
Accelerating FPGA Routing Using Architecture-Adaptive A* Techniques

Akshay Sharma

Actel Corporation

Mountain View, CA – 94043, USA

Akshay.Sharma@actel.com

Scott Hauck

University of Washington

Seattle, WA – 98195, USA

hauck@ee.washington.edu

Abstract

The A* algorithm is a well-known path-finding

technique that is used to speed up FPGA routing.

Previously published A*-based techniques are either

targeted to a class of architecturally similar devices,

or require prohibitive amounts of memory to

preserve architecture adaptability. This work

presents architecture-adaptive A* techniques that

require significantly less memory than previously

published work. Our techniques are able to produce

routing runtimes that are within 7% (on an island-

style architecture) and 9% better (on a hierarchical

architecture) than targeted heuristic techniques.

Memory improvements range between 30X (island-

style) and 140X (hierarchical architecture).

1. Introduction

Routing is an important step in the FPGA toolflow.

FPGAs have a finite number of discrete routing

resources, and the effectiveness of an FPGA router

directly impacts the performance of an application

netlist on a target device. Pathfinder [8] is the current,

state-of-the-art FPGA routing algorithm. Pathfinder

uses an iterative, negotiation-based approach to solve

the FPGA routing problem. During the first routing

iteration, nets are freely routed without paying

attention to resource sharing. Individual nets are

routed using a shortest path graph algorithm. At the

end of the first iteration, resources are generally

congested because multiple nets have shared them.

During subsequent iterations, the cost of using a

resource is increased based on the number of nets

that share the resource, and the history of congestion

on that resource. In effect, nets are made to negotiate

for routing resources. If a resource is highly

congested, nets that can use lower congestion

alternatives are forced to do so. On the other hand, if

the alternatives are more congested than the resource,

then a net may still use that resource.

Pathfinder has proved to be one of the most

powerful FPGA routing algorithms to date.

Pathfinder’s negotiation-based framework is a very

effective technique for routing nets on FPGAs. More

importantly, Pathfinder is a truly architecture-

adaptive routing algorithm. The algorithm operates

on a directed graph abstraction of an FPGA’s

interconnect structure, and can thus be used to route

netlists on any FPGA that can be represented as a

directed routing graph. We believe that Pathfinder’s

adaptability is one of the main reasons for its

widespread acceptance.

When routing an individual net, Pathfinder uses a

greedy search algorithm that is similar to Dijkstra’s

algorithm [5]. A net that has n sink terminals is

routed using n searches. Further, each net may be

ripped up and rerouted multiple times as the

algorithm progresses through routing iterations. All

in all, employing a search-based algorithm to do

FPGA routing is a computationally expensive

process.

A path-finding technique that is commonly used to

speed up graph-based search is the A* algorithm [9].

The A* algorithm speeds up routing by pruning the

search space of Dijkstra’s algorithm. The search

space is pruned by preferentially expanding the

search wavefront in the direction of the target node.

When the search is expanded around a given wire,

the routing algorithm expands the search through the

neighbor wire that is nearest the target node. This

form of directed search is accomplished by

augmenting the cost of a routing wire with a

heuristically calculated estimate of the cost to the

target node.

Equation 1: nnn hgf +=

Consider Equation 1, in which gn is the cost of a

shortest path from the source to wire n, and hn is a

heuristically calculated estimate of the cost of a

shortest path from n to the target node (hereafter, we

refer to this estimate as a ‘cost-to-target’ estimate).

The value fn is the estimated cost of a shortest path

from the source to the target that contains the wire n.

The A* algorithm uses fn to determine the cost of

expanding the search through wire n. Note that

Dijkstra’s algorithm uses only gn to calculate the cost

of wire n.

To guarantee optimality, the cost-to-target

estimate hn at a given wire n must be less than or

equal to the actual cost of the shortest path to the

target. Overestimating the cost to the target node may

provide even greater speedups, but then the search is

not guaranteed to find an optimal path to the target.

Currently, there is no architecture-adaptive, memory

efficient technique for performing A* search on

FPGAs. Our goal in this paper is the development of

architecture-adaptive A* techniques that can be used

to speed up the FPGA routing process.

2. Previous work

The work described in [11,12] discusses directed

search techniques that can speed up the Pathfinder

algorithm. These techniques are similar to the A*

algorithm, and use a formulation like the one shown

in Equation 1 to calculate the cost of expanding the

search through a routing wire. During the routing

process, cost-to-target estimates are heuristically

calculated using geometric information. Estimate

calculations often require potentially complex

operations, and the cost of calculating estimates can

slow down the router. Further, the techniques

presented in [11,12] may need to be re-implemented

whenever the interconnect architecture is changed,

and are not suitable for non-Manhattan interconnect

structures. Two examples of such interconnect

structures are shown in Figure 1. The architecture on

the left [2] provides different types of routing

resources in the horizontal and vertical directions,

and the architecture on the right [6] has a strictly

hierarchical interconnect structure.

