
Accelerating CNNs on FPGAs for Particle Energy Reconstruction

CHIJUI CHEN∗, Graduate Degree Program of College of Electrical and Computer Engineering, National Yang Ming

Chiao Tung University, Taiwan

YANLUNHUANG∗,Department of Electrical and Computer Engineering, National YangMing Chiao Tung University,

Taiwan

LINGCHI YANG, Institute of Electronics, National Yang Ming Chiao Tung University, Taiwan

ZIANG YIN, Department of Electrical and Computer Engineering, University of Washington, USA

PHILIP HARRIS, Laboratory for Nuclear Science, Massachusetts Institute of Technology, USA

SCOTT HAUCK, Department of Electrical and Computer Engineering, University of Washington, USA

SHIHCHIEH HSU, Department of Physics, University of Washington, USA

BOCHENG LAI, Institute of Electronics, National Yang Ming Chiao Tung University, Taiwan

KELVIN LIN†, Department of Electrical and Computer Engineering, University of Washington, USA

DYLAN RANKIN, Department of Physics and Astronomy, University of Pennsylvania, USA

ALEXANDER SCHUY, Department of Physics, University of Washington, USA

The CERN Large Hadron Collider has recently integrated deep learning (DL) models, such as DeepCalo, into their flows to enhance

particle energy reconstruction. However, the challenges posed by high data generation rates, dynamic experiment conditions, and

resource-intensive computations demand millisecond latency and flexible deployment of different DL models. In this paper, we

present the first automated design workflow based on hls4ml to implement DeepCalo models on FPGAs. By optimizing dataflow

and processing schemes in hls4ml while compressing DeepCalo with quantization-aware training, we demonstrate a fully-on-chip

implementation of large CNN models while maintaining model quality. We perform a comprehensive exploration of various key design

factors, summarizing our observations as useful design guidelines for future DL applications. Under realistic LHC scenarios, our results

on the Xilinx Alveo U50 FPGA demonstrate an inference latency of 1.34 ms per 5 images, achieving a 5.6× speedup over the existing

∗
Both authors contributed equally to this paper. Model quantization and hls4ml modification were conducted by ChiJui Chen. Model optimization and

FPGA exploration were performed by YanLun Huang. Both authors are the main contributors to the research framework and the manuscript writing.

†
Currently at Amazon, USA

Authors’ addresses: ChiJui Chen, silencekugel.ee05@nycu.edu.tw, Graduate Degree Program of College of Electrical and Computer Engineering, National

Yang Ming Chiao Tung University, Hsinchu, Taiwan; YanLun Huang, yanlun172@gmail.com, Department of Electrical and Computer Engineering,

National Yang Ming Chiao Tung University, Hsinchu, Taiwan; LingChi Yang, hisky1256@gmail.com, Institute of Electronics, National Yang Ming

Chiao Tung University, Hsinchu, Taiwan; Ziang Yin, lostecho@uw.edu, Department of Electrical and Computer Engineering, University of Washington,

Seattle, USA; Philip Harris, pcharris@mit.edu, Laboratory for Nuclear Science, Massachusetts Institute of Technology, MA 02139, USA; Scott Hauck,

hauck@uw.edu, Department of Electrical and Computer Engineering, University of Washington, WA 98195, Seattle, USA; ShihChieh Hsu, schsu@uw.edu,

Department of Physics, University of Washington, WA 98195, Seattle, USA; BoCheng Lai, bclai@nycu.edu.tw, Institute of Electronics, National Yang

Ming Chiao Tung University, Hsinchu, Taiwan; Kelvin Lin, kelvin.lin1@gmail.com, Department of Electrical and Computer Engineering, University of

Washington, WA 98195, Seattle, USA; Dylan Rankin, dsrankin@sas.upenn.edu, Department of Physics and Astronomy, University of Pennsylvania, 209

South 33rd Street, Philadelphia, USA; Alexander Schuy, schuya@uw.edu, Department of Physics, University of Washington, WA 98195, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/0009-0008-7991-920X
HTTPS://ORCID.ORG/0009-0000-8921-2525
HTTPS://ORCID.ORG/0009-0008-3064-6108
HTTPS://ORCID.ORG/0009-0009-5308-1100
HTTPS://ORCID.ORG/0000-0001-8189-3741
HTTPS://ORCID.ORG/0000-0001-9516-0311
HTTPS://ORCID.ORG/0000-0001-6214-8500
HTTPS://ORCID.ORG/0000-0002-9729-5196
HTTPS://ORCID.ORG/0000-0002-1494-1464
HTTPS://ORCID.ORG/0000-0001-8411-9620
HTTPS://ORCID.ORG/0000-0003-1230-2842
https://orcid.org/0009-0008-7991-920X
https://orcid.org/0009-0000-8921-2525
https://orcid.org/0009-0008-3064-6108
https://orcid.org/0009-0009-5308-1100
https://orcid.org/0000-0001-8189-3741
https://orcid.org/0000-0001-9516-0311
https://orcid.org/0000-0001-6214-8500
https://orcid.org/0000-0002-9729-5196
https://orcid.org/0000-0002-1494-1464
https://orcid.org/0000-0001-8411-9620
https://orcid.org/0000-0003-1230-2842

2 ChiJui Chen and YanLun Huan, et al.

GPU-based system. At a batch size of one, the image-only model demonstrates a latency of 0.443 ms, while the full model exhibits a

latency of 1.34 ms, meeting the latency requirement of the Level-1 Trigger in particle experiments. Compared to the Ryzen-5600H

CPU and Tesla V100 GPU, we achieve speedups of 14.1× and 7.9×, respectively.

ACM Reference Format:
ChiJui Chen, YanLun Huang, LingChi Yang, Ziang Yin, Philip Harris, Scott Hauck, ShihChieh Hsu, BoCheng Lai, Kelvin Lin, Dylan

Rankin, and Alexander Schuy. 2023. Accelerating CNNs on FPGAs for Particle Energy Reconstruction. 1, 1 (August 2023), 29 pages.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Data analysis is an important element of particle physics [1]. Modern experiments increasingly rely on machine learning

(ML) for timely and efficient analysis of large volumes of data. One such example is the Large Hadron Collider (LHC) [2]

at CERN [3], where proton-proton collisions occur every 25 ns and are recorded by detectors with millions of channels.

The signals from these detectors are then processed by ML algorithms to filter uninteresting data in real-time, despite

the large data rate of 100 TB/s [4].

With advances in deep learning (DL) and processor architecture in recent years, LHC experiments have adopted

DL to improve the quality of data analysis [5]. DeepCalo [6] is a Keras-based [7] DL design specifically created for

simulation data from ATLAS [8], one of two general-purpose detectors at the LHC. It allows users to build, train,

tune, and test convolutional neural networks (CNNs) that reconstruct the energy of particles such as electrons and

protons [9] [10]. Unlike the conventional analysis approach of boosted decision trees (BDTs), which are trained only on

derived scalar variables [11], DeepCalo directly processes images created from the electromagnetic calorimeter (ECAL).

Compared to BDTs, DeepCalo improves the energy reconstruction accuracy by 11.9% - 20.9% for electrons, and 17.7% -

27.5% for photons, depending on the energy range and detector region [12]. The current version of DeepCalo supports

two scenarios: a full model of 3.6M parameters which combines images, scalar variables, and track vectors; and an

image-only model of 1.8M parameters that only processes images.

Although DeepCalo performs well in energy reconstruction, its resource-intensive computation makes on-line

inference challenging due to the strict latency requirements of the LHC. The LHC event-selection system consists

of three tiers: level-1 trigger (L1T), high-level trigger (HLT), and offline reconstruction [13] [14]. L1T and HLT are

online computing systems that operate at 40 MHz (100 kHz) with a latency of ∼1 𝜇s (∼10 ms) [15] [16]. The L1T is

implemented using specialized electronics, while the HLT utilizes software running on a compute farm. According

to [17], even for HLT, it still requires six GPU servers with a bandwidth of 24 Gb/s to run DeepCalo. Therefore it is

more practical to handle this regression task offline. Furthermore, the future High-Luminosity LHC project plans to

increase the beam intensity by 5× to 7× by 2027 [18] [19], which would make it extremely difficult, if not impossible,

for CPU/GPU solutions to meet the stringent processing requirement.

Field Programmable Gate Arrays (FPGAs) enable customized data processing logic and have been broadly adopted

to attain highly parallel dataflow processing with short latencies. The LHC has deployed FPGAs for online inference

data analysis [20] [21] [22] [23] [24] [25], and facilitated the design with hls4ml [26]. hls4ml is a high-level synthesis

(HLS) tool that converts high-level descriptions of ML algorithms into efficient FPGA implementations. However, the

current hls4ml framework has limited support for converting large-scale models like DeepCalo. This is because hls4ml

implements a fully on-chip dataflow architecture in order to avoid long-latency DRAM accesses. This approach needs

to implement all the ML layers on an FPGA and therefore poses stringent constraints on the size and complexity of

the model. Moreover, hls4ml’s stream-based dataflow is constrained by the channel size, since resource consumption

Manuscript submitted to ACM

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Accelerating CNNs on FPGAs for Particle Energy Reconstruction 3

increases drastically when the channel size increases, and increased channel size is common in most CNNs. Also,

quantization has been an effective technique to reduce design complexity. However, how to strike the balance between

quantization errors and precision bit-widths has become a serious design concern when dealing with large models.

In this paper, we present the first fully-automated design and optimization workflow based on hls4ml to implement

DeepCalo models on FPGAs. We not only perform a comprehensive exploration of various key design factors but

also propose a design that attains shorter latency (<1ms) than solutions on CPUs and GPUs. We extend the DeepCalo

framework and integrate QKeras layers to perform quantization-aware training (QAT), which is crucial for minimizing

resource consumption and maximizing model performance [27][28]. With a highly efficient streaming dataflow and

optimized architectures of most neural network layers in hls4ml, we are able to support the automatic conversion of

large-scale CNNs to HLS, and then to an implementation on a Xilinx Alveo U50 FPGA board [29]. We further explore the

rounding strategies used in hardware to reduce the quantization error when transferring the model to FPGAs, in order

to obtain a good balance between resource utilization and accuracy. Considering real LHC scenarios, the image-only

model has an inference latency of 1.34 ms per 5 images, achieving a 5.6× speedup over the existing GPU-based system.

Compared to the Ryzen-5600H CPU [30] and Tesla V100 GPU [31], the implementation of the image-only (full) model

on FPGA shows up to 14.1×(9.7×) and 7.9×(5.3×) speedups respectively.
This paper is structured as follows: Section 2 provides background knowledge, including CNN acceleration in

other frameworks and in hls4ml for FPGAs, as well as an overview of DeepCalo and the existing GPU-based data

reconstruction system. Section 3 discusses the hardware implementation and optimization of DeepCalo models using

HLS. Section 4 details the model compression using QAT and compares the resource usage and performance of different

rounding methods in HLS. The experimental results of DeepCalo are presented in Section 5. Conclusions are given in

Section 6.

2 BACKGROUND

This section provides essential background knowledge to contextualize our research. We begin by introducing various

frameworks designed for accelerating CNNs on FPGAs, assessing their respective strengths and limitations. This

exploration leads us to select hls4ml as the framework upon which to build our study. Subsequently, we describe

previous CNN implementations within hls4ml, aiming to extend the advantages and integrate larger CNNs in hls4ml. In

addition, we introduce DeepCalo. Lastly, we introduce an existing GPU-based system designed for data reconstruction,

including the results of running DeepCalo on those GPUs.

