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Abstract— Rapid advances in systems neuroscience and ma-
chine learning have greatly expanded the ability to build brain-
computer interfaces (BCIs) for the investigation of neural
mechanisms in brain functions and the treatment of neural
disorders. Currently, BCI technologies are limited by hardware
that cannot realize high-performance and low-latency brain
decoding with high-density neural recordings for online in-
ference tasks. Here, we propose a co-design of the hardware
and software systems with hardware acceleration of state-of-
the-art BCI technologies to address the above challenges. We
first use the Neuropixel 1.0 system for high-density neural
signal acquisition. Second, we leverage the well-established
LFADS model to learn robust neural latent representations.
Third, we quantize the LFADS model and deploy it on a
Field Programmable Gate Array (FPGA) to achieve a sub-
millisecond inference latency for real-time signal decoding. Last,
we complete the loop using optogenetic stimulation in the brain.
Our co-designed system can be treated as a closed-loop testbed,
that can orchestrate real-time experiments to shed light on the
workings of brain functions, investigating a promising direction
for hardware acceleration in future BCIs.

Index Terms— Brain-Computer Interfaces, FPGA, Hardware
Acceleration, Neuropixel, Neural Decoding

I. INTRODUCTION

In recent years, innovations in system neuroscience and
machine learning have witnessed great advances in devel-
oping brain-computer interfaces (BCIs). Modern BCIs can
be treated as engineering systems that build direct commu-
nications between the brain and external devices [1]. The
current BCI systems include two main categories: the open-
loop (unidirectional) BCI and the close-loop (bidirectional)
BCI. The open-loop BCI mainly focuses on effective brain
state decoding such as motor intentions [2] or mood state [3].
Later, the decoded brain state from brain activity can be
applied to control external devices such as a simple com-
puter cursor or complicated robotic arms to improve the
control performance [2]. Beyond the brain state decoding
application, the closed-loop BCI aims to close the loop
via stimulating the brain to induce or inhibit activity [4].
For example, researchers have developed bidirectional BCI-
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based neuroprostheses [5] to restore brain dysfunction and
communication between damaged brain regions, while others
investigated closed-loop neuromodulation systems to stimu-
late the brain region for treating brain dysfunctions [6].

However, despite the active research in the BCI field,
current studies mainly rely on computer software, i.e., ma-
chine learning approach for open-loop brain decoding [7]–
[9] or Monte Carlo simulations for closed-loop study [10].
For example, by using the offline data collected from the
monkey’s behavior task, researchers can develop offline
machine learning algorithms such as Latent Factor Analysis
through Dynamical Systems (LFADS) to precisely decode
the movement trajectories [8]. Also, using computational
biophysical models, e.g., Parkinson’s disease (PD) model in
rats, researchers can study the closed-loop deep brain stim-
ulation systems for the therapeutic performance of PD [11].
Recently, a few studies have stepped from purely computer
investigation to real-time online evaluation. For example,
a recent intracortical BCI study has illustrated high finger
behavior decoding and control accuracy in real time [12].
Subjects with major depressive disorders stimulated via
responsive neuromodulation systems show greater improve-
ment in their mood state over time [13]. However, building
a generalizable real-time BCI testbed remains challenging
due to the integrated communication between the hardware
and the software systems. Specifically, the integrated system
has difficulties with the implanted neural recording device,
the in-chip neural signal processing unit design, and the sys-
tem communication and computational latency. To this end,
building an integrated BCI system is of critical importance.

In our work, we propose a co-design of the hardware and
software systems for integrated BCI applications. The main
innovation is to build a system testbed by integrating state-of-
the-art BCI technologies. Our system includes four essential
components. First, we use Neuropixel 1.0 as the high-density
neural signal acquisition system to record the real-time spik-
ing activity from the brain. Second, we train a robust LFADS
model using offline data. Third, we quantize the well-
trained LFADS model and deploy it on Field Programmable
Gate Arrays (FPGAs) to enable high inference speed with
negligible system latency. Last, we propose to close the loop
using optical stimulations. Overall, our BCI system achieves
high decoding results while maintaining lower computational
costs. Our design can be applied to many BCI studies such
as movement decoding and behavior manipulation, which
has the potential to shed light on the understanding of brain
functions/dysfunctions and implications for future closed-
loop BCI design.