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Logic

Block

Figure 1. Non island-style interconnect

structures [2,6].

Recall that Pathfinder’s primary strength is its

adaptability to different FPGA architectures. Existing

A* techniques violate this assumption, since they

hard-code interconnect assumptions into the cost-to-

target estimators. In this paper, we present

architecture-adaptive runtime enhancements to the

Pathfinder algorithm. Our techniques are also based

on using the A* algorithm to speed up the search

process. However, our methodology is adaptive and

does not rely on architecture-specific heuristic cost-

to-target estimates. The techniques presented in this

paper are routability-driven. Extending these

techniques to include timing information may be

accomplished in a manner similar to that described in

[1].

3. Architecture-adaptive A* techniques

The developers of the Pathfinder algorithm briefly

discussed the idea of using the A* algorithm to speed

up routing [8]. They proposed the use of a pre-

computed lookup table that would hold the cost of a

shortest path from every routing wire to every sink

terminal in the interconnect structure. Specifically,

there would be a separate entry for every routing wire

in this lookup table, and each entry would hold cost-

to-target estimates for all sink terminals in the

interconnect structure. During routing, the cost-to-

target estimate at a routing wire could then be

obtained using a simple table lookup.

Pre-computing and tabulating cost-to-target

estimates in this fashion is indeed an adaptive scheme.

Shortest paths can be calculated using Dijkstra’s

algorithm, and no architecture-specific information is

required. The approach also guarantees an exact

estimate of the shortest path in the absence of routing

congestion. However, while the computational

complexity of this approach is manageable, the space

requirements for routing-rich structures may explode.

Assuming an island-style, 10-track, 100x100 FPGA

that has only single-length segments, the memory

required to store the cost-to-target lookup table

would be measured in GigaBytes. Memory

requirements of this size are probably impractical.

Sharing a table entry among multiple routing

wires that have similar cost-to-target estimates can

reduce the memory requirement of the lookup table.

For example, if one hundred wires share each table

entry, the size of the table may be reduced by one

hundred times. The cost-to-target estimate for a given

sink terminal is the same for all wires that share the

table entry, and can be calculated using a Dijkstra

search that begins at the wire closest to the target.

Specifically, the entire set of wires that share a table

entry constitutes a “super” source node for the

Dijkstra search. In this manner, we ensure that the

cost-to-target estimate for a given sink terminal is the

cost of a shortest path from the wire that is closest to

the sink terminal. From this point on, we will refer to

this method for calculating cost-to-target estimates as

the superDijkstra method.

The important question now is how to identify

wires that should share a table entry. Clearly, we

would like to identify clusters of wires that have

similar cost-to-target estimates, so that we can collect

them together in a set that points to a single entry in

the cost-to-target lookup table. Our first technique for

clustering wires together is inspired by two

observations:

� The number of logic units in an FPGA is

generally much less than the number of

interconnect wires.

� Logic units and interconnect wires are often

interspersed in the FPGA fabric in a regular

fashion.

Based on these observations, our first technique

uses a proximity metric (described in the Section 4)

to associate each wire with a logic unit. After each

interconnect wire has been associated with a logic

unit, all wires associated with the same logic unit are

assigned to the same cluster. The cost-to-target

estimates for each cluster are calculated using the

superDijkstra method and stored in a lookup table.

Since the number of table entries is equal to the

number of logic units, the memory requirements of

this technique are significantly less than a lookup

table that has a separate entry for each wire in the

interconnect structure.

Figure 2: An example of a tree-based,
hierarchical interconnect structure.

Assume that the wires shown in black
belong to the same cluster.

The associate-with-closest-logic-unit technique is

probably well suited to island-style FPGAs. Since the

logic and interconnect structures of an island-style

FPGA are closely coupled, this approach may

produce clusters of wires that have reasonably similar

cost-to-target estimates. On hierarchical structures,

the accuracy of an associate-with-closest-logic-unit

approach may not be quite as good. For example,

consider the tree-like interconnect structure in Figure

2. The routing wire that is topmost in the

interconnect hierarchy is equally close to all logic

units, while the wires in the next level are equally

close to half the logic units, and so on. Associating

wires with individual logic units in a strictly

hierarchical interconnect structure may result in large

cost-to-target underestimates.