2.1 Related Works to Accelerate CNNs on FPGAs

Various design frameworks offer flexibility for users to customize their ML models on FPGAs. CNN accelerators

on FPGAs can be categorized into two types: customized dataflow processing and generic processing. Customized

dataflow processing allows users to design and optimize the dataflow architecture specific to their models. This

approach provides low latency and high throughput by leveraging parallel processing and fully on-chip architectures.

As a result, it is suitable for smaller neural networks and platforms that lack computing units. Several frameworks

exemplify this approach, including hls4ml and FINN [32] [33]. FINN is an open-source framework to explore deep

neural network inference on FPGAs, targeting quantized neural networks with dataflow-style architectures. Notably,

FINN has demonstrated an on-chip implementation of large CNNs such as ResNet50 for Xilinx Alveo boards, which

utilizes ultra-low bit-width quantization and achieves millisecond-level latencies.

Manuscript submitted to ACM

4 ChiJui Chen and YanLun Huan, et al.

In contrast, generic processing approaches provide standardized and pre-optimized frameworks or libraries for

CNN acceleration. Eyeriss [34] is a well-known framework that employs a row stationary (RS) architecture, which

focuses on optimizing both computation and memory access patterns. FlexCNN [35] is a framework that adopts a

reconfigurable systolic array architecture, enabling it to adapt to different CNN models and layer sizes. Vitis AI [36] is a

platform for comprehensive AI inference developed by Xilinx. It consists of optimized deep learning processor unit

(DPU) cores, tools, libraries, and example designs. Although the approaches mentioned above are flexible and consume

lower resources, it requires frequent transfers of weights and feature maps between FPGA on-chip memory (BRAM) and

external memory (DDR/HBM), which is challenging to perform for real-time inference in the L1T. Moreover, generic

processing is restricted to specific layers and CNN topologies, especially when deploying models with custom layers

like DeepCalo.

Despite several frameworks featuring ultra-low latency and power consumption, in this paper, we choose hls4ml due

to its close relationship with the high-energy particle physics field and the ability to convert mixed-precision models

from QKeras. We extend the hls4ml library to support large CNN conversion while staying fully on-chip, as well as

generating a dataflow architecture. In addition, we offer a complete quantization solution that can support other models,

in which the quantization error can be reduced and tested during the early design stage.

2.2 Previous CNNs Implementations in hls4ml

FPGAs enable customized data processing logic and have been broadly adopted to attain highly parallel dataflow

processing with short latency for the inference of ML models [37] [38] [39]. Previous studies in hls4ml have primarily

focused on achieving millisecond-latency inference for CNNs on FPGAs. The initial work by Smith et al. [23] introduced

support for streaming-based CNNs in hls4ml. This process removed allocating resources to monitor the location of

elements in the sliding window or image corners management by computing and encoding positions as binary masks

in advance. This strategy allows for the efficient retrieval of correct data in sliding windows through cooperation

with buffered streams. Building upon this, Ref. [40] enhanced the stream-based approach with an optimized linebuffer

architecture for real-time semantic segmentation tasks. The accelerator was compressed with automatic heterogeneous

QAT and a filter ablation procedure, achieving a latency of 4.9 ms per image. These two convolution implementations,

known as "encoded" and "linebuffer" are currently available options in hls4ml. The authors of [40] proposed using

linebuffers which utilize shift registers to record previously seen pixels, thus reducing the memory needed to store

duplicated pixels. For an image of size 𝐻 ×𝑊 , with a convolution kernel of size 𝐾 × 𝐿, the line buffer allocates 𝐾 − 1
buffers (chain of shift registers) of depth𝑊 for the rows of the image, while the "encoded" implementation allocates 𝐾2

buffers of depth 𝐾 × (𝑊 − 𝐾 + 1) for the elements in the sliding input window.

In our work, we build upon the "linebuffer" scheme and focus on optimizing the dataflow of the streams along the

channels. By leveraging the advantages highlighted in [40], we aim to enhance the efficiency and scalability of larger

CNNs in hls4ml.

2.3 DeepCalo: Deep Learning Framework for ATLAS Data

Deepcalo is a deep learning framework for training CNNs on ATLAS simulation data, typically for energy reconstruction

of electrons and photons. Enhancing the reconstruction quality can improve the accuracy of data analyses, such as the

substantial Higgs boson decay channels [41]. To accurately reconstruct electron and photon energy, the full model

processes 3 input sources simultaneously: images, scalar variables, and track vectors. The image pixels corresponding to

the electromagnetic calorimeter (ECAL) cells were constructed using the Monte Carlo method [42], which is commonly

Manuscript submitted to ACM

Accelerating CNNs on FPGAs for Particle Energy Reconstruction 5

Table 1. Output shape, number of parameters, floating-point operations, and energy consumption of each layer in the full model. The
values of each term after summation are also listed.

(a) CNN (image-only model)

Layer Output shape Parameters MFLOPs Energy(nJ)

Input Images (56, 11, 4) - - -

Upsampling2D (56, 55, 4) - - 1,171.57

Conv2D1 (56, 55, 16) 1,681 9.856 99,583.22

MaxPool1 (28, 27, 16) - 0.049 -

Conv2D2 (28, 27, 32) 4,769 6.967 69,015.96

Conv2D3 (28, 27, 32) 9,377 13.935 92,021.28

MaxPool2 (14, 13, 32) - 0.024 -

Conv2D4 (14, 13, 64) 18,753 6.709 33,229.91

Conv2D5 (14, 13, 64) 37,185 13.418 44,306.54

MaxPool3 (7, 6, 64) - 0.012 -

Conv2D6 (7, 6, 128) 74,369 6.193 15,336.88

Conv2D7 (7, 6, 128) 148,097 12.386 20,449.18

MaxPool4 (3, 3, 128) - 0.005 -

Conv2D8 (3, 3, 256) 296,193 5.308 6,572.95

Conv2D9 (3, 3, 256) 591,105 10.617 8,763,94

Flatten (2304) - - 4,381.97

Dense1 (256) 590,849 1.180 4,868.86

Dense2 (256) 66,561 0.131 973.78

Dense3 (1) 257 0.000512 842.35

Total - 1,839,196 86.792 401,518

(b) Scalar Net, Track Net, and FiLM Generator

Layer Output shape Parameters MFLOPs Energy(nJ)

Scalar Net

Input Scalar Variables (15) - - -

Dense (256) 4,865 0.008 494.5

Track Net

Input Track Vectors (88, 6) - - -

Time Distributed (88, 128) 18,178 0.031 251.05

Sum1D (128) - - 21,422.94

Dense1 (128) 16,897 0.033 486.88

Dense2 (128) 16,897 0.033 486.88

FiLM Generator(Connecting the Track and Scalar Net)

Concatenate (384) - - 730.33

Dense1 (512) 198,675 0.393 1,704.1

Dense2 (1024) 528,385 1.049 2,921.31

Dense3 (992) 1,016,800 2.032 1,382,706.30

FiLM1 (56, 55, 16) - 0.09856 95,672.92

FiLM2 (28, 27, 32) - 0.048384 47,958.18

FiLM3 (14, 13, 64) - 0.023296 24,100.81

FiLM4 (7, 6, 128) - 0.010752 12,172.13

FiLM5 (3, 3, 256) - 0.004608 6,816.4

Total - 1,800,697 3.7646 1,597,924.28

Total (Include CNN) - 3,639,893 90.5566 2,038,838.69

used in particle physics to model the behavior of particles in detectors. The full model contains 62 layers, leading to

3.64 million parameters. There is also an image-only model which takes only ECAL images and passes them through

the CNN layers. In the following paragraphs, we describe the model architecture in detail.

The structure of the full model is illustrated in Figure 1. The ECAL CNN (referred to as the image-only model)

contributes the most discrimination power in the system. It follows a VGG-style [43] architecture that comprises five 2D

convolutional blocks and three dense blocks. Each convolutional and dense layer is followed by a batch normalization

layer and a rectified linear unit (ReLU) activation function. The initial block is responsible for upsampling the input

pixels to a square-like shape, consisting of a Upsampling2D layer, and a convolutional layer with a kernel size of 5 × 5.
All subsequent blocks have the same structure: they begin with a 2 × 2 max-pooling layer, followed by two sets of a

single convolutional layer with a 3× 3 kernel size. The convolutional layers in the 𝑙𝑡ℎ block have 16𝑙 filters. In the initial

two dense blocks, each dense layer consists of 256 neurons, while the last dense block includes a dense layer with a

single neuron that produces the final regression outcome. ReLU is employed as the final activation function.

The scalar variables and track vectors undergo processing by their own individual submodels. The Scalar Net consists

of a dense layer with 256 neurons, whereas the Track Net has a TimeDistributed layer that applies a dense net to process

each track vector associated with an event individually. The resulting output for each track vector is summed up and

fed into another dense net for further processing. Moreover, to incorporate the effects of additional input variables,

feature-wise linear modulation (FiLM) layers [44] are introduced into CNN computation. Specifically, these layers are

positioned after the initial convolutional layer in each 2D convolutional block. Through this approach, the behavior of

Manuscript submitted to ACM

6 ChiJui Chen and YanLun Huan, et al.

Fig. 1. Structure of the Deepcalo full model. In addition to the main CNN(image-only model), the full model contains additional three
submodels: the Track Net, the Scalar Net, and the FiLM Generator.

the CNN is dynamically altered in an adaptive manner as a function of all three input variables. The outputs of the

Scalar and Track Net are concatenated and fed into the FiLM generator, which is a basic fully-connected network. This

generator is responsible for generating scaling and shifting factors for the FiLM layers, which are utilized to modify the

feature maps of the CNN.

The detailed parameters of output shape, number of floating-point operations (FLOPs), and parameters for each

layer are listed in Table 3. In addition, an estimate of the per-layer energy consumption is demonstrated, which was

estimated using QTools [45] within the context of a 45 nm processor. Despite the last dense layer in the FiLM generator

containing the most weights, the convolutional layers in the main CNN exhibit considerably higher levels of energy

consumption and FLOPs due to the substantially larger number of multiply-accumulate (MAC) operations performed.

2.4 GPU-based Hardware Acceleration in Data Reconstruction Workflow

A comprehensive exploration of the adoption of GPU-based hardware acceleration for data reconstruction in the

LHC workflow was presented in [17]. This was done by extending the Services for Optimized Network Inference on

Coprocessors (SONIC) framework in the Compact Muon Solenoid (CMS) experiment [46]. The existing CPU-based

workflow is reconfigured, and algorithms are transferred to GPUs without disruption. The study considered three

DL-based reconstruction algorithms of varying scales, including the image-only model of DeepCalo. Instead of operating

Manuscript submitted to ACM

Accelerating CNNs on FPGAs for Particle Energy Reconstruction 7

Fig. 2. Comparison of the image-only model operation stages with (lower) and without (upper) dataflow pipeline. In the lower
subfigure, different operation stages can be executed at the same time to enhance the processing throughput.

in the HLT, the model was deployed as a service on GPU coprocessors for offline reconstruction due to the impractical

high data rate. Considering realistic LHC scenarios with events involving 5 electrons, the inference latency per event

was reduced from 75 ms to 1.5 ms compared to the CPU-based implementation.

3 A STREAM-BASED ARCHITECTURE OF DEEPCALO ON FPGA

As mentioned in previous sections, DeepCalo needs to be implemented as a fully-on-chip and dataflow architecture to

attain high throughput and meet the stringent latency constraints of the LHC. In this section, we will elaborate on the

design of the stream-based architecture and the optimization in different layers.

