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Abstract

In this paper, we present a novel probabilistic frame-
work for recovering global, latent social network struc-
ture from local, noisy observations. We extend curved
exponential random graph models to include two types
of variables: hidden variables that capture the structure
of the network and observational variables that capture
the behavior between actors in the network. We develop
a novel combination of informative and intuitive conver-
sational (local) and structural (global) features to spec-
ify our model. The model learns, in an unsupervised
manner, the relationship between observable behavior
and hidden social structure while simultaneously learn-
ing properties of the latent structure itself. We present
empirical results on both synthetic data and a real world
dataset of face-to-face conversations collected from 24
individuals using wearable sensors over the course of 6
months.

Introduction
The structure of social networks and the nature of com-
munication among people are important in trying to under-
stand a variety of social phenomena, such as diffusion of
information, coalition formation, decision-making, and the
spread of disease. Complex macro-social phenomena can
arise from simple micro-level behavior without global coor-
dination. For example, racial segregation in neighborhoods
can occur simply from individuals wanting to avoid being
in the minority even in a population that prefers diversity
(Schelling 1971). Similarly, micro-level behavior can reveal
information about macro-social structure. For example, peo-
ple’s speaking style can be predictive of their position in a
social network (Choudhury and Basu 2004).

These correlations between local behavior and global
structure are difficult to study because they require behav-
ioral data gathered at a resolution that is not possible using
traditional manual techniques. The advent of the Internet
has made it easier to study virtual social behavior (Adamic
and Adar 2003; Kossinets and Watts 2006), but face-to-face
interactions are still people’s predominant method of com-
munication (Baym, Zhang, and Lin 2004). Recent advances
in wearable and ubiquitous computing have made it easier
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to collect face-to-face interaction data which has led to new
efforts to study real-world social behavior by automatically
collecting empirical data about people’s interactions, activ-
ities, and locations (Choudhury 2003; Eagle and Pentland
2003).

A fundamental challenge to all such efforts is inferring
a global, abstract social structure from the local, concrete
behavioral observations. All of these new studies require, in
the words of Marsden (1990), “some means of abstracting
from these empirical acts to relationships or ties.”

In the language of machine learning, the abstract struc-
ture can be considered a hidden state and the empirical be-
havioral data are indirect, noisy observations conditioned on
that hidden state. Given a set of observations, the chal-
lenge is to infer the hidden state that generated the obser-
vations. And since the state is truly hidden—it can never
be observed—any uncertainty contained in the observations
should be acknowledged and utilized.

Typically, researchers define simple thresholds or heuris-
tics to discard observations that are believed a priori to be
noise. The remaining observations are then considered a di-
rect observation of the “true” network (e.g. (Palla, Barabási,
and Vicsek 2006; Kossinets and Watts 2006)). This surviv-
ing network is used as data for subsequent social network
analysis. Such methods are unsatisfying because the defini-
tion of noise is ad hoc and it does not propagate any uncer-
tainty about the latent structure into later analyses.

In this paper we propose a model that can automatically
learn, in an unsupervised manner, the relationship between
observable behavior and hidden social structure while simul-
taneously learning properties of the latent structure itself.
We extend traditional statistical network analysis methods to
handle data from automatically collected face-to-face con-
versations. We evaluate our method on a 24 person real-
world social network comprising over 3,000 hours of data.

Exponential Random Graph Models
There exists a rich body of work on the statistical analysis
of social networks. Traditionally, such analysis has focused
on finding descriptive statistics—path lengths, degree dis-
tributions, clustering coefficients—that describe global fea-
tures of the network (Wasserman and Faust 1994). In recent
decades, a new class of relational models known as exponen-
tial random graph models (ERGMs, also sometimes called



p-star models) has been developed (Frank and Strauss 1986;
Wasserman and Pattison 1996; Robins et al. 2007). ERGMs
depart from traditional descriptive models by considering a
social network as a realization of a set of random variables,
one variable for each potential edge in the network.

Given an observed network, ERGMs estimate the param-
eters of an exponential family model that describes the joint
distribution of the edge variables. The probability distribu-
tion takes the form (typical for exponential families) of a
log-linear combination of features and weights:

p(Y = y) =
1
Zη

eηTφ(y) (1)

Y are the variables representing edges in the graph, φ are
feature functions defined on y, η is a vector of weights to
be learned, and Zη is a normalizing constant. The features
are deterministic functions (or statistics) of the variables and
they define conditional independence assumptions between
variables.

As with all exponential families, these models have the
property that the gradient of their log-likelihood is equal
to the difference between the observed features and the ex-
pected features:

∂

∂ηi
log p(y) = φi(y)− Eη [φi(y)] (2)

which is clearly maximized when the expectation equals the
observed data.

For an example, consider a basic model with just two fea-
tures: (i) the total number of edges in the network and (ii)
the number of triangles. The edges feature models network
density and the triangles term models an intuitive notion of
transitivity: people form ties with friends of their friends.
In this model, two ties are conditionally independent (given
all other ties) if they have no person in common. This inde-
pendence assumption corresponds to an intuition about the
processes that create social networks: a social network is
formed by people making local decisions about their ties to
others.