In Figure 2, assume that the wires shown in black

are associated with the black logic unit, and that the

cost-to-target estimates for the cluster have been

calculated using the superDijkstra method. The wire

that directly connects to the black logic unit will have

a cost-to-target estimate of five for the logic units in

the northeast, southeast and southwest quadrants of

the architecture. Note that the actual cost is nine

wires for the northeast quadrant, and ten for the

southeast and southwest quadrants. Estimates that are

a factor of two below exact might slow down the

router considerably. However, every wire in the

cluster shown in Figure 2 does not suffer from the

same problem. The cluster wire that is topmost in the

interconnect hierarchy (black vertical line down the

middle of Figure 2) will have exact cost-to-target

estimates for all logic units in the northeast, southeast

and southwest quadrants, and underestimates for

logic units in the northwest quadrant.

To summarize, one would expect the associate-

with-closest-logic-unit approach to work well for

island-style structures. However, due to the

approach’s potential limitations on hierarchical

structures, we feel that a more sophisticated

technique might be necessary to produce reasonably

accurate cost-to-target estimates across different

interconnect styles.

4. K-means clustering

Our second technique for architecture adaptive

clustering problem is to use the K-means algorithm,

guided by each resource’s cost-to-target estimates. K-

means clustering is an iterative heuristic that is used

to divide a dataset into K non-overlapping clusters

based on a proximity metric. Pseudocode for the K-

Means algorithm appears in Figure 3.

// D is the set of data-points in n-dimensional space that has to be divided into K clusters.

// The co-ordinates of a data-point di ∈ D are contained in the vector di.vec.

// di.vec is an n-dimensional vector.

K-Means {

for i in 1…K {

randomly select a data-point di from the set D.

initialize the centroid of cluster clusi to di.vec.

}

while (terminating condition not met) {

for each di ∈ D {

remove di’s cluster assignment.

}

for each di ∈ D {

for j in 1…K {

diffij = vectorDifference (di.vec,clusj.centroid)

}

assign di to the cluster clusy such that diffiy is

minimum.

}

for j in 1…K {

recalculate clusj.centroid using the data-points

currently assigned to clusj.

}

}

}

Figure 3: Pseudocode for the K-Means
clustering algorithm.

We now briefly describe our choices for the

alparameters that characterize the K-Means algorithm.

Dataset (D): The dataset D simply consists of all

the routing wires in the interconnect structure of the

target device.

Number of Clusters (K): We experimentally

determined that a value of K greater than or equal to

the number of logic units in the target device is a

reasonable choice. Section 5 describes the effect of K

on the quality of clustering solutions.

Initial Seed Selection: The initial seeds consist of

K/2 randomly selected logic-block output wires and

K/2 randomly selected routing wires.

Terminating Condition: The K-Means algorithm

is terminated when less than 1% of the dataset

changed clusters during the previous clustering

iteration.

Calculating Cost-to-Target Estimates: On

completion of the clustering algorithm, the actual A*

estimates for a cluster are calculated using the

superDijkstra method.

Co-ordinate Space and Proximity Metric: The

most important consideration in applying the K-

Means algorithm to solve the interconnect clustering

problem is the proximity metric. Specifically, we

need to determine a co-ordinate space that is

representative of the A* cost-to-target estimate at

each wire in the dataset. In our implementation, the

co-ordinates of a routing wire represent the cost of

the shortest path to a randomly chosen subset S of the

sink terminals in the interconnect structure. The co-

ordinates of each routing wire are pre-calculated

using Dijkstra’s algorithm and stored in a table.

If the number of sink terminals in S is n, then the

co-ordinates of a routing wire di ∈ D are represented

by an n-dimensional vector di.vec. Each entry cij (j ∈

1…n) in the vector di.vec is the cost of a shortest path

from the routing wire di to the sink terminal j. The

co-ordinates for all di ∈ D are calculated by

launching individual Dijkstra searches from each sink

terminal in the set S. Note that the edges in the

underlying routing graph are reversed to enable

Dijkstra searches that originate at sink terminals. At

the end of a Dijkstra search that is launched at sink

terminal j, the cost of a shortest path from every di to

the terminal j is written into the corresponding cij

entry of di.vec. The vector di.vec is used by the K-

Means algorithm to calculate the “distance” between

the wire di and the centroid of each cluster. The

distance between di and a cluster centroid is defined

as the magnitude of the vector difference between

di.vec and the cluster centroid.

Note that the size of S directly influences the

memory requirements of our clustering

implementation. In the extreme case where S

contains every sink terminal in the target device, the

memory requirements would match the prohibitively

large requirements of a table that stores the cost of a

shortest path from each routing wire to every sink

terminal. This would undermine the purpose of using

a clustering algorithm to reduce the memory

requirements of an A* estimate table. It is thus useful

to sub-sample the number of sink terminals in the

target device when setting up the set S.