Fig. 1. The proposed co-design of hardware and software system for closed-loop BCIs. The neural activity of the brain site is recorded via Neuropixel
probes and converted to a digital signal at the headstage. Next, the raw digital signal is sent to an intermediary data acquisition module for data pre-
processing. The pre-processed data is sent to a host computer that runs a neural decoding algorithm accelerated by an FPGA, producing a decoded brain
state. Then, the host sends a laser trigger signal to the laser control board. The control board converts the trigger to a Pulse-Width Modulated (PWM)
signal to control the laser generator. Lastly, the laser generator stimulates the light-sensitive neurons in specific brain sites.

II. METHODS

A. System Components

The proposed co-designed system is functionally described
by three subsystems: data acquisition using Neuropixel
probes, FPGA accelerated neural signal processing, and
optogenetic stimulation, forming a closed loop interface with
the brain while maintaining a low system action latency (see
Figure 1).

1) Data Acquisition System

The data acquisition system uses IMEC Neuropixel 1.0
NHP probes to capture high-density intracortical neural
spiking activity. The probes offer a high spatial resolution
of the recording site with 960 electrode tiles tightly placed
along the shank, enabling localized studies of neural circuits.
Each probe reads data from 384 channels (with a mapping
to specific electrode tiles defined in configuration files) at a
sampling frequency of 30 KHz. Thus each channel provides
a high temporal resolution of the signal, sampling roughly
every 333.3µs. Next, the raw neural signals are transmitted
to the headstage which amplifies, digitizes, and serializes
the data. The data is then sent to an IMEC PXIe Acquisition
module housed in a NI PXIe 1071 chassis. After deseri-
alizing and formatting the signal (and offering additional
functionality such as synchronizing signals from multiple
probes simultaneously), the module sends the data to a host
machine over a Gen2 x8 MXI Express cable. The host uses
the SpikeGLX API to configure the recording parameters and
control the data, batching incoming data into FIFO buffers
for decoding. The buffers are then reshaped into 2D tiles
(C×T ), where C and T represent the number of channels

and time bins respectively. The host then transfers the data
from RAM to a global memory buffer on the FPGA over a
PCIe Gen3 x16 bus and invokes the LFADS decoding kernel.

2) Neural Signal Processing on FPGA

The FPGA at the core of the testbed is a Xilinx Alveo
U55C, offering a balance between hardware resources to
support the execution of larger decoding algorithms and cost.
The U55C is not a standalone System-on-Chip (SoC) with
an integrated processor; instead, it relies on a host machine
to handle input and output data, allocate memory buffers,
and invoke application kernels. Applications deployed on the
FPGA are first written in High-Level Synthesis (HLS) code,
synthesized to RTL, packaged into an IP core with required
interfaces, and compiled into a kernel. This kernel is then
launched on the FPGA by the host machine using Xilinx
RunTime (XRT) drivers. Data (i.e. decoder model inputs,
outputs) is passed to and from the FPGA over PCIe using
system calls through XRT.

Typically, HLS designs are defined in C++ and synthesized
into RTL. However, most ML-based decoders are developed
in Python to leverage well-equipped libraries such as Ten-
sorflow. To create a decoder-agnostic system and rapidly
test, optimize, and deploy new ML models we use a novel
package called HLS4ML: a tool that converts ML models
defined in Python frameworks into latency and throughput-
optimized HLS C++ designs [14].