3.1 Stream-based Architecture

To realize the DeepCalo data flow architecture, the network layers are pipelined using pragma HLS Dataflow from

Vivado HLS [47]. As illustrated in Figure 2, different processing stages (layers) are implemented in a pipeline manner and

can be executed simultaneously. Data transmission schemes are crucial in a dataflow architecture. hls4ml provides two

methods to transmit data between layers: array-based and stream-based, resulting in distinct processing structures as

illustrated in Figure 3. The array-based scheme stores the complete feature map in an array and transmits it to the next

layer only after the computation is finished. While this approach enables maximum parallel processing, it can result in

large storage requirements and potentially increased timing overhead. In contrast, the stream-based approach utilizes

FIFOs (First In First Out buffers) for connections between stages, eliminating extra data management and improving

Manuscript submitted to ACM

8 ChiJui Chen and YanLun Huan, et al.

(a) array-based (b) stream-based

Fig. 3. Comparison of (a) array-based and (b) stream-based data transmission schemes in hls4ml.

resource utilization. Furthermore, it efficiently supports the sequential pipeline within a dataflow structure. Therefore,

our design in this paper adopts the stream-based architecture.

To facilitate the later discussion, we use symbols 𝐻 ,𝑊 , and 𝑁 to respectively denote the height, width, and number

of channels for an input feature map. We also employ the variables 𝑛_𝑖𝑛 and 𝑛_𝑜𝑢𝑡 to represent the corresponding

input and output dimensions of a dense layer.

3.2 Analysis of Different Stream Types

Applying different types of streams has an impact on various aspects, such as resource usage, latency, and the architecture

of corresponding processing elements (PEs). Three of the most common streaming approaches in Vivado HLS are

discussed in this paper: stream-of-struct, single-value stream (hereafter called single-stream), and array of single-value

streams (hereafter called array-of-streams). Figure 4 shows the flows of three types of streams from one layer to another,

together with their corresponding HLS C++ codes. The default stream type utilized in hls4ml is stream-of-struct, which

transfers an entire struct containing an array of size 𝑁 . In single-stream, one pixel is transferred per cycle, whereas

array-of-streams involve multiple parallel streams. In the following paragraphs, we will compare them and introduce

suitable application scenarios.

In stream-of-struct, there are two steps involved. First, pragma HLS data_pack [48] is applied to partition and reshape

the array into a unified long vector, as shown in the bottom left side of Figure 4. Second, as the subsequent layer

processes the entire channel concurrently, Vivado HLS partitions the stream into 𝑁 individual streams. This allows the

PEs to fetch 𝑁 input data in a single cycle. However, this approach increases the circuit complexity.

The array-of-streams is composed of 𝑁 parallel streams, resulting in 𝑁 FIFOs, and resembles the stream-of-struct

architecture. The difference is that there is no requirement to first apply pragma HLS data_pack to expand the bandwidth.

This greatly simplifies the architecture and reduces the compile time in Vivado HLS.

The single-stream operates with a single FIFO and conducts data transmission in a serial manner. As a result, the need

for loop unrolling or array partitioning to facilitate parallel computation is eliminated, making it more straightforward

to implement.

The current hls4ml performs effectively when the channel size is small, allowing low latency in CNN models.

However, when dealing with larger CNN models, synthesizing the design becomes unpractical due to the longer

compilation time and the increased network complexity. The resource utilization experiment involving different streams

is discussed in detail in Section 5. Based on our observation, models with convolutional layers that have more than 64
filters would encounter this issue. To address these limitations, we switched to single-stream and array-of-streams

Manuscript submitted to ACM

Accelerating CNNs on FPGAs for Particle Energy Reconstruction 9

Fig. 4. Illustration of different stream types: Streams of Struct (left), Single-Value Streams (middle), and Array of Single-Value Streams
(right). We assume that all pixels are 16 bits and 𝑁 pixels (the entire channel) are transferred. The streams flow from the left-hand
side (source layer) to the right-hand side (destination layer). HLS C++ codes are included to demonstrate stream creation.

Algorithm 1 The definition of data_transfer_in/out variables in hls4ml.

Input: positive integers: t denotes the threshold value, in denotes the input channel size, and out denotes the output
channel size.

Output: positive integers: data_transfer_in and data_transfer_out variables.
Get 𝑡 , 𝑖𝑛, 𝑜𝑢𝑡

if 𝑖𝑛 ≤ 𝑡 then
𝑑𝑎𝑡𝑎_𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_𝑖𝑛 ← 𝑖𝑛

else
𝑑𝑎𝑡𝑎_𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_𝑖𝑛 ← 1

end if
if 𝑜𝑢𝑡 ≤ 𝑡 then

𝑑𝑎𝑡𝑎_𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_𝑜𝑢𝑡 ← 𝑜𝑢𝑡

else
𝑑𝑎𝑡𝑎_𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_𝑜𝑢𝑡 ← 1

end if
Get 𝑑𝑎𝑡𝑎_𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_𝑖𝑛, 𝑑𝑎𝑡𝑎_𝑡𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟_𝑜𝑢𝑡

Stop

for data transmission in the hls4ml framework. This change required the reimplementation of the hardware mapping

mechanism and most HLS C++ layers.

3.3 Choosing the Proper Stream Type for Network Layers

In DeepCalo, downsampling leads to a decrease in spatial dimensions (𝐻 ×𝑊) as the number of channels (𝑁) increases.

In the single-stream approach, it takes 𝐻 ×𝑊 × 𝑁 cycles to process all elements. However, in the array-of-streams

approach, the required cycles are reduced to 𝐻 ×𝑊 , saving a factor of 𝑁 cycles. As a result, when the channel size

is below a certain threshold (default 64), an array-of-streams strategy is used to shorten the latency, even though it

Manuscript submitted to ACM

10 ChiJui Chen and YanLun Huan, et al.

Algorithm 2 The switch function for the data transfer method in Conv2D.

Input: a positive integer data_in denotes the data_transfer_in variable, and a positive integer data_out denotes the
data_transfer_out variable

Output: method denotes the applied data transfer function

• single-stream to single-stream, denote as 𝑆2𝑆

• single-stream to array-of-streams, denote as 𝑆2𝐴

• array-of-streams to single-stream, denote as 𝐴2𝑆

• array-of-streams to array-of-streams, denote as 𝐴2𝐴

Get 𝑑𝑎𝑡𝑎_𝑖𝑛, 𝑑𝑎𝑡𝑎_𝑜𝑢𝑡

if 𝑑𝑎𝑡𝑎_𝑖𝑛 == 1 then
if 𝑑𝑎𝑡𝑎_𝑜𝑢𝑡 == 1 then

𝑚𝑒𝑡ℎ𝑜𝑑 ← 𝑆2𝑆

else
𝑚𝑒𝑡ℎ𝑜𝑑 ← 𝑆2𝐴

end if
else

if 𝑑𝑎𝑡𝑎_𝑜𝑢𝑡 == 1 then
𝑚𝑒𝑡ℎ𝑜𝑑 ← 𝐴2𝑆

else
𝑚𝑒𝑡ℎ𝑜𝑑 ← 𝐴2𝐴

end if
end if
Get𝑚𝑒𝑡ℎ𝑜𝑑

Stop

requires more resources such as Block RAMs (BRAMs) for FIFOs, digital signal processors (DSPs), and lookup tables

(LUTs) for parallel computation. But for larger channel sizes, using array-of-streams leads to a complicated hardware

design, and the benefit of further reducing transmission time is not significant, as the input feature maps have already

been downsampled multiple times. In those cases, a single-stream strategy is used instead. The pragma HLS pipeline is

applied for the concurrent execution of operations, rather than using pragma HLS UNROLL [49] to create duplicate PEs.

To optimize the design for the available hardware resources, a switch function is introduced to hls4ml. It automatically

converts data types between single-stream and array-of-streams based on channel size. The threshold value for switching

can be adjusted by the user based on their requirements. This feature is facilitated by adding two new variables in

all layers: data_transfer_in and data_transfer_out, which record the input-stream and output-stream channel sizes

respectively. The definition of these two variables is depicted in Algorithm 1.

Once the threshold value is set, hls4ml fills in the values of data_transfer_in and data_transfer_out automatically. If

the number of input(output) channels exceeds the threshold value, the value of data_transfer_in(and data_transfer_out)

will be set to 1, indicating that the single-stream will be applied. Otherwise, the value of data_transfer_in(and

data_transfer_out) will be equal to the input(output) channel size, and array-of-streams will be employed. The imple-

mentation of the switch function is demonstrated in Algorithm 2. After the hls4ml conversion, these two values are

defined in the configuration file and used by Vivado HLS to generate the corresponding hardware design. By optimizing

the use of streams, the implementation process becomes more efficient and effective in terms of both latency and

resource consumption.

Manuscript submitted to ACM

Accelerating CNNs on FPGAs for Particle Energy Reconstruction 11

(a) Step1: Load the entire channel of
row1 to data buffer1.

(b) Step2: Load the entire channel of
(row2, col1) to data buffer2.

(c) Step3: Load the entire channel of
(row2, col2) to data buffer3.

(d) Step4: Channel-wise max-pool in the
pooling kernel.

(e) Step5: Shift the pooling kernel two
strides to the right.

(f) Step6: Move on to the next row and
repeat steps 1-5.

Fig. 5. Step-by-Step illustration of a 2 × 2 Max-pooling layer process.

3.4 Architecture Optimizations for Layers

Apart from the advantages of reorganizing the stream communication itself, the new transmission pattern allows us

to optimize the processing units. For instance, long compilation and synthesis duration are observed in dense layers,

which are attributed to the calculation pattern and weight arrangement. Another example is the max-pooling layers,

where Initiation Interval (II) violations are encountered when the sequential transmission is applied. In the following

subsections, we will analyze the causes of these issues and present our solutions to address them.

3.4.1 Max-pooling Layer Optimization. Similar to convolutional layers, hls4ml also provides a "linebuffer" option in

max-pooling layers. Although the linebuffer scheme offers flexibility in terms of pooling sizes and strides, it requires

numerous shift registers and sliding window buffers to minimize processing cycles. In addition, using single-stream

results in an initiation interval (II) violation on the input due to a mismatch between the original design, which processes

the entire channel concurrently. This would lead to a routing congestion problem and force the compiler to reduce the

clock frequency on FPGAs.

To overcome these limitations, an optimized design approach has been developed as presented in Figure 5. The

design focuses on the most common max-pooling layers with 2 × 2 pooling sizes and strides of two. Since there is no

overlapping between kernels, data could be stored in separate buffers. This approach does not require shift-register

Manuscript submitted to ACM

12 ChiJui Chen and YanLun Huan, et al.

(a) hls4ml version

(b) optimized version

Fig. 6. Comparison of calculation patterns in dense layer: (a) hls4ml version and (b) optimized version. Both layers have 4 input
neurons and 6 output neurons, and use 2 DSPs.

linebuffers and allows data to be retrieved every cycle, therefore solving the above problems. Array-of-streams is applied

in the input, so the below processes are all performed across the entire channel. Three buffers are utilized: Initially,

with a pipelined process,𝑊 + 1 cycles are spent to store the first row in the first buffer. Next, we move to the second

row and access the data from the first column, storing them in the second buffer. Finally, data in the right column are

assigned in the third buffer. At this moment, all the values required for computing pooling have been gathered, and the

pooling result can be calculated and sent into the output FIFOs channel-wise. For the remaining pixels in the second

row, we shift the pooling kernel two steps (stride 2) to the right and reuse the second and third buffers. The process is

continued until we reach the end of the second row. Then, we repeat the process by storing the third row of input data

in the first buffer again and continue until we reach the final pixel.

Manuscript submitted to ACM

Accelerating CNNs on FPGAs for Particle Energy Reconstruction 13

(a) 4 DSPs

(b) 2 DSPs

Fig. 7. Comparison of the different value of reuse factor in the optimized stream-based version of dense layer: (a) a dense layer with 4
DSPs and (b) a dense layer with 2 DSPs.