Table 1: Comparison of memory
requirements. Table sizes are in GB.

Pathfinder

Size ChanWidth |S| = NT |S| = 0.06*NT Estimates

10x10 10 0.0012 0.0001 0.0001

20x20 10 0.0151 0.0009 0.0007

30x30 10 0.0707 0.0043 0.0035

40x40 10 0.2152 0.0130 0.0106

50x50 10 0.5132 0.0310 0.0253

60x60 10 1.0474 0.0631 0.0518

70x70 10 1.9185 0.1155 0.0949

80x80 10 3.2449 0.1951 0.1607

90x90 10 5.1629 0.3103 0.2559

100x100 10 7.8268 0.4703 0.3882

110x110 10 11.4087 0.6854 0.5662

120x120 10 16.0986 0.9669 0.7994

130x130 10 22.1044 1.3275 1.0980

140x140 10 29.6517 1.7805 1.4735

150x150 10 38.9842 2.3406 1.9380

160x160 10 50.3636 3.0236 2.5045

170x170 10 64.0690 3.8462 3.1869

180x180 10 80.3979 4.8262 4.0001

190x190 10 99.6654 5.9825 4.9599

200x200 10 122.2044 7.3351 6.0828

Clustering

Table 1 compares the memory requirements of a

clustering-based implementation that sub-samples the

sink terminals with a table that stores the cost of a

shortest path from each routing wire to every sink

terminal in the target device. The target architecture

is assumed to be a square island-style array that has

only single-length wire segments. In our calculations,

we assume that the sizes of a floating-point number,

integer number, and a pointer are all four bytes.

Column 1 lists the size of the target array, and

column 2 lists the channel width of the target array.

Let the total number of sink terminals in the target

array be NT. Column 3 lists the memory requirements

of a table that stores the cost of a shortest path from

each wire to every sink terminal in the target device

(i.e. |S| = NT). This corresponds to the exhaustive

lookup table approach proposed by the creators of

the Pathfinder algorithm in [8]. Column 4 lists the

size of a table that stores costs to only 6% of the sink

terminals (|S| = 0.06*NT), and column 5 lists the size

of a table that holds cost-to-target estimates for the

clusters produced by a K-Means implementation

where K = number of logic units in the target device.

All memory requirements are reported in Gigabyte. It

is clear from Table 1 that our K-Means clustering

approach avoids the impractical memory

requirements of a table that stores costs to every sink

terminal in the target device.

Finally, note that the clustering process is a one-

time preprocessing step that needs to be performed

only on a per-architecture basis. The table of cost-to-

target estimates produced by the clustering algorithm

can be reused every time a new netlist is routed, and

there is no additional runtime or memory cost

incurred by our techniques on a per-netlist basis.

5. Results

We conduct three experiments to test the validity

of using the K-Means algorithm to cluster the

interconnect structure of an FPGA. The first

experiment studies the effect of sub-sampling the

sink terminals in the target device on the quality of

clustering solutions. The second experiment studies

the effect of the number of clusters (K) on quality,

and the third experiment compares the quality of

clustering-based A* estimates with heuristically

calculated estimates. To evaluate the adaptability of

our techniques, we conduct the experiments on an

island-style interconnect architecture and HSRA [6].

Details of the architectural parameters used in our

experiments can be found in [10].

Since the truest measure of the quality of an A*

estimate is routing runtime, our quality metric is

defined to be the CPU runtime per routing iteration

when routing a placement on the target device. The

placements for our experiments on island-style

structures are obtained using VPR [1], and the

placements for our experiments on HSRA are

produced using Independence [10].

Finally, note that our clustering techniques are

guaranteed to produce conservative cost-to-target

estimates, and hence these techniques have no effect

on routing quality.

5.1. Experiment 1 – Sub-sampling Sinks

Experiment 1 studies the effect of sub-sampling

the number of sink terminals in the target device. The

set of benchmark netlists used in this experiment is a

subset of the netlists shown in Table 2 (island-style)

and Table 3 (HSRA).

Figure 4 shows the variation in quality of

clustering solutions. The x-axis represents the

fraction of sink terminals that are used to represent

the co-ordinates of each wire during clustering. The

subset of sink terminals used in the experiment is

randomly generated. The y-axis represents routing

runtime measured in seconds per routing iteration.

The curves show the variation in routing runtimes

when using A* estimates produced by the K-Means

clustering technique. The flat line shows the routing

runtime when using architecture-specific heuristic A*

estimates. The value of K in this experiment is equal

to the number of logic units in the target device.