The LFADS model was defined, trained, and quantized us-
ing Tensorflow and QKeras in Python. The quantized model
was then converted into HLS using HLS4ML, and then com-
piled into an optimized kernel using the Vitis HLS pipeline.
For inference, the model was provided a context window



of T = 20ms (as standard in previous BCI literature [8]).
However, waiting 20ms to generate each input batch would
severely underutilize the FPGA’s sub-millisecond inference
latency. Instead, to leverage the available compute we utilize
a sliding window realized through a FIFO buffer, pushing
∆ = 1ms of data into the buffer to produce each new input
batch. Once the host transfers a new batch to the kernel, it
is forward propagated through the LFADS kernel to create
a learned latent representation of the brain state. These
latent factors are returned to the host machine and can be
used in experiment-specific downstream tasks such as hand-
movement prediction [8].

3) Optical Stimulation to Close the Loop

The host machine uses the decoded brain state generated
by LFADS to stimulate the brain using optogenetics. The
BCI testbed is equipped with a laser generator controlled by
an Arduino Nano Laser Control Board. The board receives
control signals from the host over a USB 2.0 connection and
generates a pulse-width modulation (PWM) signal to control
the laser. The specific stimulation pattern is directly encoded
in the signal, with a binary 1/0 turning the laser ON/OFF (the
duty cycle is set to 100% during the window of stimulation
and 0% otherwise). The laser is directed toward the brain
site with fiber optic cables, providing coarse spatial control
of the location of stimulation. Still, the Arduino provides
a fine (sub-microsecond) degree of control on the time of
stimulation with a maximum PWM Switching Frequency of
4MHz.

The primary focus in evaluating our testbed was closed-
loop performance and system action latency (i.e. the time
between an input signal from the brain to stimulation). To
this purpose, we implemented a simple stimulation encoding
by triggering the laser when the average inferred latent
factors exceeded a threshold. While the study of optical
stimulation techniques for unknown neural foundations is
beyond the scope of our co-design work, we provide several
insights into future studies and directions (see Discussion).
For instance, a study aimed at identifying the behavioral
impacts of a particular motor circuit might trigger an in-
hibitory laser stimulation when the decoder predicts that
the circuit will become active, thereby isolating the circuit
to evaluate changes in behavior from baseline comparison
(no optical stimulation). To this end, our testbed provides a
hardware-accelerated platform capable of investigating more
interesting neuroscience questions with different decoding
and stimulation methodologies.

B. LFADS as Neural Decoder Model

We use the well-established LFADS architecture [8] to
construct a latent neural representation of the brain state
from neural spiking activity. A standard forward propagation
through LFADS is as follows:

Encoder
X ∈ RC×T xt ∈ RC×1 t = {1, . . . ,T} (1)

eb
t = EncoderRNN(eb

t+1,xt) (2)

e f
t = EncoderRNN(e f

t−1,xt) (3)

h = [eb
1,e

f
T ] (4)

Decoder
µ =W µ ·h (5)

σ = exp(
1
2

W σ ·h) (6)

ĥ0 ∼ Gaussian(h|µ,σ) (7)
ht = GeneratorRNN(ht−1, v̂t) t = {1, . . . ,T} (8)

ft =W Factors ·ht (9)

rt = exp(W Rates · ft) (10)
x̂t ∼ Poisson(xt |rt) (11)

This LFADS model can be trained using self-supervision
learning by minimizing the negative Poisson log-likelihood
reconstruction loss and Kullback–Leibler (KL) divergence:

L =
T

∑
t=1

log(Poisson(xt |rt)+KL(h||z), (12)

where z stands for the stand Gaussian noise (other details
of the LFADS model can be found in [8]). LFADS can be
treated as a robust neural feature extractor, i.e., compressing
the raw spike signal into lower-dimensional representations
(also known as the latent factors ft ) to model the brain
state and neural dynamics. These factors are then used as
feature vectors for various downstream tasks tailored to the
experiment goals. Ongoing work also uses estimated latent
factors to train a simple Multi-Layer Perceptron (MLP) for
the downstream regression analysis for the hand movement
trajectory prediction.

