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Abstract 

The A* algorithm is a well-known path-finding 

technique that is used to speed up FPGA routing. 

Previously published A*-based techniques are either 

targeted to a class of architecturally similar devices, 

or require prohibitive amounts of memory to 

preserve architecture adaptability. This work 

presents architecture-adaptive A* techniques that 

require significantly less memory than previously 

published work. Our techniques are able to produce 

routing runtimes that are within 7% (on an island-

style architecture) and 9% better (on a hierarchical 

architecture) than targeted heuristic techniques. 

Memory improvements range between 30X (island-

style) and 140X (hierarchical architecture).   

1. Introduction 

Routing is an important step in the FPGA toolflow. 

FPGAs have a finite number of discrete routing 

resources, and the effectiveness of an FPGA router 

directly impacts the performance of an application 

netlist on a target device. Pathfinder [8] is the current, 

state-of-the-art FPGA routing algorithm. Pathfinder 

uses an iterative, negotiation-based approach to solve 

the FPGA routing problem. During the first routing 

iteration, nets are freely routed without paying 

attention to resource sharing. Individual nets are 

routed using a shortest path graph algorithm. At the 

end of the first iteration, resources are generally 

congested because multiple nets have shared them. 

During subsequent iterations, the cost of using a 

resource is increased based on the number of nets 

that share the resource, and the history of congestion 

on that resource. In effect, nets are made to negotiate 

for routing resources. If a resource is highly 

congested, nets that can use lower congestion 

alternatives are forced to do so. On the other hand, if 

the alternatives are more congested than the resource, 

then a net may still use that resource. 

Pathfinder has proved to be one of the most 

powerful FPGA routing algorithms to date. 

Pathfinder’s negotiation-based framework is a very 

effective technique for routing nets on FPGAs. More 

importantly, Pathfinder is a truly architecture-

adaptive routing algorithm. The algorithm operates 

on a directed graph abstraction of an FPGA’s 

interconnect structure, and can thus be used to route 

netlists on any FPGA that can be represented as a 

directed routing graph. We believe that Pathfinder’s 

adaptability is one of the main reasons for its 

widespread acceptance. 

When routing an individual net, Pathfinder uses a 

greedy search algorithm that is similar to Dijkstra’s 

algorithm [5]. A net that has n sink terminals is 

routed using n searches. Further, each net may be 

ripped up and rerouted multiple times as the 

algorithm progresses through routing iterations. All 

in all, employing a search-based algorithm to do 

FPGA routing is a computationally expensive 

process. 

A path-finding technique that is commonly used to 

speed up graph-based search is the A* algorithm [9]. 

The A* algorithm speeds up routing by pruning the 

search space of Dijkstra’s algorithm. The search 

space is pruned by preferentially expanding the 

search wavefront in the direction of the target node. 

When the search is expanded around a given wire, 

the routing algorithm expands the search through the 

neighbor wire that is nearest the target node. This 

form of directed search is accomplished by 

augmenting the cost of a routing wire with a 

heuristically calculated estimate of the cost to the 

target node. 

Equation 1:  nnn hgf +=  

Consider Equation 1, in which gn is the cost of a 

shortest path from the source to wire n, and hn is a 

heuristically calculated estimate of the cost of a 

shortest path from n to the target node (hereafter, we 

refer to this estimate as a ‘cost-to-target’ estimate). 

The value fn is the estimated cost of a shortest path 

from the source to the target that contains the wire n. 

The A* algorithm uses fn to determine the cost of 

expanding the search through wire n. Note that 

Dijkstra’s algorithm uses only gn to calculate the cost 

of wire n. 



To guarantee optimality, the cost-to-target 

estimate hn at a given wire n must be less than or 

equal to the actual cost of the shortest path to the 

target. Overestimating the cost to the target node may 

provide even greater speedups, but then the search is 

not guaranteed to find an optimal path to the target. 

Currently, there is no architecture-adaptive, memory 

efficient technique for performing A* search on 

FPGAs. Our goal in this paper is the development of 

architecture-adaptive A* techniques that can be used 

to speed up the FPGA routing process. 