Figure 4 shows that using as little as 5% of the

sink terminals during clustering may be sufficient to

produce estimates that are comparable to heuristic

estimates. This is not a surprising result. Due to the

regularity of an FPGA’s interconnect structure, a

small subset of sink terminals may be sufficient in

resolving the interconnect wires into reasonably

formed clusters. Note that 5% of the sink terminals

represents a variable number of sink terminals across

the set of benchmark netlists. Depending on the size

of the netlist, 5% of the sink terminals could be

anywhere between two and fifty sink terminals.

Island-Style

0

0.5

1

1.5

2

2.5

0 0.05 0.1 0.15 0.2 0.25

Sub-Sample (Fraction of sink nodes in target device)
R

u
n

ti
m

e
 (

s
 /
 i
te

ra
ti

o
n

)

Clustering

Heuristic

HSRA

0

0.5

1

1.5

2

2.5

3

0 0.05 0.1 0.15 0.2 0.25

Sub-sample (Fraction of sink nodes in target device)

R
u

n
ti

m
e

 (
s

 /
 i
te

ra
ti

o
n

)

Clustering

Heuristic

Figure 4: The effect of sub-sampling
the number of sink terminals on
routing runtime.

In Figure 5, we present the results of a second

study that evaluates the quality of clustering solutions

when using a small, fixed number of sink terminals.

Figure 5 shows that using a small number (say 16) of

randomly selected sink nodes may be enough to

produce clustering solutions that are within

approximately 15% of heuristic estimates.

5.2. Experiment 2 – Number of Clusters (K)

Experiment 2 studies the effect of the number of

clusters (K) on the quality of clustering solutions.

The set of benchmark netlists used in this experiment

is identical to the set used in Experiment 1. We use a

sub-sample of 6% for island-style architectures, and

14% for HSRA.

Island-Style

0

0.5

1

1.5

2

2.5

0 2 4 6 8 10 12 14 16

Sub-sample (sink nodes in target device)

R
u

n
ti

m
e

 (
s

 /
 i
te

ra
ti

o
n

)

Clustering

Heuristic

HSRA

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16

SubSample (sink nodes in target device)

R
u

n
ti

m
e

 (
s

 /
 i
te

ra
ti

o
n

)

Clustering

Heuristic

Figure 5: Using a small number of sink
nodes may produce clustering
solutions of acceptable quality.

Island-Style

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5

K (Fraction of logic blocks in target device)

R
u

n
ti

m
e

 (
s

 /
 i
te

ra
ti

o
n

)

Clustering

Heuristic

HSRA

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2

K (Fraction of logic blocks in target device)

R
u

n
ti

m
e

 (
s

 /
 i
te

ra
ti

o
n

)

Clustering

Heuristic

Figure 6: The effect of K on routing runtime.

Figure 6 shows the effect of K on routing

runtime. The x-axis shows the value of K as a

fraction of the number of logic units in the target

device, and the y-axis shows routing runtime in

seconds per routing iteration. The charts in Figure 6

show that a value of K equal to or greater than the

number of logic units in the target device produces

clustering solutions of qualities similar (within 10%)

to heuristic estimates.

5.3. Quantitative Comparisons

Experiment 3 is a quantitative comparison of the

quality of the A* estimates produced by our

clustering techniques vs. heuristically calculated

estimates. We use the following settings in this

experiment:

• Associate-with-closest-logic-unit technique. This

technique is implemented by running only the first

iteration of K-Means clustering. K is chosen to be

equal to the number of logic units in the target

device (K = NL), and initial seeds chosen to be

logic unit outputs. The value of sink sub-sample is

6% (|S| = 0.06*NT). These settings represent a

relatively low-effort clustering step. This step

might be undertaken when clustering runtime and

memory requirements need to be very low.

• K-Means clustering, with a sink sub-sample value

of 6% (|S| = 0.06*NT) and K equal to the number

of logic units in the target device (K = NL). NT is

the total number of sink terminals in the target

device, and NL is the total number of logic units in

the target device. These settings represent an

empirically determined sweet-spot for our K-

Means clustering technique.

• K-Means clustering, with a sink sub-sample value

of 20% (|S| = 0.2*NT) and K equal to twice the

number of logic units in the target device (K =

2*NL). These are aggressive settings that represent

potentially high quality clustering solutions. Such

settings may be used when absolutely the best

quality clustering solutions are required, and

clustering runtime and memory are of less concern.