3.4.2 Dense Layer Optimization. hls4ml includes a dedicated dense layer, which offers a parameter known as reuse

factor for reuse of multiplier. Adjusting the value of reuse factor can, in turn, affect the number of computation PEs

utilized. Therefore, users can adjust the number of DSPs in the circuit to match the specific FPGA platform. Figure 6a

provides an overview of how the original hls4ml algorithm works. In the blue section, the first input is selected and two

DSPs are utilized to perform the multiplications and accumulations (MACs) to apply that input to the first and fourth

output. The same process is repeated for the second, third, and fourth inputs, at which point the first and fourth output

are completed. Once the computations in the blue section are done, the circuit starts to process the red section. At that

time, the first input is selected again to perform MACs related to the second and fifth outputs, followed by the same

process for the remaining inputs. Finally, in the green section, the inputs are reused again to perform MACs associated

with the third and sixth outputs. Due to the complex index arrangement of weights and the repeated reuse of inputs,

synthesizing the circuit becomes time-consuming and requires more resources, especially when dealing with larger

input and output dimensions. DeepCalo models, which include multiple large-scale dense layers, further amplify the

synthesis time and complexity of the circuits. Therefore, it was necessary to adjust the algorithm.

A revised approach is depicted in Figure 6b. The algorithm starts by selecting the first input and performing all

associated MACs, as indicated by the blue section. With two DSPs utilized, it takes three cycles to complete the

Manuscript submitted to ACM

14 ChiJui Chen and YanLun Huan, et al.

computations. Next, the second input is selected and performs all relevant MACs, depicted in the red section. This

process is repeated for the remaining inputs, as the green section and the yellow section illustrate. With this approach,

the circuit becomes simpler since the accumulator index is adjacent, and each input is used only once. Additionally,

the weight array is transposed to ensure alignment with its corresponding input. Based on our experience, the overall

synthesis time is reduced from the scale of hours to minutes.

We also provide a mechanism to adjust the number of DSPs by utilizing the reuse factor. In the hls4ml dense layer,

both the input and output are considered, so the reuse factor is a factor of n_in × n_out. However, in the optimized

dense layer, the reuse factor is solely determined by the number of output neurons, so it is a factor of n_out. For instance,

the reuse factor is 12 in Figure 6a, and is 3 in Figure 6b. Figure 7a illustrates four DSPs working in parallel. Figure 7b

shows only two DSPs working in parallel, resulting in a latency that is twice that of Figure 7a.

4 EXPLORATION AND REFINEMENT OF QUANTIZATION

In the current design flow, quantization errors could arise due to converting QKeras models to HLS ones. These errors

occur because the original floating-point computations are replaced by restricted-width fixed-point operations that are

significantly more efficient in FPGA logic. To fix the problem, quantization-aware training (QAT) is adopted so that

the model has weights in fixed point. Compared to a post-training quantization (PTQ) model, even if a QAT model is

hard to train and needs a large dataset to fine-tune, it outperforms in low bit-width and has a lower quantization error.

However, this can result in rounding or overflow of the arithmetic computation. It is essential to identify these errors in

the early stage to ensure efficiency in the long train-to-inference workflow. This section presents a detailed analysis of

the quantization process and proposes solutions to mitigate or eliminate quantization errors. The goal is to maintain

the accuracy and reliability of the converted HLS models.

4.1 Impact of Insufficient Bit-width in Accumulator

4.1.1 Determination of Bit-width in Accumulator. Dense and convolution layers consistsmainly ofmultiplier-accumulator

(MAC) units, followed by units for activation functions, as shown in Figure 8a and 8b. In QKeras, quantizers are used

as constraints to tune the bit-width of weights, bias, and activations to a specific distribution. This is done using the

quantization formula listed in Equation (1). 𝐵𝑊𝑡𝑜𝑡𝑎𝑙 and 𝐵𝑊𝑖𝑛𝑡 respectively denote the total bit-width and bit-width in

the integer part that we used to represent the fixed-point number from the input. 𝐹𝑃𝑞 and 𝐹𝑃𝑛𝑞 denote the quantized

and non-quantized floating point number. In Equation (1), 𝐹𝑃𝑞 will be scaled and rounded to an integer, clipping the

number so that the integer will be saturated to the maximum or minimum that can be represented according to the bit

width, re-scaling the number to a fixed-point number. Values will be quantized during training so that the training

can accurately adapt to any effects introduced by quantization. However, during the accumulation phase of matrix

multiplication, it’s not feasible to apply quantization to the data. This is due to the nature of the Keras backend and

CUDA, which perform the matrix multiplication operations on the GPU. These operations are essentially ’wrapped up’

in the backend, meaning we cannot easily insert a quantizer during this process when training the model.

The accumulation result is quantized before the activation function. Consequently, this necessitates the pre-

determination of the range of values in the accumulator before initiating the inference process. After converting

from Keras floating-point to HLS fixed-point format, one way to choose the best precision of the accumulator is to test

the model with various bit-widths until the error is acceptable. However, this is very time-consuming for searching.

We adopted a more efficient approach in which we estimate the required bit-width by using the number of additions

involved in producing a result. The relation between accumulation bit-width and additions is formulated in Equations

Manuscript submitted to ACM

Accelerating CNNs on FPGAs for Particle Energy Reconstruction 15

(a) (b)

Fig. 8. Computational graphs of (a) a multiplier-accumulator (MAC) unit (b) a MAC unit followed by an activation-computing unit.
Different types of precision in various domains are indicated in red font.

(2) to (4). 𝐵𝑊𝑎𝑐𝑐 denotes the required bit-width in the accumulator, 𝑁𝑎𝑐𝑐 denotes how many additions are performed in

the computation, and 𝐹𝑃𝑞,𝑁𝑎𝑐𝑐
denotes the quantized floating-point number after 𝑁𝑎𝑐𝑐 additions. Equation (2) sets the

limit of 𝐹𝑃𝑞 , and Equation (3) sets the limit of 𝐹𝑃𝑞,𝑁𝑎𝑐𝑐
. Based on these two bounding conditions, we can estimate the

bit-width of the accumulator (𝐵𝑊𝑎𝑐𝑐) using Equation (4).

𝐹𝑃𝑞 =
2
𝐵𝑊𝑖𝑛𝑡

2
𝐵𝑊𝑡𝑜𝑡𝑎𝑙

·𝐶𝑙𝑖𝑝 (𝑅𝑜𝑢𝑛𝑑 (𝐹𝑃𝑛𝑞 ·
2
𝐵𝑊𝑡𝑜𝑡𝑎𝑙

2
𝐵𝑊𝑖𝑛𝑡

)) (1)

−2𝐵𝑊𝑡𝑜𝑡𝑎𝑙−1 ≤ 𝐹𝑃𝑞 ≤ 2
𝐵𝑊𝑡𝑜𝑡𝑎𝑙−1 − 1 (2)

−2𝐵𝑊𝑎𝑐𝑐−1 ≤ −2𝐵𝑊𝑡𝑜𝑡𝑎𝑙−1 · 𝑁𝑎𝑐𝑐 ≤ 𝐹𝑃𝑞,𝑁𝑎𝑐𝑐
≤ 2

𝐵𝑊𝑡𝑜𝑡𝑎𝑙−1 · 𝑁𝑎𝑐𝑐 ≤ 2
𝐵𝑊𝑎𝑐𝑐−1 − 1 (3)

𝐵𝑊𝑎𝑐𝑐 ≥ 𝐵𝑊𝑡𝑜𝑡𝑎𝑙 + 𝑙𝑜𝑔2 (𝑁𝑎𝑐𝑐) (4)

The possible value of 𝐹𝑃𝑞 is limited due to the clip function shown in Equation (2). The upper bound and the lower

bound of 𝐹𝑃𝑞 are amplified by 𝑁𝑎𝑐𝑐 after 𝑁𝑎𝑐𝑐 additions. The inequality of Equation (2) can be further simplified to

Equation 4. Obviously, an insufficient bit-width for the accumulator will not satisfy the inequality, which sometimes

will cause overflow which cannot be predicted in advance. A deeper model or more filters in layers would cause more

additions in one accumulation and thus require wider bit-width to prevent overflow. This results in a proportional

increase in the required number of additions, which, in turn, increases the number of bits needed in an accumulator. If

an accumulator uses enough bits, overflow could be avoided during computation.

In the original hls4ml, the quantized weights and activation are loaded from the quantized layer in QKeras. The data

type is changed from floating-point to fixed-point, which does not cause any quantization error because quantizers

have been inserted. On the other hand, in the original hls4ml, the precision of the accumulator will be set the same as

the overall model precision. However, as we mentioned in the previous paragraph, the precision of the accumulator

is determined by different bit-width according to how many input channels or units are in the layer. As a result, the

precision of the accumulator should be adjusted according to the arithmetic characteristics and precision requirement

of a layer.

4.1.2 Profiling the HLS Model. It is worth noting that 𝐵𝑊𝑎𝑐𝑐 can be long when the model is large. Therefore, hls4ml

provides a tool to reduce the cost of the accumulator by profiling the arithmetic characteristics of the model. By feeding

Manuscript submitted to ACM

16 ChiJui Chen and YanLun Huan, et al.

(a) value range of weight (b) value range of activation

Fig. 9. The distribution of weights and activation and the range which HLS can represent. (a) shows the value range of weight, and
(b) shows the value range of activation. The box plot represents the distribution of value in QKeras, and the gray area is the range
which HLS can represent in fixed point data type.

Table 2. The resource utilization of image-only model using different rounding strategies. The detailed FPGA experiment setup is
mentioned in Section 5.

Resource AP_RND AP_RND_CONV AP_TRN

BRAM 680 680 680

DSP 3,512 3,516 3,516

LUT 290,972 290,194 289,078

FF 281,209 281,716 280,677

URAM 115 115 115

test data to both the QKeras model and the HLS model in trace mode, the arithmetic computation of all HLS layers in

the HLS model can be observed and the 𝐵𝑊𝑎𝑐𝑐 can be further reduced, generally with an acceptable impact on accuracy.

Figure 9a and Figure 9b show the value ranges of weights and activations, respectively. The box plot represents

the value in QKeras, and the gray area represents the range of precision that can be represented in HLS. One thing to

note is that hls4ml always isolates the activation from the convolution layer and the dense layer, so we can observe

the output of the layer and the output of the activation after that layer. Normally, the precision of the output and the

accumulator are the same, so we can adjust the bit-width of the accumulator by adjusting the bit-width of the output

manually. In other words, we need to make sure that the box plot is within the gray area. Testing the HLS model by

providing multiple test data to trace the output of each layer is feasible. However, this process applies only to specific

test data and not to all samples or real-world data. Therefore, even if achieving a low bit-width is successful for certain

test data, there is still a possibility of incorrect predictions for other test data.

Manuscript submitted to ACM

Accelerating CNNs on FPGAs for Particle Energy Reconstruction 17

(a) (b)

Fig. 10. The distribution of differences in each layer with AP_RND and AP_RND_CONV rounding. (a) shows AP_RND rounding and
(b) shows AP_RND_CONV rounding. The black cross represents the outlier of the box plot, and the orange line represents the median
of the box plot.

4.2 Other Explorations

4.2.1 Different Rounding Strategies. Due to the difference in rounding between HLS and QKeras, there can be slight

variations in the results at the activation layer. The rounding modes used in HLS are discussed in Ref. [50]. Even with a

higher number of fractional bits, these differences can propagate to the output of a model. When using QKeras, the

tf.math.round function rounds values to the nearest even number [51]. However, different data types will adopt different

round modes. For example, AP_RND, AP_TRN, or AP_RND_CONV will use rounding to positive infinity, truncating the

value, or rounding to the nearest number but the least significant bit must be 0, respectively. The difference in rounding

can result in significant variations in predictions, which is shown in Figure 10. Despite this, the increase in resources

required when using AP_TRN versus AP_RND_CONV is minimal, as shown in Table 2.