2. Previous work 

The work described in [11,12] discusses directed 

search techniques that can speed up the Pathfinder 

algorithm. These techniques are similar to the A* 

algorithm, and use a formulation like the one shown 

in Equation 1 to calculate the cost of expanding the 

search through a routing wire. During the routing 

process, cost-to-target estimates are heuristically 

calculated using geometric information. Estimate 

calculations often require potentially complex 

operations, and the cost of calculating estimates can 

slow down the router. Further, the techniques 

presented in [11,12] may need to be re-implemented 

whenever the interconnect architecture is changed, 

and are not suitable for non-Manhattan interconnect 

structures. Two examples of such interconnect 

structures are shown in Figure 1. The architecture on 

the left [2] provides different types of routing 

resources in the horizontal and vertical directions, 

and the architecture on the right [6] has a strictly 

hierarchical interconnect structure. 
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Figure 1. Non island-style interconnect 

structures [2,6]. 
 

Recall that Pathfinder’s primary strength is its 

adaptability to different FPGA architectures. Existing 

A* techniques violate this assumption, since they 

hard-code interconnect assumptions into the cost-to-

target estimators. In this paper, we present 

architecture-adaptive runtime enhancements to the 

Pathfinder algorithm. Our techniques are also based 

on using the A* algorithm to speed up the search 

process. However, our methodology is adaptive and 

does not rely on architecture-specific heuristic cost-

to-target estimates. The techniques presented in this 

paper are routability-driven. Extending these 

techniques to include timing information may be 

accomplished in a manner similar to that described in 

[1]. 

3. Architecture-adaptive A* techniques 

The developers of the Pathfinder algorithm briefly 

discussed the idea of using the A* algorithm to speed 

up routing [8]. They proposed the use of a pre-

computed lookup table that would hold the cost of a 

shortest path from every routing wire to every sink 

terminal in the interconnect structure. Specifically, 

there would be a separate entry for every routing wire 

in this lookup table, and each entry would hold cost-

to-target estimates for all sink terminals in the 

interconnect structure. During routing, the cost-to-

target estimate at a routing wire could then be 

obtained using a simple table lookup. 

Pre-computing and tabulating cost-to-target 

estimates in this fashion is indeed an adaptive scheme. 

Shortest paths can be calculated using Dijkstra’s 

algorithm, and no architecture-specific information is 

required. The approach also guarantees an exact 

estimate of the shortest path in the absence of routing 

congestion. However, while the computational 

complexity of this approach is manageable, the space 

requirements for routing-rich structures may explode. 

Assuming an island-style, 10-track, 100x100 FPGA 

that has only single-length segments, the memory 

required to store the cost-to-target lookup table 

would be measured in GigaBytes. Memory 

requirements of this size are probably impractical. 

Sharing a table entry among multiple routing 

wires that have similar cost-to-target estimates can 

reduce the memory requirement of the lookup table. 

For example, if one hundred wires share each table 

entry, the size of the table may be reduced by one 

hundred times. The cost-to-target estimate for a given 

sink terminal is the same for all wires that share the 

table entry, and can be calculated using a Dijkstra 

search that begins at the wire closest to the target. 

Specifically, the entire set of wires that share a table 

entry constitutes a “super” source node for the 

Dijkstra search. In this manner, we ensure that the 

cost-to-target estimate for a given sink terminal is the 

cost of a shortest path from the wire that is closest to 

the sink terminal. From this point on, we will refer to 

this method for calculating cost-to-target estimates as 

the superDijkstra method. 

The important question now is how to identify 

wires that should share a table entry. Clearly, we 

would like to identify clusters of wires that have 

similar cost-to-target estimates, so that we can collect 

them together in a set that points to a single entry in 

the cost-to-target lookup table. Our first technique for 

clustering wires together is inspired by two 

observations: 



� The number of logic units in an FPGA is 

generally much less than the number of 

interconnect wires. 

� Logic units and interconnect wires are often 

interspersed in the FPGA fabric in a regular 

fashion. 

Based on these observations, our first technique 

uses a proximity metric (described in the Section 4) 

to associate each wire with a logic unit. After each 

interconnect wire has been associated with a logic 

unit, all wires associated with the same logic unit are 

assigned to the same cluster. The cost-to-target 

estimates for each cluster are calculated using the 

superDijkstra method and stored in a lookup table. 

Since the number of table entries is equal to the 

number of logic units, the memory requirements of 

this technique are significantly less than a lookup 

table that has a separate entry for each wire in the 

interconnect structure. 

 

 
Figure 2: An example of a tree-based, 
hierarchical interconnect structure. 

Assume that the wires shown in black 
belong to the same cluster. 
 