Table 2 shows the results we obtained on the

island-style architecture. Column 1 lists the netlist,

column 2 lists the size of the smallest square array

needed to just fit the netlist, and column 3 lists

routing runtimes obtained on using heuristic

estimates. Columns 4, 5, and 6 list routing runtimes

and compression ratios (shown in brackets) produced

by the low-effort associate-with-logic-unit technique,

K-Means clustering at empirically determined

settings (|S| = 0.06*NT, K = NL), and K-Means

clustering at high-quality settings (|S| = 0.20*NT, K =

2*NL) respectively. Routing runtimes are normalized

to runtimes produced by heuristic estimates. The

compression ratio is defined as the ratio between the

size of an exhaustive lookup table and a lookup table

that holds cost-to-target estimates for the clusters

produced by each of the three techniques. The

compression ratio is a measure of the memory gap

between a version of Pathfinder that uses an

exhaustive lookup table and a version that uses cost-

to-target estimates produced by our clustering

techniques. Column 7 shows routing runtimes

produced by an undirected (no A*) search technique.

Across the set of benchmarks, the runtimes

produced by our K-Means clustering techniques are

approximately 7% (high-quality settings) and 11%

(empirical settings) slower than the runtimes

achieved by heuristically estimating A* costs. Both

heuristic and clustering-based estimates are

approximately 6X faster than an undirected search-

based router. Finally, the routing runtimes produced

by the associate-with-closest-logic-unit technique is

within 5% of the runtimes produced by either of the

K-Means clustering techniques. The near identical

runtimes show that the associate-with-closest-logic-

unit approach presented in Section 3 works as well as

a more sophisticated clustering approach on an

island-style architecture. The geometric mean of the

compression ratios is 30:1 for the associate-with-

closest-logic-unit approach and K-Means clustering

at empirical settings. The ratio goes down to 18:1 for

the higher-quality settings. This is to be expected,

since we use double the number of starting clusters

(K = 2*NL) at the higher-quality settings.

Table 2: A comparison of routing
runtimes on an island-style
architecture.

|S| = 0.06*NT |S| = 0.20*NT

Netlist Size Heur Associate
K-Means
(K = NL)