4.2.2 Impact of Non-quantized Input Data. When using QKeras, the first layer will use non-quantized inputs, and

perform the computation with quantized weights. The computation on the mixed types will result in a nonquantized

output. However, in HLS, all inputs are quantized in the testbench by converting them from floating-point to fixed-point.

To generate the quantized QKeras model, there are two solutions: (1) quantize the input outside of the QKeras model

and perform Quantization Aware Training (QAT), or (2) insert a linear quantizer directly into the input layer. While the

first solution does not require additional hardware overhead, it must be processed in advance. Therefore, in our paper,

we adopt the second solution.

4.2.3 Verifying the Quantization Results. For reducing quantization errors or optimizations, we need to ensure that the

functionality does not change either from the quantized layer to the HLS layer or from the original layer to the optimized

layer. One of the effective ways to verify this is to compare the predictions between the QKeras model and the HLS

model. Figures 11a and 11b plot the architecture and precision in each route and can be very helpful in validating the

results and debugging the quantization issues. With this enhancement in hls4ml, we can easily identify the difference

between the models and quantization errors in various bit-width of weights and activations. This enhancement can also

enable fast performance evaluation of the QKeras model using processors (e.g. GPU) instead of waiting for the slow

software emulation of the HLS model.

Manuscript submitted to ACM

18 ChiJui Chen and YanLun Huan, et al.

(a) (b)

Fig. 11. The architecture of the dense layer in (a) QKeras and (b) HLS model.

5 EXPERIMENTAL RESULTS

This section presents comprehensive experiments with the DeepCalo design and optimizations for FPGAs. The latencies

of the models on FPGAs are shown in section 5.1, alongside other performance metrics, and further compared with

other computing platforms in Section 5.2. In Section 5.3, we evaluated the performance of two DeepCalo models under

different quantization schemes and fixed-point precisions. The resource utilization on FPGAs will be discussed in

Section 5.4.

All quantization processes include weights and activations with homogeneous bit width. The fixed-point format is

based on the Vivado HLS ap_fixed type [52]. Furthermore, the batch normalization folding technique [53] [54] is adopted

during the HLS conversion to further lower resource utilization and latency. Specifically, the batch normalization layers

that follow the convolutional and dense layers are fused together.

The design is converted to HLS C++ using hls4ml 0.5.1 and then synthesized with Vivado HLS 2019.2, targeting a

Xilinx Alveo U50 FPGA with a clock frequency of 200MHz.

5.1 Latency of DeepCalo Models on FPGA

Table 3 presents the latency measurements, expressed in microseconds and cycles, for each layer in both the image-only

model and the full model. Latency is defined as the time required to generate a single batch of predictions, and the timing

information is derived from the HLS C-synthesis report. To compare the impact of different stream types introduced in

Subsection 3.2, a consistent methodology was employed for both models. Initially, all weights and activations were

quantized to a precision of <8,2>. Subsequently, during the conversion to HLS, two sets of results were obtained. The

first set involved the inclusion of the switch function, as discussed in Subsection 3.3, resulting in a mixed-type (partial
array-of-streams) dataflow scheme. The second set excluded the switch function, resulting in an all-single-stream
dataflow scheme.

By incorporating a threshold in the switch function, the array-of-streams approach enabled higher parallelism in the

early stage of the CNN, while the remaining layers utilized a single-stream configuration, ensuring data transfer in a

Manuscript submitted to ACM

Accelerating CNNs on FPGAs for Particle Energy Reconstruction 19

Table 3. Latency comparison for each layer in the (a) image-only model and (b) full model using all-single-stream implementation and
mixed-type implementation. Activation layers are negligent. Single-stream is denoted as SS, and array-of-streams is denoted as AS.

(a) CNN (Image-only model)

stream type all-single-stream mixed-type

Layer

Max Latency Max Latency

µs cycles type µs cycles type

Input - - - - - -

Upsampling2D 61.61 12,322 SS 15.41 3,082 AS

Conv2D1 549 109,741 SS 230 46,021 AS

MaxPool1 289 57,793 SS 15.685 3,137 AS

Conv2D2 335 66,991 SS 139 27,841 AS

Conv2D3 405 80,911 SS 139 27,841 AS

MaxPool2 131 26,293 SS 3.995 799 AS

Conv2D4 236 47,281 SS 200 40,081 AS

Conv2D5 275 54,961 SS 275 54,961 SS

MaxPool3 59.785 11,957 SS 59.785 11,957 SS

Conv2D6 175 34,921 SS 175 34,921 SS

Conv2D7 310 62,065 SS 310 62,065 SS

MaxPool4 27.225 5,445 SS 27.225 5,445 SS

Conv2D8 194 38,801 SS 194 38,801 SS

Conv2D9 212 42,376 SS 212 42,376 SS

Dense1 35.885 7,177 SS 35.885 7,177 SS

Dense2 5.165 1,033 SS 5.165 1,033 SS

Dense3 1.305 261 SS 1.305 261 SS

Total 802 160,437 - 343 68,531 -

(b) Full model

stream type all-single-stream mixed-type

Layer

Max Latency Max Latency

µs cycles type µs cycles type

Scalar Net

Input Scalar Variables - - - - - -

Dense 1.555 311 SS 1.555 311 SS

Track Net

Input Track Vectors - - - - - -

Time Distributed 199 39,756 SS 199 39,756 SS

Sum1D 49.96 9,992 SS 49.96 9,992 SS

Dense1 2.61 522 SS 2.61 522 SS

Dense2 2.61 522 SS 2.61 522 SS

FiLM Generator (Connecting the Track and Scalar Net)

Concatenate 3.87 774 SS 3.87 774 SS

Dense1 8.375 1,675 SS 8.375 1,675 SS

Dense2 12.855 2,571 SS 12.855 2,571 SS

Dense3 20.375 4,075 SS 20.375 4,075 SS

FiLM1 247 49,318 SS 15.59 3,118 AS

FiLM2 121 24,262 SS 4.13 826 AS

FiLM3 58.91 11,782 SS 58.91 11,782 SS

FiLM4 28.19 5,638 SS 28.19 5,638 SS

FiLM5 14.11 2,822 SS 14.11 2,822 SS

Combined with

873 174,600 - - - -

all-single-stream CNN

Combined with

- - - 374 74,734 -

mixed-type CNN

pipelined manner with low resource demand. As the full model does not have a sequential structure, the additional

submodels had minimal impact on the overall latency result. Comparatively, the array-of-streams approach exhibited

significantly shorter latency in the layers, leading to reduced overall latency. Both models achieved a speed improvement

of approximately 2.34×.
Notably, in the all-single-stream implementation, the first convolutional layer experienced longer latency compared

to the other layers. This increase in latency is primarily attributed to the larger dimension of the input feature map and

the inherent complexity of convolutions, which ultimately creates a bottleneck within the pipeline.

5.2 Comparisons with Other Computing Platforms

In this subsection, we present a comparison of the image-only model and the full model on various processing platforms,

including CPUs, GPUs, and FPGAs. The comparison focuses on latency, speedup, power consumption, and energy

consumption. Speedup is calculated by normalizing the latency of the Ryzen 5 5600H CPU. The experiments were

carried out using three different batch settings: 1, 5, and 100. Note that a batch size of 5 corresponds to approximately

Manuscript submitted to ACM

20 ChiJui Chen and YanLun Huan, et al.

Table 4. Performance comparisons of the (a) image-only model and (b)full model on processing platforms: CPUs, GPUs, and FPGAs.
Both models have floating-point precision for the CPUs and GPUs, whereas the precision for the FPGA is ap_fixed<8,2>.

(a) CNN (Image-only model)

Coprocessor CPU GPU FPGA

Type Ryzen 7 3700X Ryzen 5 5600H Intel i5-12400F RTX 2070 Super Tesla V100 RTX 2080 Ti single-stream mixed-type

Batch=1
Latency 6ms 6.227ms 4.439ms 5.98ms 3.5ms 5.8ms 0.697ms 0.443ms

Speedup 1.038× 1× 1.403× 1.041× 1.779× 1.074× 8.934× 14.056×
Power 53.82W 27.38W 40.38W 35.68W 61.08W 67.83W 18.33W 20W

Energy 322.92mJ 170.495mJ 179.247mJ 213.366mJ 213.78mJ 393.414mJ 12.778mJ 8.86mJ

Batch=5
Latency 10ms 10.165ms 8.03ms 8ms 3.6ms 6ms 2.395ms 1.34ms

Speedup 1.017× 1× 1.266× 1.271× 2.824× 1.694× 4.244× 7.586×
Power 62.03W 35.22W 47.29W 40.30W 62.31W 66.23W 19W 23W

Energy 620.3mJ 358.01mJ 379.74mJ 322.4mJ 224.315mJ 397.38mJ 45.505mJ 30.82mJ

Batch=100
Latency 50ms 72.8ms 49.3ms 8.4ms 4.8ms 6.7ms 44.4ms 23.5ms

Speedup 1.456× 1× 1.477× 8.667× 15.167× 10.866× 1.64× 3.098×
Power 81.02W 40.54W 62.46W 93.25W 92.22W 87.21W 19W 24W

Energy 4.051J 2.951J 3.079J 0.783J 0.443J 0.584J 0.844J 0.564J

(b) Full model

Coprocessor CPU GPU FPGA

Type Ryzen 7 3700X Ryzen 5 5600H AMD EPYC 7262 RTX 2070 Super Tesla V100 RTX 2080 Ti single-stream mixed-type

Batch=1
Latency 7.52ms 8.75ms 5.865ms 8.47ms 4.8ms 8.2ms 1.106ms 0.898ms

Speedup 1.164× 1× 1.492× 1.033× 1.823× 1.067× 7.911× 9.744×
Power 53.73W 29.13W 42.65W 49.77W 60.11W 64.54W 19.76W 20.75W

Energy 404.05mJ 254.888mJ 250.142mJ 421.552mJ 288.528mJ 529.228mJ 21.855mJ 18.634mJ

Batch=5
Latency 11.5ms 13.45ms 10.545ms 9.75ms 5.1ms 7ms 2.695ms 1.485ms

Speedup 1.17× 1× 1.275× 1.379× 2.637× 1.921× 4.991× 9.057×
Power 62.44W 37.67W 48.94W 51.83W 61.73W 84.18W 21W 23.775W

Energy 718.06mJ 506.66mJ 516.07mJ 505.345mJ 314.825mJ 589.26mJ 56.595mJ 35.305mJ

Batch=100
Latency 86ms 119ms 91.4ms 15ms 7.1ms 9.5ms 53.9ms 29.7ms

Speedup 1.384× 1× 1.302× 7.933× 16.761× 12.526× 2.208× 4.007×
Power 86.51W 47.24W 75.41W 93.59W 116.4W 112.74W 21W 23.833W

Energy 7.44J 5.622J 6.893J 1.404J 0.826J 1.071J 1.132J 0.708J

the number of electron collisions in LHC scenarios. Compared to the SONIC framework mentioned in subsection 2.4,

our implementation has shown a speedup of 5.6× with a batch size of 5.

5.2.1 Measurement Methodologies. To ensure unbiased results, we conducted 10
5
repetitions for each measurement of

latency, power consumption, and energy consumption on CPUs and GPUs. The average values were then calculated

from these repetitions.

The power consumption of the GPUs was measured using Nvidia’s built-in command, which recorded the power

readings from specific registers on the GPUs at intervals of 10 milliseconds. On the other hand, the power consumption

of CPUs was measured by sampling the CPU package power every 20 milliseconds.