The associate-with-closest-logic-unit technique is 

probably well suited to island-style FPGAs. Since the 

logic and interconnect structures of an island-style 

FPGA are closely coupled, this approach may 

produce clusters of wires that have reasonably similar 

cost-to-target estimates. On hierarchical structures, 

the accuracy of an associate-with-closest-logic-unit 

approach may not be quite as good. For example, 

consider the tree-like interconnect structure in Figure 

2. The routing wire that is topmost in the 

interconnect hierarchy is equally close to all logic 

units, while the wires in the next level are equally 

close to half the logic units, and so on. Associating 

wires with individual logic units in a strictly 

hierarchical interconnect structure may result in large 

cost-to-target underestimates. 

In Figure 2, assume that the wires shown in black 

are associated with the black logic unit, and that the 

cost-to-target estimates for the cluster have been 

calculated using the superDijkstra method. The wire 

that directly connects to the black logic unit will have 

a cost-to-target estimate of five for the logic units in 

the northeast, southeast and southwest quadrants of 

the architecture. Note that the actual cost is nine 

wires for the northeast quadrant, and ten for the 

southeast and southwest quadrants. Estimates that are 

a factor of two below exact might slow down the 

router considerably. However, every wire in the 

cluster shown in Figure 2 does not suffer from the 

same problem. The cluster wire that is topmost in the 

interconnect hierarchy (black vertical line down the 

middle of Figure 2) will have exact cost-to-target 

estimates for all logic units in the northeast, southeast 

and southwest quadrants, and underestimates for 

logic units in the northwest quadrant. 

To summarize, one would expect the associate-

with-closest-logic-unit approach to work well for 

island-style structures. However, due to the 

approach’s potential limitations on hierarchical 

structures, we feel that a more sophisticated 

technique might be necessary to produce reasonably 

accurate cost-to-target estimates across different 

interconnect styles. 

4. K-means clustering 

Our second technique for architecture adaptive 

clustering problem is to use the K-means algorithm, 

guided by each resource’s cost-to-target estimates. K-

means clustering is an iterative heuristic that is used 

to divide a dataset into K non-overlapping clusters 

based on a proximity metric. Pseudocode for the K-

Means algorithm appears in Figure 3. 

 
 

 

//  D is the set of data-points in n-dimensional space that has to be divided into K clusters. 

//  The co-ordinates of a data-point di ∈ D are contained in the vector di.vec. 

//  di.vec is an n-dimensional vector. 

 
K-Means { 

for i in 1…K { 

randomly select a data-point di from the set D. 

initialize the centroid of cluster clusi to di.vec. 

} 

 

while (terminating condition not met) { 

for each di ∈ D { 

remove di’s cluster assignment. 

} 

 

for each di ∈ D { 

for j in 1…K { 

diffij = vectorDifference (di.vec,clusj.centroid) 

} 

assign di to the cluster clusy such that diffiy is 

minimum. 

} 

 

for j in 1…K { 

recalculate clusj.centroid using the data-points 

currently assigned to clusj. 

} 

} 

 

} 

 

  
Figure 3: Pseudocode for the K-Means 
clustering algorithm. 
 



We now briefly describe our choices for the 

alparameters that characterize the K-Means algorithm. 

Dataset (D): The dataset D simply consists of all 

the routing wires in the interconnect structure of the 

target device. 

Number of Clusters (K): We experimentally 

determined that a value of K greater than or equal to 

the number of logic units in the target device is a 

reasonable choice. Section 5 describes the effect of K 

on the quality of clustering solutions. 

Initial Seed Selection: The initial seeds consist of 

K/2 randomly selected logic-block output wires and 

K/2 randomly selected routing wires. 

Terminating Condition: The K-Means algorithm 

is terminated when less than 1% of the dataset 

changed clusters during the previous clustering 

iteration. 

Calculating Cost-to-Target Estimates: On 

completion of the clustering algorithm, the actual A* 

estimates for a cluster are calculated using the 

superDijkstra method. 

Co-ordinate Space and Proximity Metric: The 

most important consideration in applying the K-

Means algorithm to solve the interconnect clustering 

problem is the proximity metric. Specifically, we 

need to determine a co-ordinate space that is 

representative of the A* cost-to-target estimate at 

each wire in the dataset. In our implementation, the 

co-ordinates of a routing wire represent the cost of 

the shortest path to a randomly chosen subset S of the 

sink terminals in the interconnect structure. The co-

ordinates of each routing wire are pre-calculated 

using Dijkstra’s algorithm and stored in a table. 

