class. The simplest are
paper-and-pencil optimization problems, shown in figures
1-3. Specifically, I hand out to small groups of students a
single sheet of paper with an optimization problem on it,
without explaining to students how these problems are
“really” solved. They are given about 20 minutes to solve
the problem in teams. During that time I circulate through
the classroom answering questions, though typically the
answer is “what do you think is a reasonable way to
approach that problem”, or “if this was an electronic
circuit, what would you do”; this is generally sufficient. I
make notes on approaches I’ve seen students taking, and
problems they have encountered. These notes become a 5-
minute wrap-up session, in lecture format, on what the
students have done. This wrap-up is an excellent
introduction to the topic areas, since most of what students
stumbled upon is the very subject matter I planned to
cover. Students are excellent at recreating most of the
major discoveries in CAD algorithm if given time to do so.

Consider my problem for floorplanning. Students are
given a piece of graph paper, and the instructions:

“Please create a layout of an apartment with four
rooms: Kitchen 4x5, Bathroom 3x5, Living/Dining
Room >=24 squares, Bedroom >=30 squares. All
rooms are rectangular. The apartment should have
the smallest possible rectangular area.”

Students quickly realize that there are communication
needs in the layout – the dining room and kitchen should
generally touch, and access to the bathroom from the
dining room and kitchen is important. They then generally

do multiple solutions, evaluating different approaches,
especially in the face of the variable room size constraints.

O
A

C
B

O
A

C
B

Figure 1. Retiming exercise. “Make the following

circuit have as high a clock rate as possible. All gates
have a delay of 1ns, all registers have 0 delay”.

A

A

A

B

B

A

A

A

A

B

B

A

Figure 2. Global Routing. “Route together all the

A’s, and all the B’s, minimizing the amount of metal.
Dark areas are impassible barriers”.

For the retiming problem, students can consider not
only register movement (push the register on O back one
gate), but also logic restructuring (remove an A*B from
the feedback path) and repipelining (add another register
to all inputs). These are natural discoveries that students
easily make.

Figure 3. Compaction. “Minimize the channel

height. Minimum 3λ spacing”.

Wooden Block Based Exercises
Some problems, such as placement and partitioning, are

best solved by an iterative approach, which is difficult to
simulate via paper and pencil. Solving each problem
generally involves starting with an initial, poor solution,
and then making small improvements until an overall good
result is achieved. Students naturally adopt this approach
themselves. To support this, I have created a physical
analog of a netlist out of high-tech components: kite
string, wooden alphabet blocks, and basic fasteners (see
Figure 4). I hand out copies of the puzzle to groups of 4-5

students each, and ask them to partition or place the
design.

Figure 4. Block and string model (left), with close-

up of one block (right).
By having the physical model, students can quickly

explore many different approaches to the problem. Many
often discover iterative improvement techniques on their
own, as well as develop cost models (number of nets cut
by the partitioning, or wirelength) and clustering
techniques. I have found the concrete, physical nature of
the task motivates students, and reaches some students
who often have trouble with more abstract formulations.

Figure 4(right) shows the current version of the model.
I use wooden alphabet blocks, since they are cheap and
have letters to designate individual nodes already. I use
this to compare student efforts with my own solution. I
drilled small holes into the blocks, then screwed in a screw
eye fastener. In my original version of the puzzle I tied
string directly to the eye fastener, but this meant it was
very difficult to untangle the model after use. Instead, I
use a binder ring (large metal circle), which can be opened
and closed easily. To make the wires, I have taken lengths
of kite string and added ends of ring terminal connectors
(the yellow ends, crimped onto the string). All the parts
can easily be obtained from toy, office supply, and
hardware stores. This arrangement makes it easy to set up
the puzzles for each offering, and have students untangle
things when they work, by quickly slipping the strings on
and off of the binder ring.

Conclusions
Incorporated active learning tasks tends to help

promote student learning by having the students discover
concepts on their own. However, how to incorporate
active learning into specific engineering classes is not
often obvious. In this paper I have covered multiple
techniques for active learning in CAD. Most are easily
replicatable at other institutions; the only complex system,
Aphyds, is available from the author’s website at the
University of Washington. These techniques have proven
to be very popular with students, and seems to
significantly improve student engagement with the class.

References
[Hauck03] S. Hauck, “APHYDS: Academic Physical
Design Skeleton”, IEEE Intl. Conf. on MSE, 2003.