In the case of FPGA, we examined the two dataflow schemes: mixed-type and all-single-stream. Latency was assessed

by measuring the time it took to load the input data from the DRAM, perform computations in the processing engines,

Manuscript submitted to ACM

Accelerating CNNs on FPGAs for Particle Energy Reconstruction 21

and write the results back to the DRAM. To mitigate the influence of dynamic factors during run-time, we obtained

the average latency through 10
4
runs. FPGA power consumption was measured as the average of 200 runs, using the

"query" command within the Xilinx Runtime Library (XRT) [55].

5.2.2 Image-only Model Analysis. The results of the image-only model are presented in Table 4a. As the batch size

increases for both CPUs and GPUs, the latency per batch tends to decrease, while the power consumption increases.

GPUs demonstrate significantly improved performance when the batch size is increased to 100, owing to their superior

parallelism compared to CPUs.

In the case of FPGA designs, the mixed-type scheme exhibits notably shorter latency across all batch sizes compared

to the all-single-stream scheme. It achieves a speedup of 1.573× for batch size 1, 1.787× for batch size 5, and 1.889× for

batch size 100. Due to the improved pipelined dataflow mentioned in Section 3, both dataflow schemes demonstrate

decreasing latency per batch with increasing batch size. This efficiency also leads to a slightly higher power consumption

as the batch size increases.

For batch sizes of 1 and 5, the speedup ratio and energy consumption of FPGA designs surpass those of CPUs

and GPUs. However, for batch size 100, GPUs outperform FPGAs in terms of speedup due to the massively parallel

processing capabilities. Nevertheless, FPGAs still exhibit significantly better speedup compared to CPUs. Regarding

energy consumption, the performance of the FPGA is slightly inferior to that of the GPU-Tesla V100. However, it is

important to consider that the Alveo U50 FPGA costs approximately US$3,000 [56] while the Tesla V100 GPU is priced

at around US$15,000 [57].

5.2.3 Full Model Analysis. The performance results for the full model are listed in Table 4b. The mixed-type scheme

attains 1.231×, 1.815×, and 1.815× faster than the all-single-stream scheme for batch sizes 1, 5 and 100, respectively.

Due to the inclusion of additional side branches from the submodels (Track-Net and Scalar-Net), traffic jams are more

likely to occur in certain parts of the FIFOs within the full model. Therefore, the efficiency of the dataflow pipeline is

reduced, leading processing units to reach their maximum capacity when the batch size becomes excessively large.

Similarly to the observations in Table 4a, the latency per batch decreases, while the power consumption slightly

increases as the batch size increases. Compared to CPUs and GPUs, FPGA designs still exhibit lower latency and energy

consumption for batch sizes 1 and 5. Although GPUs outperform FPGAs in terms of speedup for batch size 100, the

FPGA designs continue to demonstrate lower energy consumption compared to GPUs.

5.3 Evaluation of Performance

This section examines in detail the effects of using the QAT and PTQ approaches. We start by providing hyperparameters

used in the QAT procedure. Next, we define the two evaluation metrics to assess model performance: mean absolute

error (MAE) and interquartile range (IQR). MAE provides a measure of the average prediction error, while IQR captures

the distribution tendencies. Finally, we compare the performance of the image-only model and the full model using the

defined evaluation metrics in both quantization schemes. The goal of the evaluation process is to identify the optimal

quantization scheme that balances performance and resource utilization, which is discussed in the next subsection.

5.3.1 Quantization-aware Training Hyperparameters. We use the same set of hyperparameters as those used for training

floating-point models. The dataset contains about 1.2 million electrons from the ECAL endcap region for the energy

regression task. It was divided approximately 70%, 15%, and 15% into training, validation, and test set. Both models

are trained with the Nadam optimizer [58] alone with a cyclical learning rate (CLR) [59] schedule for 300 epochs. For
Manuscript submitted to ACM

22 ChiJui Chen and YanLun Huan, et al.

(a) Evaluation metric: MAE (b) Evaluation metrics: IQR75 and IQR95

Fig. 12. Performance comparison of the image-only model and full model as a function of model precision after QAT. Evaluation
metrics are (a) MAE and (b) IQR. Both models’ total bits vary from 16 to 8, with the integer bits set to half of the total bits.

CLR, the stepsize is 3 epochs, the baseline learning rate is 5𝑒−4 and the maximum learning rate is 7𝑒−2. The initial

learning rate is determined by scanning between 1𝑒−5 and 1𝑒−2 for an epoch before training. The batch size is set to

1,024, and we employ the logcosh loss function to reduce sensitivity to outliers. An early stopping with min_delta of

0.001 and patience of 150 monitored on the validation loss is adopted. The details of the hyperparameter search and

dataset collection are discussed in Ref. [12].

5.3.2 Evaluation Metrics. The MAE metric is defined in Equation 5, where 𝑦 is the predicted energy and 𝑦 is the true

energy, and the subscript 𝑖 denotes the 𝑖𝑡ℎ data in the total number of data points 𝑛.

The IQR of the distribution of relative errors (RE) metric is also used to provide a more robust overview, which is

defined in Equation 6. It helps to identify the range within which a certain percentage of REs fall, with 𝑃𝑚 representing

the𝑚𝑡ℎ
percentile. In this paper, we utilized IQR75 and IQR95.

𝑀𝐴𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 | (5)

𝐼𝑄𝑅𝑚 (𝑅𝐸) = 𝑃𝑚 (𝑅𝐸) − 𝑃100−𝑚 (𝑅𝐸), 𝑅𝐸 =
𝑦 − 𝑦
𝑦

(6)

5.3.3 Quantization Schemes Performance Comparison. Balancing model performance and resource utilization is a

complex and time-consuming task when optimizing QAT configuration. To tackle this challenge, we adopt a two-step

approach. We first conducted an extensive search for the bit widths of both models using PTQ, which serves as a

reference baseline. For the image-only model, it ranges from 32 total bits down to 2 total bits, while also varying the

number of integer bits. However, due to the increased complexity of the full model, we only went through this process

Manuscript submitted to ACM

Accelerating CNNs on FPGAs for Particle Energy Reconstruction 23

(a) Image-only model MAE (b) Image-only model IQR

Fig. 13. Performance of the image-only model as a function of model precision using PTQ and QAT. Evaluation metrics are (a) MAE
and (b) IQR. The total bits ranged from 32 to 7, where the integer bits were set to half of the total bits.

from 16 total bits to 2 total bits. During the PTQ evaluation, we observed that providing similar bits for both the integer

and fraction parts yielded the lowest MAE for both models. This finding guided our subsequent QAT experiments,

where we set integer bits as half of the total bits.

Figure 12 presents two performance comparisons between the image-only model and the full model after performing

QAT with different model precisions, using the two evaluation metrics mentioned above. Concerning both metrics, the

full model exhibits better regression performance and robustness compared to the image-only model, regardless of

precision. This finding suggests that the inclusion of additional components and features in the full model enhances its

performance, even with various precision settings.

Figure 13 includes two subfigures evaluating the impact of the PTQ and QAT schemes on the performance of the

image-only model. For Figure 13a, the MAEs of the QAT and PTQ models remain relatively consistent, from 32 to 17

total bits. However, as the total bit width is further reduced, there is a gradual decline in the performance of both models.

However, the MAE of the QAT model is always lower than that of the PTQ model. We did not include bits lower than 7

since the performance has dropped to an unreliable level. In Figure 13b, the IQR distribution pattern mirrors the MAE

trend we observe in Figure 13a. Furthermore, there are sudden peaks of MAE and IQR in the PTQ model around 10 total

bits. This suggests that 10 total bits are not sufficient to accurately represent the weight values in the PTQ model.

Figure 14 presents two subfigures evaluating the impact of the PTQ and QAT schemes on the performance of the full

model. In Figure 14a, the MAE remains consistently low as the total bits range from 16 bits to 3 bits using QAT. On the

contrary, the PTQ model starts with a relatively higher MAE and exhibits an increasing trend as the total bits decrease.

Moreover, the PTQ model generally has a higher MAE compared to the QAT model, with the gaps narrowing only

when the total bits are extremely low. Similarly, Figure 14b reveals that the IQR of the PTQ model is higher than that of

Manuscript submitted to ACM

24 ChiJui Chen and YanLun Huan, et al.

(a) Full model MAE (b) Full model IQR

Fig. 14. Performance of the full model as a function of model precision using PTQ and QAT. Evaluation metrics are (a) MAE and (b)
IQR. The total bits ranged from 16 to 2, where the integer bits were set to half of the total bits.

the QAT model for most precision levels. Remarkably, the QAT model demonstrates a feature of consistently low values

of IQR75 and IQR95 in various precisions, which underlines its robustness to changes in precision levels.

5.3.4 Analysis of Model Performance. Based on the observations in Figure13 and Figure14, it suggests that enough

bits for both integers and fractions are essential for such a regression task. As the bit width decreases, the model’s

predictions become more varied and extreme, suggesting the significance of bit width in regulating the prediction

dependability.

Furthermore, when different quantization strategies are compared, QAT consistently exhibits superior performance

over PTQ at nearly every precision level. This underscores the robustness and efficacy of QAT in preserving model

performance while reducing resource utilization.

5.4 Resource Utilization

5.4.1 Stream Types Resource Comparison. Table 5 presents the resource consumption and latency of two convolutional

layers extracted from the image-only model, one with 16 filters, an input channel size of 4, and a precision of <32,16>,

and the other with 256 filters, an input channel size of 256, and a precision of <16,8>. Both layers were evaluated using

different stream types.

In Table 5a, the resource consumption and latency in array-of-streams are quite similar to those in stream-of-struct.

This indicates that when the number of channels is small, stream-of-struct can be efficiently processed using Vivado

HLS. For BRAM usage, it is used for both read-only memory (ROM) and FIFOs purposes. ROM is utilized for the storage

of weight data, so the value is the same for all three data types. FIFOs are used for data transmission. In this experiment,

Manuscript submitted to ACM

Accelerating CNNs on FPGAs for Particle Energy Reconstruction 25

Table 5. Resources utilization and latencies of two convolutional layers with different stream types.

(a) 16 filters with precision of <32,16>

single array struct

BRAM 36 60 60

(ROM/FIFO) (28/8) (28/32) (28/32)

DSP 126 126 126

FF 10,123 9,761 9,758

LUT 26,623 27,396 27,382

Cycles 230,224 176,943 173,863

(b) 256 filters with precision of <16,8>

single array struct

BRAM 912 1167 1167

(ROM/FIFO) (911/1) (911/256) (911/256)

DSP 513 513 513

FF 82,520 102,956 129,419

LUT 69,143 69,574 106,643

Cycles 19,422 10,775 20,526

(a) Image-only model PTQ resource utilitzation (b) Image-only model QAT resource utilitzation

Fig. 15. Resource consumption analysis of the image-only model using different quantization schemes. The target FPGA is Alveo
U250.

one FIFO accounts for 8 BRAMs. Single-stream consumes one FIFO, while both array-of-streams and stream-of-struct

consume 4 FIFOs, which is equal to the input channel size for this 16-filter convolutional layer.

In Table 5b, the latency of stream-of-struct is larger than that of single-stream, and the resource utilization is the

highest in this table. In BRAM usage, the ROM is also used for the storage of weight data, and the value is the same in

different data types. In this experiment, 1 FIFO accounts for 1 BRAM due to the difference in precision compared to Table

5a. There are 256 input channels for this 256-filter convolutional layer, so both array-of-streams and stream-of-struct

consume 256 FIFOs.