If the number of sink terminals in S is n, then the 

co-ordinates of a routing wire di ∈ D are represented 

by an n-dimensional vector di.vec. Each entry cij (j ∈ 

1…n) in the vector di.vec is the cost of a shortest path 

from the routing wire di to the sink terminal j. The 

co-ordinates for all di ∈ D are calculated by 

launching individual Dijkstra searches from each sink 

terminal in the set S. Note that the edges in the 

underlying routing graph are reversed to enable 

Dijkstra searches that originate at sink terminals. At 

the end of a Dijkstra search that is launched at sink 

terminal j, the cost of a shortest path from every di to 

the terminal j is written into the corresponding cij 

entry of di.vec. The vector di.vec is used by the K-

Means algorithm to calculate the “distance” between 

the wire di and the centroid of each cluster. The 

distance between di and a cluster centroid is defined 

as the magnitude of the vector difference between 

di.vec and the cluster centroid. 

Note that the size of S directly influences the 

memory requirements of our clustering 

implementation. In the extreme case where S 

contains every sink terminal in the target device, the 

memory requirements would match the prohibitively 

large requirements of a table that stores the cost of a 

shortest path from each routing wire to every sink 

terminal. This would undermine the purpose of using 

a clustering algorithm to reduce the memory 

requirements of an A* estimate table. It is thus useful 

to sub-sample the number of sink terminals in the 

target device when setting up the set S. 

 

Table 1: Comparison of memory 
requirements. Table sizes are in GB. 

Pathfinder

Size ChanWidth |S| = NT |S| = 0.06*NT Estimates

10x10 10 0.0012 0.0001 0.0001

20x20 10 0.0151 0.0009 0.0007

30x30 10 0.0707 0.0043 0.0035

40x40 10 0.2152 0.0130 0.0106

50x50 10 0.5132 0.0310 0.0253

60x60 10 1.0474 0.0631 0.0518

70x70 10 1.9185 0.1155 0.0949

80x80 10 3.2449 0.1951 0.1607

90x90 10 5.1629 0.3103 0.2559

100x100 10 7.8268 0.4703 0.3882

110x110 10 11.4087 0.6854 0.5662

120x120 10 16.0986 0.9669 0.7994

130x130 10 22.1044 1.3275 1.0980

140x140 10 29.6517 1.7805 1.4735

150x150 10 38.9842 2.3406 1.9380

160x160 10 50.3636 3.0236 2.5045

170x170 10 64.0690 3.8462 3.1869

180x180 10 80.3979 4.8262 4.0001

190x190 10 99.6654 5.9825 4.9599

200x200 10 122.2044 7.3351 6.0828

Clustering

 
 

Table 1 compares the memory requirements of a 

clustering-based implementation that sub-samples the 

sink terminals with a table that stores the cost of a 

shortest path from each routing wire to every sink 

terminal in the target device. The target architecture 

is assumed to be a square island-style array that has 

only single-length wire segments. In our calculations, 

we assume that the sizes of a floating-point number, 

integer number, and a pointer are all four bytes. 

Column 1 lists the size of the target array, and 

column 2 lists the channel width of the target array. 

Let the total number of sink terminals in the target 

array be NT. Column 3 lists the memory requirements 

of a table that stores the cost of a shortest path from 

each wire to every sink terminal in the target device 

(i.e. |S| = NT). This corresponds to the exhaustive 

lookup table approach proposed by the creators of 

the Pathfinder algorithm in [8]. Column 4 lists the 

size of a table that stores costs to only 6% of the sink 

terminals (|S| = 0.06*NT), and column 5 lists the size 

of a table that holds cost-to-target estimates for the 

clusters produced by a K-Means implementation 

where K = number of logic units in the target device. 

All memory requirements are reported in Gigabyte. It 

is clear from Table 1 that our K-Means clustering 

approach avoids the impractical memory 

requirements of a table that stores costs to every sink 

terminal in the target device. 



Finally, note that the clustering process is a one-

time preprocessing step that needs to be performed 

only on a per-architecture basis. The table of cost-to-

target estimates produced by the clustering algorithm 

can be reused every time a new netlist is routed, and 

there is no additional runtime or memory cost 

incurred by our techniques on a per-netlist basis. 