As with many RNN architectures, LFADS is an iterative
time-series sequential model that unrolls the input X ∈ RC×T

across T timesteps, producing a predicting firing rate for all C
channels at each step. Sequential unrolling allows the model
to capture temporal dynamics in the raw neural signal, which
significantly increases the inference latency, scaling poorly as
we further increase the available signal window. This variable
inference latency may cause critical issues in closed-loop
systems with limited tolerances for decoding latency, leading
to the potential necessity for FPGA acceleration.

C. Dual Operating Systems

The host machine runs Ubuntu 18.04 LTS as its primary
operating system (OS) and a virtualized Windows 10 guest
OS as a Kernel-based Virtual Machine (KVM). This dual-OS
setup is necessary due to hardware and software constraints:
the IMEC Neuropixels hardware and its SpikeGLX API are
natively supported only on Windows, while interfacing with
the FPGA requires the XRT driver, which is only available
on Linux. First, the Windows guest OS collects preprocessed
data from the IMEC acquisition card with the SpikeGLX
API, storing it in a buffer in virtual memory. The buffer is
then transferred from the guest to the host domain through
VirtIO Queues, which are managed by a host application
running on the Ubuntu OS. The host application then formats
the data and initiates data transfers with the FPGA using XRT
system calls.

D. Datasets for System Evaluation

To evaluate the performance of the co-designed system, we
applied the testbed to data collected in vivo at the Orsborn
lab of the University of Washington, Washington National



Fig. 2. The built closed-loop BCI system according to the Figure 1.
Essential components are circled for better visualization. The Host computer
is in red; The IMEC data acquisition module is in green; The Laser generator
is in purple; The Arduino laser control board is in blue.

Primate Research Center. Recorded with Neuropixels probes
targeting the motor cortex of an NHP, the dataset contains
a total of 789 trials - each with T = 20 time bins and C =
105. The LFADS model was trained and evaluated on the
data with 70%,15%,15% splits for training, validation, and
evaluation respectively. Then, the system performance was
characterized under a simulated real-time experiment using
pre-recorded data files (see Results section).

III. RESULTS

We presented the overall system (see Figure 2) built and
integrated in our laboratory as described by the methods
figure diagram (see Figure 1). The IMEC PXIe acquisition
module and the NI PXI 1071 chassis were housed in the
server rack to the left of the image and sit above the laser
generator and the Arduino laser controller. The host machine
was at the figure’s right housing a NI 8381 PXIe card and
the Xilinx U55C FPGA.

A key performance metric in evaluating the system was
the round-trip latency between an input signal from the
brain to a consequent stimulus. To characterize the latency
in the system, we partitioned the system into multiple data
pathways with individual component latencies (see Table
1). The total system latency was calculated as the sum of
the components and validated with a separate measurement
of the complete system latency. Real-time BCI systems are
usually limited by the neural decoding latency. However, by
accelerating our signal processing pipeline on the FPGA we
reduced our decoding model inference time to a marginal
fraction of the system latency with an average inference
latency of 0.156ms. We also observed that the system latency
was now dominated in data handling and pre-processing by
the IMEC acquisition module, which could not be bypassed
due to the system design. To this end, our system achieve a
promising total latency of 9.351ms.

An additional key criterion in evaluating our co-designed
BCI system is the system power consumption - a critical
design consideration for developing future portable and long-
term usage BCI devices. We compared the average power
usage of the FPGA to a CPU and GPU while executing