5.4.2 Deepcalo Models Resource Comparison. Figure 15 and Figure 16 show the resource consumption of the image-only

model and full model respectively, in relation to the total available resources. The target FPGA is Alveo U250 [60],

Manuscript submitted to ACM

26 ChiJui Chen and YanLun Huan, et al.

(a) Full model PTQ resource utilitzation (b) Full model QAT resource utilitzation

Fig. 16. Resource consumption analysis of the full model using different quantization schemes. The target FPGA is Alveo U250.

currently the largest platform available in the Xilinx Alveo FPGA series, to ensure that the available resources are

sufficient at a high bit width. UltraRAM (URAM), a storage unit similar to BRAM, is utilized as buffer in the convolutional

layers of our design. There are five curves representing different resources, all of which exhibit a downward trend as

the total bit width decreases.

In Figure 15a, the resource consumption of the image-only model with PTQ is presented. The limitation for FPGA

inference in high bitwidth is DSPs, and this phenomenon is also evident in Figure 15b. The DSP consumption decreases

significantly from 32 bits to 22 bits, followed by a stable trend until 11 bits. This is due to the maximum input size for

multiplication in DSP48E2 being 27 × 18 [61]. If an input exceeds this limit, two DSPs will be applied to perform the

multiplication. For bit widths below 11 bits, the DSP utilization decreases to nearly zero percent since the multiplication

is carried out by LUTs, resulting in an increase in LUT consumption from 11 bits to 10 bits. The second limiting

resource is BRAM. The image-only model containing 1.8M parameters is quite large, and BRAM usage accounts for

approximately 80% in a bit width of 32. Therefore, to maintain desirable performance while reducing BRAM consumption

and computing resources, it is essential to apply QAT.

In Figure 15b, the resource consumption of image-only model with QAT is depicted. The curve for DSP consumption

is very similar to that shown in Figure 15a. For bit widths below 11 bits, the DSP consumption decreases smoothly until

it reaches 8 bits, which is in contrast to the abrupt trend observed in PTQ. The reason for this discrepancy is that the

training method used for QAT is different from that one for PTQ, resulting in different precision levels for accumulators

and output data in Conv2D and Dense layer. What is even more interesting is that the curve for BRAM consumption

decreases 20% compared to that shown in Figure15a. The is because the weight data in BRAM can be significantly

optimized in logic synthesis.

Manuscript submitted to ACM

Accelerating CNNs on FPGAs for Particle Energy Reconstruction 27

In Figure 16a, the resource consumption of the full model with PTQ is illustrated. In the curve for DSP consumption,

the transition point also occurs between 12 bits and 10 bits, and as a result, the LUT consumption increases. The

resource consumption of full model with QAT is presented in Figure 16b. In the curve for DSP consumption, also due

to different training method used for PTQ and QAT, the trend decreases gradually between a bit width of 12 and 8.

Different training method also has an impact on the BRAM usage. Unlike the result in image-only model, full model

utilizing PTQ and QAT exhibits very similar BRAM usage. As FIFO is established by BRAM, a higher precision level used

for output data will lead to increased BRAM consumption. In full model with QAT, output precision of certain layers is

double to that of the corresponding layers in PTQ, which leads to higher consumption of BRAM in FIFOs. Therefore,

the BRAM consumption in QAT is more than that one in PTQ. Overall, the trend in QAT for different resources is very

similar to that shown in PTQ.

6 CONCLUSION

In this paper, we present an automated design and optimization workflow based on hls4ml to deploy DeepCalo models

on a Xilinx Alveo U50 FPGA, with potential applicability to other large CNNs. We highlight the importance of choosing

the appropriate stream-based dataflow to balance resource utilization and achieve the desired latency. To ensure the

accuracy and reliability of the converted HLS models, we illustrate our approach to eliminating potential quantization

errors at an early stage, prior to conversion to HLS. To validate our methodology, we compare the FPGA implementation

of both models with other co-processors using key performance indicators such as latency, speedup, power consumption,

and energy efficiency. Examining actual LHC conditions, the image-only model yielded an inference latency of 1.34

ms for every 5 images, which is 5.6 times faster than the existing GPU-based system. At a batch size of one, the

image-only model demonstrates a latency of 0.443 ms, while the full model exhibits a latency of 1.34 ms, achieving the

Level-1 Trigger requirement. Compared to the Ryzen-5600H CPU and the Tesla V100 GPU, the image-only (full) model

achieves speedups of up to 14.1× (9.7×) and 7.9× (5.3×), respectively. Finally, we show that quantization-aware training

significantly reduces resource usage and preserves performance compared to post-training quantization.

ACKNOWLEDGMENTS

We would like to express our sincere appreciation to the Fast Machine Learning Collaboration for their invaluable

contributions and stimulating discussions that greatly influenced this research. Our heartfelt gratitude goes to Frederik

Faye for his exceptional vision and dedication in initiating and leading the DeepCalo project, which laid the groundwork

for our study. Additionally, we extend our thanks to the Accelerated AI Algorithms for Data-Driven Discovery (A3D3)

Institute for valuable support.

CODE AVAILABILITY STATEMENT

The source code used in this paper has been organized and made available at https://github.com/ChiRuiChen/ACFPER,

which includes the code for the implementation of DeepCalo, HLS4ML, and FPGA.

REFERENCES
[1] Particle Data Group et al. 2008. Review of particle physics. Physics Letters B, 667, 1-5, (Sept. 2008), 1–6. A booklet is available containing the

Summary Tables and abbreviated versions of some of the other sections of this full Review. All tables, listings, and reviews (and errata) are also

available on the Particle Data Group website: http://pdg.lbl.gov. doi: 10.1016/j.physletb.2008.07.018.

[2] Lyndon Evans and Philip Bryant. 2008. Lhc machine. Journal of Instrumentation, 3, 08, (Aug. 2008), S08001. doi: 10.1088/1748-0221/3/08/S08001.
[3] 2016. Cern accelerating science. (n.d.) https://home.cern/science/accelerators/large-hadron-collider.

Manuscript submitted to ACM

https://github.com/ChiRuiChen/ACFPER
https://doi.org/10.1016/j.physletb.2008.07.018
https://doi.org/10.1088/1748-0221/3/08/S08001
https://home.cern/science/accelerators/large-hadron-collider

28 ChiJui Chen and YanLun Huan, et al.

[4] ATLAS Collaboration. 2012. Observation of a new particle in the search for the standard model higgs boson with the atlas detector at the lhc.

Physics Letters B, 716, 1, 1–29. doi: https://doi.org/10.1016/j.physletb.2012.08.020.
[5] Dan Guest, Kyle Cranmer, and Daniel Whiteson. 2018. Deep learning and its application to lhc physics. Annual Review of Nuclear and Particle

Science, 68, 1, 161–181. eprint: https://doi.org/10.1146/annurev-nucl-101917-021019. doi: 10.1146/annurev-nucl-101917-021019.
[6] Frederik G. Faye. 2019. Deepcalo. https://gitlab.com/ffaye/deepcalo.

[7] F. Chollet et al. 2015. Keras. https://https://keras.io/.

[8] ATLAS Collaboration. 2010. The ATLAS simulation infrastructure. The European Physical Journal C, 70, 3, (Sept. 2010), 823–874. doi: 10.1140/epjc
/s10052-010-1429-9.

[9] ATLAS collaboration. 2017. Electron and photon reconstruction and performance in ATLAS using a dynamical, topological cell clustering-based

approach. Tech. rep. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-

PHYS-PUB-2017-022. CERN, Geneva. https://cds.cern.ch/record/2298955.

[10] ATLAS collaboration. 2019. Electron and photon performance measurements with the ATLAS detector using the 2015–2017 LHC proton-proton

collision data. Journal of Instrumentation, 14, 12, (Dec. 2019), P12006–P12006. doi: 10.1088/1748-0221/14/12/p12006.
[11] Darin Acosta et al. 2018. Boosted decision trees in the level-1 muon endcap trigger at cms. Journal of Physics: Conference Series, 1085, 4, (Sept.

2018), 042042. doi: 10.1088/1742-6596/1085/4/042042.

[12] 2019. Energy reconstruction of electrons and photons using convolutional neural networks, master’s thesis (cand.scient.) https://gitlab.com/ffaye

/deepcalo/-/blob/master/demos/atlas_specific_usecases/train_recommended_models/thesis.pdf.

[13] Pallabi Das and on behalf of the CMS Collaboration. 2022. An overview of the trigger system at the cms experiment. Physica Scripta, 97, 5, (Apr.
2022), 054008. doi: 10.1088/1402-4896/ac6302.

[14] ATLAS collaboration. 2020. Operation of the atlas trigger system in run 2. Journal of Instrumentation. Query date: 2023-03-15 23:42:14. doi:

10.1088/1748-0221/15/10/P10004.

[15] The ATLAS TDAQ Collaboration. 2016. The atlas data acquisition and high level trigger system. Journal of Instrumentation, 11, 06, (June 2016),
P06008. doi: 10.1088/1748-0221/11/06/P06008.

[16] ATLAS collaboration. 2020. Performance of the cms level-1 trigger in proton-proton collisions at s = 13 tev. Journal of Instrumentation, 15, 10, (Oct.
2020), P10017. doi: 10.1088/1748-0221/15/10/P10017.

[17] Jeffrey Krupa et al. 2021. GPU coprocessors as a service for deep learning inference in high energy physics. Machine Learning: Science and
Technology, 2, 3, (Apr. 2021), 035005. doi: 10.1088/2632-2153/abec21.

[18] Burkhard Schmidt. 2016. The high-luminosity upgrade of the lhc: physics and technology challenges for the accelerator and the experiments.

Journal of Physics: Conference Series, 706, 2, (Apr. 2016), 022002. doi: 10.1088/1742-6596/706/2/022002.
[19] ATLAS and CMS Collaborations. 2019. Report on the physics at the hl-lhc and perspectives for the he-lhc. (2019). doi: 10.48550/ARXIV.1902.10229.

[20] Javier Duarte et al. 2018. Fast inference of deep neural networks in FPGAs for particle physics. JINST, 13, 07, P07027. arXiv: 1804 . 06913
[physics.ins-det]. doi: 10.1088/1748-0221/13/07/P07027.

[21] Jennifer Ngadiuba et al. 2021. Compressing deep neural networks on FPGAs to binary and ternary precision with HLS4ML. Mach. Learn. Sci. Tech.,
2, 015001. arXiv: 2003.06308 [cs.LG]. doi: 10.1088/2632-2153/aba042.

[22] Elham E Khoda et al. 2022. Ultra-low latency recurrent neural network inference on fpgas for physics applications with hls4ml. (2022). doi:

10.48550/ARXIV.2207.00559.

[23] Thea Aarrestad et al. 2021. Fast convolutional neural networks on FPGAs with hls4ml. Mach. Learn. Sci. Tech., 2, 4, 045015. arXiv: 2101.05108
[cs.LG]. doi: 10.1088/2632-2153/ac0ea1.

[24] Abdelrahman Elabd et al. 2022. Graph neural networks for charged particle tracking on FPGAs. Frontiers in Big Data, 5, (Mar. 2022). arXiv:

2112.02048. doi: 10.3389/fdata.2022.828666.

[25] S. Summers et al. 2020. Fast inference of boosted decision trees in FPGAs for particle physics. Journal of Instrumentation, 15, 05, (May 2020),

P05026–P05026. doi: 10.1088/1748-0221/15/05/p05026.

[26] FastML Team. 2021. Fastmachinelearning/hls4ml. https://github.com/fastmachinelearning/hls4ml.

[27] Claudionor N. Coelho et al. 2021. Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge for

particle detectors. Nature Machine Intelligence, 3, 8, (June 2021), 675–686. doi: 10.1038/s42256-021-00356-5.
[28] Claudionor N. Coelho Jr et al. 2019. Qkeras. https://github.com/google/qkeras.