5. Results 

We conduct three experiments to test the validity 

of using the K-Means algorithm to cluster the 

interconnect structure of an FPGA. The first 

experiment studies the effect of sub-sampling the 

sink terminals in the target device on the quality of 

clustering solutions. The second experiment studies 

the effect of the number of clusters (K) on quality, 

and the third experiment compares the quality of 

clustering-based A* estimates with heuristically 

calculated estimates. To evaluate the adaptability of 

our techniques, we conduct the experiments on an 

island-style interconnect architecture and HSRA [6]. 

Details of the architectural parameters used in our 

experiments can be found in [10].  

Since the truest measure of the quality of an A* 

estimate is routing runtime, our quality metric is 

defined to be the CPU runtime per routing iteration 

when routing a placement on the target device. The 

placements for our experiments on island-style 

structures are obtained using VPR [1], and the 

placements for our experiments on HSRA are 

produced using Independence [10]. 

Finally, note that our clustering techniques are 

guaranteed to produce conservative cost-to-target 

estimates, and hence these techniques have no effect 

on routing quality. 

5.1. Experiment 1 – Sub-sampling Sinks 

Experiment 1 studies the effect of sub-sampling 

the number of sink terminals in the target device. The 

set of benchmark netlists used in this experiment is a 

subset of the netlists shown in Table 2 (island-style) 

and Table 3 (HSRA). 

Figure 4 shows the variation in quality of 

clustering solutions. The x-axis represents the 

fraction of sink terminals that are used to represent 

the co-ordinates of each wire during clustering. The 

subset of sink terminals used in the experiment is 

randomly generated. The y-axis represents routing 

runtime measured in seconds per routing iteration. 

The curves show the variation in routing runtimes 

when using A* estimates produced by the K-Means 

clustering technique. The flat line shows the routing 

runtime when using architecture-specific heuristic A* 

estimates. The value of K in this experiment is equal 

to the number of logic units in the target device. 

Figure 4 shows that using as little as 5% of the 

sink terminals during clustering may be sufficient to 

produce estimates that are comparable to heuristic 

estimates. This is not a surprising result. Due to the 

regularity of an FPGA’s interconnect structure, a 

small subset of sink terminals may be sufficient in 

resolving the interconnect wires into reasonably 

formed clusters. Note that 5% of the sink terminals 

represents a variable number of sink terminals across 

the set of benchmark netlists. Depending on the size 

of the netlist, 5% of the sink terminals could be 

anywhere between two and fifty sink terminals. 
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Figure 4: The effect of sub-sampling 
the number of sink terminals on 
routing runtime. 
 

In Figure 5, we present the results of a second 

study that evaluates the quality of clustering solutions 

when using a small, fixed number of sink terminals. 

Figure 5 shows that using a small number (say 16) of 

randomly selected sink nodes may be enough to 

produce clustering solutions that are within 

approximately 15% of heuristic estimates. 

5.2. Experiment 2 – Number of Clusters (K) 

Experiment 2 studies the effect of the number of 

clusters (K) on the quality of clustering solutions. 

The set of benchmark netlists used in this experiment 

is identical to the set used in Experiment 1. We use a 

sub-sample of 6% for island-style architectures, and 

14% for HSRA. 
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Figure 5: Using a small number of sink 
nodes may produce clustering 
solutions of acceptable quality. 
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Figure 6: The effect of K on routing runtime. 

 

Figure 6 shows the effect of K on routing 

runtime. The x-axis shows the value of K as a 

fraction of the number of logic units in the target 

device, and the y-axis shows routing runtime in 

seconds per routing iteration. The charts in Figure 6 

show that a value of K equal to or greater than the 

number of logic units in the target device produces 

clustering solutions of qualities similar (within 10%) 

to heuristic estimates. 

5.3. Quantitative Comparisons 

Experiment 3 is a quantitative comparison of the 

quality of the A* estimates produced by our 

clustering techniques vs. heuristically calculated 

estimates. We use the following settings in this 

experiment: 

• Associate-with-closest-logic-unit technique. This 

technique is implemented by running only the first 

iteration of K-Means clustering. K is chosen to be 

equal to the number of logic units in the target 

device (K = NL), and initial seeds chosen to be 

logic unit outputs. The value of sink sub-sample is 

6% (|S| = 0.06*NT). These settings represent a 

relatively low-effort clustering step. This step 

might be undertaken when clustering runtime and 

memory requirements need to be very low. 