K-Means
(K = 2*NL) no A*

term1 6x6 1.00 0.89 (17:1) 1.44 (17:1) 1.22 (10:1) 4.22

s1423 6x6 1.00 1.57 (20:1) 1.57 (18:1) 1.14 (10:1) 3.86

i9 7x7 1.00 1.30 (17:1) 1.30 (17:1) 1.10 (10:1) 3.40

dalu 8x8 1.00 0.93 (24:1) 0.93 (22:1) 1.15 (13:1) 4.04

vda 9x9 1.00 1.20 (29:1) 1.08 (32:1) 1.08 (16:1) 4.78

x1 10x10 1.00 1.13 (20:1) 0.94 (19:1) 1.17 (11:1) 4.66

rot 8x8 1.00 0.95 (26:1) 1.11 (25:1) 0.89 (14:1) 3.32

pair 9x9 1.00 0.89 (30:1) 0.94 (36:1) 0.94 (18:1) 4.83

apex1 11x11 1.00 0.97 (40:1) 0.96 (37:1) 1.00 (23:1) 6.03

dsip 14x14 1.00 1.13 (22:1) 1.06 (23:1) 1.07 (13:1) 8.21

ex5p 12x12 1.00 1.03 (48:1) 1.12 (48:1) 1.05 (29:1) 7.30

s298 16x16 1.00 1.58 (25:1) 1.37 (23:1) 1.36 (14:1) 10.38

tseng 12x12 1.00 1.05 (27:1) 1.07 (29:1) 1.04 (17:1) 6.30

alu4 14x14 1.00 1.09 (30:1) 1.14 (30:1) 1.14 (19:1) 7.48

misex3 14x14 1.00 1.16 (40:1) 1.08 (41:1) 1.05 (23:1) 9.80

apex4 13x13 1.00 1.10 (46:1) 1.02 (45:1) 1.07 (27:1) 5.04

diffeq 14x14 1.00 1.19 (26:1) 1.13 (26:1) 1.08 (15:1) 5.29

bigkey 15x15 1.00 1.38 (26:1) 1.18 (26:1) 1.08 (16:1) 8.95

seq 15x15 1.00 1.19 (37:1) 1.10 (39:1) 1.05 (23:1) 7.22

des 15x15 1.00 1.20 (29:1) 1.17 (29:1) 1.05 (18:1) 4.35

apex2 16x16 1.00 1.08 (43:1) 1.09 (42:1) 1.04 (26:1) 8.19

frisc 22x22 1.00 1.08 (41:1) 1.02 (41:1) 1.06 (25:1) 8.56

elliptic 22x22 1.00 1.23 (41:1) 1.00 (40:1) 1.05 (24:1) 10.73

ex1010 25x25 1.00 0.92 (48:1) 1.15 (47:1) 1.07 (29:1) 9.66

s38584.1 29x29 1.00 1.07 (31:1) 1.20 (31:1) 1.07 (18:1) 17.07

clma 33x33 1.00 1.03 (48:1) 1.02 (48:1) 1.00 (29:1) 15.25

GEOMEAN 1.00 1.12 (30:1) 1.11 (30:1) 1.07 (18:1) 6.59

Table 3 shows the results that we obtained on

HSRA. With the exception of column 2, the settings

and columns are identical to Table 2. In this case,

column 2 lists the number of logic units in the target

device. Across the set of benchmarks, the runtimes

produced by our clustering-based techniques are

approximately 9% (higher-quality) and 7%

(empirical settings) faster than the runtimes achieved

by heuristically estimating A* costs. Both heuristic

and clustering-based techniques are approximately

ten times faster than an undirected search-based

router. The runtimes produced by the associate-with-

closest-logic-unit technique are approximately 16%

slower than K-Means clustering at empirical settings,

and 20% slower than higher-quality K-Means

clustering. This is consistent with our intuition that

associating interconnect wires with logic units in a

hierarchical structure (Figure 2) will probably

produce cost-to-target underestimates.

Table 3: A comparison of routing
runtimes on HSRA.

|S| = 0.06*NT |S| = 0.20*NT

Netlist Size Heur Associate
K-Means
(K = NL)

K-Means
(K = 2*NL) no A*

mm9b 256 1.00 1.48 (149:1) 1.16 (85:1) 1.29 (35:1) 3.87

Cse 256 1.00 1.22 (149:1) 1.03 (85:1) 1.06 (35:1) 4.39

s1423 256 1.00 1.00 (149:1) 0.92 (85:1) 0.85 (35:1) 5.23

9sym 512 1.00 1.20 (135:1) 0.81 (83:1) 0.69 (36:1) 15.42

ttt2 256 1.00 1.25 (149:1) 1.06 (85:1) 1.14 (35:1) 13.58

keyb 256 1.00 1.16 (149:1) 1.16 (85:1) 1.01 (35:1) 4.25

clip 512 1.00 1.14 (135:1) 1.02 (83:1) 1.01 (36:1) 21.38

term1 512 1.00 1.11 (150:1) 0.83 (95:1) 0.74 (39:1) 19.56

apex6 1024 1.00 1.26 (128:1) 1.24 (80:1) 1.34 (35:1) 6.53

vg2 512 1.00 1.16 (135:1) 0.96 (83:1) 0.95 (36:1) 16.81

frg1 1024 1.00 0.85 (142:1) 0.81 (88:1) 0.63 (39:1) 26.73

sbc 1024 1.00 1.13 (142:1) 0.87 (88:1) 0.87 (39:1) 12.41

styr 1024 1.00 1.06 (128:1) 0.83 (80:1) 0.74 (35:1) 13.60

i9 512 1.00 1.32 (150:1) 1.01 (95:1) 0.96 (39:1) 12.12

C3540 1024 1.00 0.79 (128:1) 0.79 (80:1) 0.72 (35:1) 5.89

sand 1024 1.00 0.88 (142:1) 0.80 (88:1) 0.81 (39:1) 10.67

x3 1024 1.00 0.88 (142:1) 0.80 (88:1) 0.85 (39:1) 3.60

planet 2048 1.00 1.14 (135:1) 0.81 (81:1) 0.89 (39:1) 13.67

rd84 2048 1.00 1.08 (135:1) 1.09 (81:1) 1.13 (39:1) 21.04

dalu 2048 1.00 0.84 (135:1) 0.82 (81:1) 0.89 (39:1) 16.62

GEOMEAN 1.00 1.08 (140:1) 0.93 (85:1) 0.91 (37:1) 10.39

There is a large gap in compression ratio between

the associate-with-closest-logic-unit approach and K-

Means clustering at empirical settings. In the

associate-with-closest-logic-unit approach, each logic

unit in the target device is an initial seed. At low sub-

sampling values, a routing wire may be equidistant to

several different logic units. Since a routing-wire

must eventually be associated with a single logic unit,

chances are that a number of logic-units at the end of

the clustering process do not have any routing wires

associated with them. These logic-unit seeds are

eliminated and the number of final clusters is

significantly less than the number of starting seeds.

This effect is mitigated in K-Means clustering

because the initial seeds are a mix of logic units and

randomly selected routing wires. Thus, relatively few

clusters are eliminated and the compression ratio is

lower than the associate-with-logic-unit approach.

6. Conclusions

Our goal in this paper was the development of

architecture-adaptive A* search techniques that can

be used to speed up the Pathfinder algorithm. The

clustering-based techniques presented in this paper

do not rely on architecture-specific heuristics to

calculate cost-to-target estimates. This is in direct

contrast to previously published techniques [11,12]

that explicitly rely on Manhattan distance routability

estimates, making them applicable only to island-

style FPGAs. Our techniques should work on any

FPGA that can be represented as a routing graph.