[29] Xilinx. 2023. Alveo u50 data center accelerator card. https://www.xilinx.com/products/boards-and-kits/alveo/u50.html.

[30] Xilinx. 2023. Amd ryzen 5 5600h. https://www.amd.com/en/products/apu/amd-ryzen-5-5600h.

[31] NVIDIA. 2023. Nvidia v100 tensor core. https://www.nvidia.com/en-us/data-center/v100/.

[32] Michaela Blott, Thomas B Preußer, Nicholas J Fraser, Giulio Gambardella, Kenneth O’brien, Yaman Umuroglu, Miriam Leeser, and Kees Vissers.

2018. Finn-r: an end-to-end deep-learning framework for fast exploration of quantized neural networks. ACM Transactions on Reconfigurable
Technology and Systems (TRETS), 11, 3, 1–23.

[33] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip Leong, Magnus Jahre, and Kees Vissers. 2017. Finn: a framework

for fast, scalable binarized neural network inference. FPGA ’17, 65–74.

[34] Yu-Hsin Chen, Tushar Krishna, Joel Emer, and Vivienne Sze. 2017. Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional

neural networks. In IEEE Journal of Solid-State Circuits number 1. Vol. 52. IEEE, 127–138.

Manuscript submitted to ACM

https://doi.org/https://doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1146/annurev-nucl-101917-021019
https://doi.org/10.1146/annurev-nucl-101917-021019
https://gitlab.com/ffaye/deepcalo
https://https://keras.io/
https://doi.org/10.1140/epjc/s10052-010-1429-9
https://doi.org/10.1140/epjc/s10052-010-1429-9
https://cds.cern.ch/record/2298955
https://doi.org/10.1088/1748-0221/14/12/p12006
https://doi.org/10.1088/1742-6596/1085/4/042042
https://gitlab.com/ffaye/deepcalo/-/blob/master/demos/atlas_specific_usecases/train_recommended_models/thesis.pdf
https://gitlab.com/ffaye/deepcalo/-/blob/master/demos/atlas_specific_usecases/train_recommended_models/thesis.pdf
https://doi.org/10.1088/1402-4896/ac6302
https://doi.org/10.1088/1748-0221/15/10/P10004
https://doi.org/10.1088/1748-0221/11/06/P06008
https://doi.org/10.1088/1748-0221/15/10/P10017
https://doi.org/10.1088/2632-2153/abec21
https://doi.org/10.1088/1742-6596/706/2/022002
https://doi.org/10.48550/ARXIV.1902.10229
https://arxiv.org/abs/1804.06913
https://arxiv.org/abs/1804.06913
https://doi.org/10.1088/1748-0221/13/07/P07027
https://arxiv.org/abs/2003.06308
https://doi.org/10.1088/2632-2153/aba042
https://doi.org/10.48550/ARXIV.2207.00559
https://arxiv.org/abs/2101.05108
https://arxiv.org/abs/2101.05108
https://doi.org/10.1088/2632-2153/ac0ea1
https://arxiv.org/abs/2112.02048
https://doi.org/10.3389/fdata.2022.828666
https://doi.org/10.1088/1748-0221/15/05/p05026
https://github.com/fastmachinelearning/hls4ml
https://doi.org/10.1038/s42256-021-00356-5
https://github.com/google/qkeras
https://www.xilinx.com/products/boards-and-kits/alveo/u50.html
https://www.amd.com/en/products/apu/amd-ryzen-5-5600h
https://www.nvidia.com/en-us/data-center/v100/

Accelerating CNNs on FPGAs for Particle Energy Reconstruction 29

[35] Zhu Qiu, Jason Cong, and Youxiang Li. 2021. Flexcnn: a flexible systolic array-based fpga accelerator for convolutional neural networks. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[36] 2023. Xilinx vitis ai. https://github.com/Xilinx/Vitis-AI.

[37] Nimmy M Philip and N M Sivamangai. 2022. Review of fpga-based accelerators of deep convolutional neural networks. In 2022 6th International
Conference on Devices, Circuits and Systems (ICDCS), 183–189. doi: 10.1109/ICDCS54290.2022.9780689.

[38] YuhaoWu. 2023. Review on fpga-based accelerators in deep learning. In 2023 IEEE 6th Information Technology,Networking,Electronic and Automation
Control Conference (ITNEC). Vol. 6, 452–456. doi: 10.1109/ITNEC56291.2023.10082175.

[39] Yunxiang Hu, Yuhao Liu, and Zhuovuan Liu. 2022. A survey on convolutional neural network accelerators: gpu, fpga and asic. In 2022 14th
International Conference on Computer Research and Development (ICCRD), 100–107. doi: 10.1109/ICCRD54409.2022.9730377.

[40] Nicolò Ghielmetti et al. 2022. Real-time semantic segmentation on FPGAs for autonomous vehicles with hls4ml. Mach. Learn. Sci. Tech. arXiv:
2205.07690 [cs.CV]. doi: 10.1088/2632-2153/ac9cb5.

[41] ATLAS collaboration. 2018. Measurements of higgs boson properties in the diphoton decay channel with 36 fb
−1

of 𝑝𝑝 collision data at√
𝑠 = 13 TeV with the atlas detector. Phys. Rev. D, 98, (Sept. 2018), 052005, 5, (Sept. 2018). doi: 10.1103/PhysRevD.98.052005.

[42] K Binder, D Heermann, L Roelofs, and ... 1993. Monte carlo simulation in statistical physics. Computers in . . . Query date: 2023-03-15 21:17:26. doi:

10.1063/1.4823159.

[43] Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks for large-scale image recognition. (2015). arXiv: 1409.1556

[cs.CV].

[44] Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. 2017. Film: visual reasoning with a general conditioning

layer. CoRR, abs/1709.07871. http://arxiv.org/abs/1709.07871 arXiv: 1709.07871.

[45] Claudionor N. Coelho et al. 2021. Automatic heterogeneous quantization of deep neural networks for low-latency inference on the edge for

particle detectors. Nature Machine Intelligence, 3, 8, (June 2021), 675–686. doi: 10.1038/s42256-021-00356-5.
[46] K. Pedro. 2020. Soniccms. https://github.com/fastmachinelearning/SonicCMS.

[47] Xilinx. 2019. Vivado hls 2019.1: pragma hls dataflow. https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623

.html#sxx1504034358866.

[48] Xilinx. 2019. Vivado hls 2019.1: pragma hls data_pack. https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr150403436462

3.html#drx1504034362276.

[49] Xilinx. 2019. Vivado hls 2019.1: pragma hls unroll. https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.ht

ml#uyd1504034366571.

[50] Xilinx. 2023. Vitis high-level synthesis user guide (ug1399): quantization modes. https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Quantization-

Modes.

[51] Martín Abadi et al. 2015. TensorFlow: large-scale machine learning on heterogeneous systems. Software available from tensorflow.org. (2015).

https://www.tensorflow.org/.

[52] Xilinx. 2023. Overview of arbitrary precision fixed-point data types. https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Overview-of-Arbitrary-Pre

cision-Fixed-Point-Data-Types.

[53] Raghuraman Krishnamoorthi. 2018. Quantizing deep convolutional networks for efficient inference: A whitepaper. CoRR, abs/1806.08342.
http://arxiv.org/abs/1806.08342 arXiv: 1806.08342.

[54] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew G. Howard, Hartwig Adam, and Dmitry Kalenichenko. 2017.

Quantization and training of neural networks for efficient integer-arithmetic-only inference. CoRR, abs/1712.05877. http://arxiv.org/abs/1712.05877
arXiv: 1712.05877.

[55] Xilinx. 2021. Xilinx runtime (xrt) library: query command. https://docs.xilinx.com/r/2021.2-English/ug1393-vitis-application-acceleration/query.

[56] Xilinx. 2023. Alveo u50 data center accelerator card/buy online from amd. https://www.xilinx.com/products/boards-and-kits/alveo/u50.html#buy-

from-xilinx.

[57] SHI. 2023. Nvidia tesla v100 - gpu computing processor overview. https://www.shi.com/product/34625444/NVIDIA-Tesla-V100-GPU-computing-

processor.

[58] Timothy Dozat. 2016. Incorporating nesterov momentum into adam. In International Conference on Learning Representations.
[59] Leslie N. Smith. 2017. Cyclical learning rates for training neural networks. (2017). arXiv: 1506.01186 [cs.CV].

[60] Xilinx. 2023. Alveo u250 data center accelerator card. https://www.xilinx.com/products/boards-and-kits/alveo/u250.html.

[61] Xilinx. 2023. Xilinx dsp48e2 block. https://docs.xilinx.com/r/en-US/ug958-vivado-sysgen-ref/DSP48E2.

Manuscript submitted to ACM

https://github.com/Xilinx/Vitis-AI
https://doi.org/10.1109/ICDCS54290.2022.9780689
https://doi.org/10.1109/ITNEC56291.2023.10082175
https://doi.org/10.1109/ICCRD54409.2022.9730377
https://arxiv.org/abs/2205.07690
https://doi.org/10.1088/2632-2153/ac9cb5
https://doi.org/10.1103/PhysRevD.98.052005
https://doi.org/10.1063/1.4823159
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1709.07871
https://arxiv.org/abs/1709.07871
https://doi.org/10.1038/s42256-021-00356-5
https://github.com/fastmachinelearning/SonicCMS
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html#sxx1504034358866
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html#sxx1504034358866
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html#drx1504034362276
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html#drx1504034362276
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html#uyd1504034366571
https://www.xilinx.com/htmldocs/xilinx2019_1/sdaccel_doc/hls-pragmas-okr1504034364623.html#uyd1504034366571
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Quantization-Modes
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Quantization-Modes
https://www.tensorflow.org/
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Overview-of-Arbitrary-Precision-Fixed-Point-Data-Types
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Overview-of-Arbitrary-Precision-Fixed-Point-Data-Types
http://arxiv.org/abs/1806.08342
https://arxiv.org/abs/1806.08342
http://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://docs.xilinx.com/r/2021.2-English/ug1393-vitis-application-acceleration/query
https://www.xilinx.com/products/boards-and-kits/alveo/u50.html#buy-from-xilinx
https://www.xilinx.com/products/boards-and-kits/alveo/u50.html#buy-from-xilinx
https://www.shi.com/product/34625444/NVIDIA-Tesla-V100-GPU-computing-processor
https://www.shi.com/product/34625444/NVIDIA-Tesla-V100-GPU-computing-processor
https://arxiv.org/abs/1506.01186
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
https://docs.xilinx.com/r/en-US/ug958-vivado-sysgen-ref/DSP48E2

	Abstract
	1 Introduction
	2 Background
	2.1 Related Works to Accelerate CNNs on FPGAs
	2.2 Previous CNNs Implementations in hls4ml
	2.3 DeepCalo: Deep Learning Framework for ATLAS Data
	2.4 GPU-based Hardware Acceleration in Data Reconstruction Workflow

	3 A Stream-based Architecture of DeepCalo on FPGA
	3.1 Stream-based Architecture
	3.2 Analysis of Different Stream Types
	3.3 Choosing the Proper Stream Type for Network Layers
	3.4 Architecture Optimizations for Layers

	4 Exploration and Refinement of Quantization
	4.1 Impact of Insufficient Bit-width in Accumulator
	4.2 Other Explorations

	5 Experimental Results
	5.1 Latency of DeepCalo Models on FPGA
	5.2 Comparisons with Other Computing Platforms
	5.3 Evaluation of Performance
	5.4 Resource Utilization

	6 Conclusion
	Acknowledgments