• K-Means clustering, with a sink sub-sample value 

of 6% (|S| = 0.06*NT) and K equal to the number 

of logic units in the target device (K = NL). NT is 

the total number of sink terminals in the target 

device, and NL is the total number of logic units in 

the target device. These settings represent an 

empirically determined sweet-spot for our K-

Means clustering technique. 

• K-Means clustering, with a sink sub-sample value 

of 20% (|S| = 0.2*NT) and K equal to twice the 

number of logic units in the target device (K = 

2*NL). These are aggressive settings that represent 

potentially high quality clustering solutions. Such 

settings may be used when absolutely the best 

quality clustering solutions are required, and 

clustering runtime and memory are of less concern. 

Table 2 shows the results we obtained on the 

island-style architecture. Column 1 lists the netlist, 

column 2 lists the size of the smallest square array 

needed to just fit the netlist, and column 3 lists 

routing runtimes obtained on using heuristic 

estimates. Columns 4, 5, and 6 list routing runtimes 

and compression ratios (shown in brackets) produced 

by the low-effort associate-with-logic-unit technique, 

K-Means clustering at empirically determined 

settings (|S| = 0.06*NT, K = NL), and K-Means 

clustering at high-quality settings (|S| = 0.20*NT, K = 

2*NL) respectively. Routing runtimes are normalized 

to runtimes produced by heuristic estimates. The 

compression ratio is defined as the ratio between the 

size of an exhaustive lookup table and a lookup table 

that holds cost-to-target estimates for the clusters 



produced by each of the three techniques. The 

compression ratio is a measure of the memory gap 

between a version of Pathfinder that uses an 

exhaustive lookup table and a version that uses cost-

to-target estimates produced by our clustering 

techniques. Column 7 shows routing runtimes 

produced by an undirected (no A*) search technique. 

Across the set of benchmarks, the runtimes 

produced by our K-Means clustering techniques are 

approximately 7% (high-quality settings) and 11% 

(empirical settings) slower than the runtimes 

achieved by heuristically estimating A* costs. Both 

heuristic and clustering-based estimates are 

approximately 6X faster than an undirected search-

based router. Finally, the routing runtimes produced 

by the associate-with-closest-logic-unit technique is 

within 5% of the runtimes produced by either of the 

K-Means clustering techniques. The near identical 

runtimes show that the associate-with-closest-logic-

unit approach presented in Section 3 works as well as 

a more sophisticated clustering approach on an 

island-style architecture. The geometric mean of the 

compression ratios is 30:1 for the associate-with-

closest-logic-unit approach and K-Means clustering 

at empirical settings. The ratio goes down to 18:1 for 

the higher-quality settings. This is to be expected, 

since we use double the number of starting clusters 

(K = 2*NL) at the higher-quality settings. 

 

Table 2: A comparison of routing 
runtimes on an island-style 
architecture. 

|S| = 0.06*NT |S| = 0.20*NT 
  

Netlist Size Heur Associate 
K-Means 
(K = NL) 