The adaptability of our approach is demonstrated in

Experiment 3; on an island-style architecture, the

runtimes produced by the K-Means clustering

approach are within 7% of heuristic estimates, and

11% better than heuristic estimates on HSRA. There

are several potential benefits of using a clustering-

based approach to calculate cost-to-target estimates:

Memory – During the routing process, the

memory requirements of the lookup tables produced

by our techniques are 18 – 30 times (island-style

architecture) and 37 – 140 times (HSRA) less than

the exhaustive lookup table proposed by the creators

of the Pathfinder algorithm. Thus, our techniques

offer adaptability, albeit at significantly smaller

memory cost.

Cost of Calculation – The lookup tables produced

by our techniques eliminate the task of calculating

cost-to-target estimates on the fly during the routing

process. Heuristically calculating estimates in the

routing inner loop may be expensive when compared

to the simple pointer dereferencing operations

required to obtain estimates from a lookup table.

Usability Considerations - A production version

of a truly architecture-adaptive Pathfinder

implementation must be a stand-alone tool that

requires minimal user intervention. An architecture-

specific cost-to-target estimator may necessitate

source code modifications and possible changes to

the tool’s interface on a per-architecture basis. We

feel that users should not be expected to provide any

architecture-specific enhancements to speed up

Pathfinder. Our techniques do not require any per-

architecture source-code changes, and interface with

a routing tool through a cost-to-target lookup table.

Automatically Generated Architectures: During

domain-specific reconfigurable architecture

generation [3,4], the nature of the reconfigurable

device’s interconnect structure may be significantly

different across application domains. If Pathfinder is

used to route netlists on such architectures, then the

cost-to-target estimator used by this flow must adapt

to different interconnect structures. Expecting the

user to modify the flow to produce cost-to-target

estimates goes against the underlying philosophy of

automatic architecture generation.

7. Acknowledgements

This work was supported by grants from the

National Science Foundation, Altera Corporation,

and the Alfred P Sloan Foundation.

8. References

[1] V. Betz, J. Rose and A. Marquardt, Architecture and

CAD for Deep-Submicron FPGAs, Kluwer

Academic Publishers, Boston MA, 1999.

[2] G. Boriello, C. Ebeling, S Hauck, and S. Burns, “The

Triptych FPGA Architecture”, IEEE Transactions

on VLS Systems Vol. 3 No. 4, IEEE, New York NY,

1995, pp. 473 – 482.

[3] K. Compton, A. Sharma, S. Phillips, and S. Hauck,

“Flexible Routing Architecture Generation for

Domain-Specific Reconfigurable Subsystems”,

International Conference on Field Programmable

Logic and Applications, Springer-Verlag, New York

NY, 2002, pp. 59 – 68.

[4] K. Compton, S. Hauck, “Totem: Custom

Reconfigurable Array Generation”, IEEE

Symposium on FPGAs for Custom Computing

Machines, IEEE, New York NY, 2001.

[5] T.H. Cormen, C.E. Leiserson, and R.L. Rivest,

Introduction to Algorithms, MIT Press, Cambridge

MA, 1990.

[6] A. DeHon, “Balancing Interconnect and

Computation in a Reconfigurable Computing Array

(or, why you don’t really want 100% LUT

utilization)”, ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays, ACM Press,

New York NY, 1999, pp. 69 – 78.

[7] A. Marquardt, V. Betz and J. Rose, “Speed and Area

Tradeoffs in Cluster-Based FPGA Architectures”,

IEEE Transactions on VLSI Systems Vol. 8 No. 1,

IEEE, New York NY, 2000, pp. 84 – 93.

[8] L. McMurchie, and C. Ebeling, “PathFinder: A

Negotiation-Based Performance-Driven Router for

FPGAs”, ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, ACM Press, New

York NY, 1995, pp 111-117.

[9] N. Nilsson, Principles of Artificial Intelligence,

Morgan Kaufmann, San Francisco CA, 1980.

[10] A Sharma, C. Ebeling, and S. Hauck, “Architecture-

Adaptive Routability-Driven Placement for FPGAs”,

in International Conference on Field Programmable

Logic and Applications, 2005.

[11] J. Swartz, V. Betz and J. Rose, “A Fast Routability-

Driven Router for FPGAs”, ACM/SIGDA

International Symposium on Field Programmable

Gate Arrays, ACM Press, New York NY, 1998, pp.

140 – 149.

[12] R. Tessier, “Negotiated A* Routing for FPGAs”,

Fifth Canadian Workshop on Field Programmable

Devices, 1998.