TABLE I
LATENCY BREAKDOWN IN PROPOSED BCI SYSTEM

Component Latency (ms)
Headstage & Module Preprocessing 2.512

Module to Host 5.047
Host to FPGA 0.018

Kernel Execution 0.156
FPGA to Host 0.008

Host to Laser Control Board 1.610
Total 9.351

inference on the LFADS model across 10000 batches of
data. The power consumption of the FPGA was measured as
the total system power consumption reported by XRT driver
tools; the CPU power was measured as the CPU package
power; and the GPU power was measured as the GPU
core input power. Both CPU and GPU power figures were
reported by HWiNFO, a tool that monitors onboard power,
thermal, and frequency sensors through hardware drivers.
To isolate the contribution of the inference algorithm to the
power consumption and account for background processes,
we derive an active power draw for all three architectures by
subtracting their respective idle and runtime power consump-
tions. We observed that the average power consumption over
tested 10000 batches on the FPGA was 27.867 W, utilizing
only 33.03% and 31.89% of the power compared to the CPU
and GPU (power cost: CPU 84.345 W, GPU: 87.393 W),
respectively. We also compared the average inference latency
of the LFADS model on the three architectures, finding a
substantial 1650x and 118x reduction in inference latency on
the FPGA when compared to the CPU and GPU respectively.
We also noted that the standard deviation of the inference
latency on the FPGA was small with only 0.002ms, showing
the robustness of inference speed on FPGA. On the contrary,
the CPU and GPU experienced larger deviations, around
56.693ms and 2.995ms respectively. Note that inference
on the CPU is not well parallelized by the Tensorflow
framework, stressing only 2 of the 16 CPU cores during our
tests. In conclusion, our results highlighted the computational
and power efficiency of FPGA-accelerated algorithms.

TABLE II
INFERENCE LATENCY & POWER ACROSS ARCHITECTURES

Architecture Inference Latency (ms) Active Power Draw (W)
FPGA 0.156 ± 0.002 12.447
CPU

†
257.516 ± 56.693 39.490

GPU
‡

18.551 ± 2.995 52.606
†

AMD 5950x 16-Core CPU
‡

NVIDIA RTX 3090 GPU
Last, we compared the neural decoding performance. Prior

investigations highlighted the superior performance in system
latency and power consumption, which can partially be
explained by our quantized LFADS model with a reduced 8-
bit integer representation of weights on the FPGA. However,
using the 8-bit integer quantized model, our neural decoding
performance still maintained in a reasonable range (ours:
55.21% v.s. full-precision: 61.18%). Together, by testing
the performance of our proposed co-design system, we
showed that our system enables reasonable neural decoding
performance, lower power consumption, and significantly
lower total system latency - paving the way for future FPGA-
accelerated BCI designs.



IV. DISCUSSIONS AND CONCLUSIONS

In our work, we proposed a co-design of the hardware
and software system for the future integrated BCIs. To the
best of our knowledge, thisis the first time to have such
a comprehensive integration of hardware and software BCI
systems. We evaluated the essential system latency, power
consumption, and neural data processing results via the
FPGA integrating neural decoding model in our proposed
BCI system. Our results illustrated the successful neural data
communication between the hardware and software systems.
Meanwhile, we showed that our BCI system enables ultra-
fast processing speed with parsimonious power utilization.
Last, we showed that the integration on the hardware FPGA
system (under 8-bit integer quantization) also maintains high
neural processing decoding performance compared to the
full-precision model in software. Our co-design framework
paves the way for future implementations of integrated BCI
systems.

Our work has several limitations. First, the high-density
neural recording technology in our co-design framework is
the Neuropixel 1.0 system. Many current BCI implementa-
tions use other recording technologies, such as EEG [15],
and multielectrode arrays [12]. Exploring the possibility of
integrating various neural recording technologies with our
BCI system will be an interesting future direction. Second,
we proposed an alternative, optical stimulation strategy to
close the loop. It should be noticed that using optogenetics
as a novel stimulation technique to uncover brain functions
or neural mechanism foundations requires sophisticated bi-
ological experimental design, which is beyond the scope
of this work. Future work will test our optogenetics-based
closed-loop BCI systems in regulating nonlinear neural dy-
namics [16]. Last, we deployed the well-established LFADS
as the neural signal processing model on FPGA. Another
interesting future direction is to explore the possibility of
transformer-based neural predictive models [17] for integra-
tion in FPGA.
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