K-Means 
(K = 2*NL) no A* 

term1 6x6 1.00 0.89 (17:1) 1.44 (17:1) 1.22 (10:1) 4.22 

s1423 6x6 1.00 1.57 (20:1) 1.57 (18:1) 1.14 (10:1) 3.86 

i9 7x7 1.00 1.30 (17:1) 1.30 (17:1) 1.10 (10:1) 3.40 

dalu 8x8 1.00 0.93 (24:1) 0.93 (22:1) 1.15 (13:1) 4.04 

vda 9x9 1.00 1.20 (29:1) 1.08 (32:1) 1.08 (16:1) 4.78 

x1 10x10 1.00 1.13 (20:1) 0.94 (19:1) 1.17 (11:1) 4.66 

rot 8x8 1.00 0.95 (26:1) 1.11 (25:1) 0.89 (14:1) 3.32 

pair 9x9 1.00 0.89 (30:1) 0.94 (36:1) 0.94 (18:1) 4.83 

apex1 11x11 1.00 0.97 (40:1) 0.96 (37:1) 1.00 (23:1) 6.03 

dsip 14x14 1.00 1.13 (22:1) 1.06 (23:1) 1.07 (13:1) 8.21 

ex5p 12x12 1.00 1.03 (48:1) 1.12 (48:1) 1.05 (29:1) 7.30 

s298 16x16 1.00 1.58 (25:1) 1.37 (23:1) 1.36 (14:1) 10.38 

tseng 12x12 1.00 1.05 (27:1) 1.07 (29:1) 1.04 (17:1) 6.30 

alu4 14x14 1.00 1.09 (30:1) 1.14 (30:1) 1.14 (19:1) 7.48 

misex3 14x14 1.00 1.16 (40:1) 1.08 (41:1) 1.05 (23:1) 9.80 

apex4 13x13 1.00 1.10 (46:1) 1.02 (45:1) 1.07 (27:1) 5.04 

diffeq 14x14 1.00 1.19 (26:1) 1.13 (26:1) 1.08 (15:1) 5.29 

bigkey 15x15 1.00 1.38 (26:1) 1.18 (26:1) 1.08 (16:1) 8.95 

seq 15x15 1.00 1.19 (37:1) 1.10 (39:1) 1.05 (23:1) 7.22 

des 15x15 1.00 1.20 (29:1) 1.17 (29:1) 1.05 (18:1) 4.35 

apex2 16x16 1.00 1.08 (43:1) 1.09 (42:1) 1.04 (26:1) 8.19 

frisc 22x22 1.00 1.08 (41:1) 1.02 (41:1) 1.06 (25:1) 8.56 

elliptic 22x22 1.00 1.23 (41:1) 1.00 (40:1) 1.05 (24:1) 10.73 

ex1010 25x25 1.00 0.92 (48:1) 1.15 (47:1) 1.07 (29:1) 9.66 

s38584.1 29x29 1.00 1.07 (31:1) 1.20 (31:1) 1.07 (18:1) 17.07 

clma 33x33 1.00 1.03 (48:1) 1.02 (48:1) 1.00 (29:1) 15.25 

GEOMEAN  1.00 1.12 (30:1) 1.11 (30:1) 1.07 (18:1) 6.59 
  
 

Table 3 shows the results that we obtained on 

HSRA. With the exception of column 2, the settings 

and columns are identical to Table 2. In this case, 

column 2 lists the number of logic units in the target 

device. Across the set of benchmarks, the runtimes 

produced by our clustering-based techniques are 

approximately 9% (higher-quality) and 7% 

(empirical settings) faster than the runtimes achieved 

by heuristically estimating A* costs. Both heuristic 

and clustering-based techniques are approximately 

ten times faster than an undirected search-based 

router. The runtimes produced by the associate-with-

closest-logic-unit technique are approximately 16% 

slower than K-Means clustering at empirical settings, 

and 20% slower than higher-quality K-Means 

clustering. This is consistent with our intuition that 

associating interconnect wires with logic units in a 

hierarchical structure (Figure 2) will probably 

produce cost-to-target underestimates. 

 

Table 3: A comparison of routing 
runtimes on HSRA. 

|S| = 0.06*NT |S| = 0.20*NT 
 

Netlist Size Heur Associate 
K-Means 
(K = NL) 

K-Means 
(K = 2*NL) no A* 

mm9b 256 1.00 1.48 (149:1) 1.16 (85:1) 1.29 (35:1) 3.87 

Cse 256 1.00 1.22 (149:1) 1.03 (85:1) 1.06 (35:1) 4.39 

s1423 256 1.00 1.00 (149:1) 0.92 (85:1) 0.85 (35:1) 5.23 

9sym 512 1.00 1.20 (135:1) 0.81 (83:1) 0.69 (36:1) 15.42 

ttt2 256 1.00 1.25 (149:1) 1.06 (85:1) 1.14 (35:1) 13.58 

keyb 256 1.00 1.16 (149:1) 1.16 (85:1) 1.01 (35:1) 4.25 

clip 512 1.00 1.14 (135:1) 1.02 (83:1) 1.01 (36:1) 21.38 

term1 512 1.00 1.11 (150:1) 0.83 (95:1) 0.74 (39:1) 19.56 

apex6 1024 1.00 1.26 (128:1) 1.24 (80:1) 1.34 (35:1) 6.53 

vg2 512 1.00 1.16 (135:1) 0.96 (83:1) 0.95 (36:1) 16.81 

frg1 1024 1.00 0.85 (142:1) 0.81 (88:1) 0.63 (39:1) 26.73 

sbc 1024 1.00 1.13 (142:1) 0.87 (88:1) 0.87 (39:1) 12.41 

styr 1024 1.00 1.06 (128:1) 0.83 (80:1) 0.74 (35:1) 13.60 

i9 512 1.00 1.32 (150:1) 1.01 (95:1) 0.96 (39:1) 12.12 

C3540 1024 1.00 0.79 (128:1) 0.79 (80:1) 0.72 (35:1) 5.89 

sand 1024 1.00 0.88 (142:1) 0.80 (88:1) 0.81 (39:1) 10.67 

x3 1024 1.00 0.88 (142:1) 0.80 (88:1) 0.85 (39:1) 3.60 

planet 2048 1.00 1.14 (135:1) 0.81 (81:1) 0.89 (39:1) 13.67 

rd84 2048 1.00 1.08 (135:1) 1.09 (81:1) 1.13 (39:1) 21.04 

dalu 2048 1.00 0.84 (135:1) 0.82 (81:1) 0.89 (39:1) 16.62 

GEOMEAN  1.00 1.08 (140:1) 0.93 (85:1) 0.91 (37:1) 10.39 
  

 

There is a large gap in compression ratio between 

the associate-with-closest-logic-unit approach and K-

Means clustering at empirical settings. In the 

associate-with-closest-logic-unit approach, each logic 

unit in the target device is an initial seed. At low sub-

sampling values, a routing wire may be equidistant to 

several different logic units. Since a routing-wire 

must eventually be associated with a single logic unit, 

chances are that a number of logic-units at the end of 

the clustering process do not have any routing wires 

associated with them. These logic-unit seeds are 

eliminated and the number of final clusters is 

significantly less than the number of starting seeds. 

This effect is mitigated in K-Means clustering 

because the initial seeds are a mix of logic units and 

randomly selected routing wires. Thus, relatively few 

clusters are eliminated and the compression ratio is 

lower than the associate-with-logic-unit approach. 

6. Conclusions 

Our goal in this paper was the development of 

architecture-adaptive A* search techniques that can 

be used to speed up the Pathfinder algorithm. The 



clustering-based techniques presented in this paper 

do not rely on architecture-specific heuristics to 

calculate cost-to-target estimates. This is in direct 

contrast to previously published techniques [11,12] 

that explicitly rely on Manhattan distance routability 

estimates, making them applicable only to island-

style FPGAs. Our techniques should work on any 

FPGA that can be represented as a routing graph. 

The adaptability of our approach is demonstrated in 

Experiment 3; on an island-style architecture, the 

runtimes produced by the K-Means clustering 

approach are within 7% of heuristic estimates, and 

11% better than heuristic estimates on HSRA. There 

are several potential benefits of using a clustering-

based approach to calculate cost-to-target estimates: 

Memory – During the routing process, the 

memory requirements of the lookup tables produced 

by our techniques are 18 – 30 times (island-style 

architecture) and 37 – 140 times (HSRA) less than 

the exhaustive lookup table proposed by the creators 

of the Pathfinder algorithm. Thus, our techniques 

offer adaptability, albeit at significantly smaller 

memory cost. 

Cost of Calculation – The lookup tables produced 

by our techniques eliminate the task of calculating 

cost-to-target estimates on the fly during the routing 

process. Heuristically calculating estimates in the 

routing inner loop may be expensive when compared 

to the simple pointer dereferencing operations 

required to obtain estimates from a lookup table. 

Usability Considerations - A production version 

of a truly architecture-adaptive Pathfinder 

implementation must be a stand-alone tool that 

requires minimal user intervention. An architecture-

specific cost-to-target estimator may necessitate 

source code modifications and possible changes to 

the tool’s interface on a per-architecture basis. We 

feel that users should not be expected to provide any 

architecture-specific enhancements to speed up 

Pathfinder. Our techniques do not require any per-

architecture source-code changes, and interface with 

a routing tool through a cost-to-target lookup table. 

Automatically Generated Architectures: During 

domain-specific reconfigurable architecture 

generation [3,4], the nature of the reconfigurable 

device’s interconnect structure may be significantly 

different across application domains. If Pathfinder is 

used to route netlists on such architectures, then the 

cost-to-target estimator used by this flow must adapt 

to different interconnect structures. Expecting the 

user to modify the flow to produce cost-to-target 

estimates goes against the underlying philosophy of 

automatic architecture generation. 
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