The strength of these models lies in their ability to cap-
ture the structural dependencies in a probabilistic manner.
Properties of the network can then be interpreted in terms
of how they affect the network’s probability. In the example
above, assume that a negative weight is learned for density
and a positive weight for transitivity. That would mean that,
everything else being equal, it is unlikely for an edge to be
added to the network unless that edge completes a triangle.

ERGMs can be represented by undirected graphical mod-
els that contain a node for each variable and a clique or set
of cliques for each feature. If a model has p features, then
φ(y) and η are points in p-dimensional spaces.

In the simple example this dimensionality is clearly two,
but—as the conditional independence assumption would
suggest—there are more than two cliques in the graphical
model. For this example, the two features can be represented
by an expanded set of separate indicator features that have
their weights constrained to be equal. If there are n people
in the social network, the expanded feature set would have(
n
2

)
indicator variables for each edge and

(
n
3

)
indicator fea-

tures for each possible triangle (p =
(
n
2

)
+
(
n
3

)
). The weights

for the edge indicators would be tied and the weights for the
triangle indicators would be tied.

Tying weights so that they must be equal is a special case
of putting a linear constraint on the components of η. Any
set of q linear constraints, q < p, on η can be represented
by a p × q matrix A, so that η = Aθ, where θ is a q-
dimensional vector. This effectively reduces the number of
parameters from p to q. The number of features can similarly
be reduced by redefining the feature function to be φ′(y) =
ATφ(y). The likelihood then becomes p(y) = 1

Zθ
eθTφ′(y).

(Clearly, this has the same form as Equation 1 and thus its
gradient takes the same form as Equation 2.)

In this regard, ERGMs belong to a long tradition of graph-
ical models that employ repeated features with tied parame-
ters: from time-homogeneous Markov chains (Shannon and
Weaver 1949) to HMMs (Baum and Petrie 1966) and DBNs
(Dean and Kanazawa 1988), to CRFs (Lafferty, McCal-
lum, and Pereira 2001), RMNs (Taskar, Abbeel, and Koller
2002), and Markov logic (Domingos et al. 2008).

In the example model, q = 2 and A is an
((
n
2

)
+
(
n
3

))
×2

matrix. The first column of A contains
(
n
2

)
ones and

(
n
3

)
ze-

ros, and the second column contains
(
n
2

)
zeros and

(
n
3

)
ones.

ATφ(y) results in a 2 × 1 vector whose first component is
the number of edges in the graph and whose second compo-
nent is the number of triangles. And thus the model has been
reduced back to its original two features.

Despite the rich theory behind ERGMs, parameter learn-
ing has proven to be difficult due to a problem known as
model degeneracy. Models are considered degenerate if
only a small set of parameter values lead to plausible net-
works. Slight changes in the parameter values of a degen-
erate model can cause it to put all of its probability on al-
most entire empty or entirely complete networks. This can
result in inferences that render the observed data extremely
unlikely and can cause parameter estimation using Markov
Chain Monte Carlo procedures not to converge. A full dis-
cussion of the potential pitfalls are beyond the scope of this
paper, but for a detailed analysis see (Handcock 2003) and
(Snijders 2002).

Curved Exponential Random Graph Models
Recently, (Snijders et al. 2006) proposed a new set of fea-
tures for ERGMs that avoids degeneracy but at the price of
using more complicated features. These new features in-
volve “buried” parameters that must be set through cross-
validation outside of the normal parameter learning process.
An example of a such a feature is the geometrically weighted
sum of all actors’ degrees. To model (just) that feature, φ(y)
would be the complete degree histogram for the network. A
would contain a sequence of geometrically diminishing co-
efficients (instead of only ones and zeros). The geometri-
cally weighted sum would then be ATφ(y). The buried pa-
rameter in this example is the rate at which the coefficients
in A diminish. That rate must be fixed in advance, and can
only be learned through external cross validation.

To make those buried parameters part of ordinary learn-
ing, Hunter and Handcock (2006) have proposed using a
curved exponential family model.



A curved exponential family allows the constraints on η
to be non-linear. In that case, η is redefined as a non-linear
function mapping a point θ in q-dimensional space to a point
η(θ)in p-dimensional space. The points θ ∈ Θ then define a
q-dimensional curved manifold in p-dimensional space and
thus models defined in a such a way are called curved ex-
ponential families. The likelihood for a curved exponential
family is written as

p(Y = y) =
1
Z
eη(θ)Tφ(y) (3)

and the gradient of the log likelihood is
∂

∂θi
log p(y) = ∇η

T (φi(y)− E [φi(y)]) (4)

where ∇η is the Jacobian of η: the p × q matrix of par-
tial derivatives of η with respect to θ. For more on curved
exponential families see (Efron 1978).

This new formulation, known as curved ERGMs
(CERGMs) has led to better performance during learning
than linear ERGMs. Additionally, CERGMs have the bene-
fit of continuing to use intuitive features while also learning
interesting aspects of those features. Continuing the exam-
ple, the geometrically weighted degree feature captures the
intuition that a person experiences a diminishing rate of re-
turn in adding more and more ties. By learning the geomet-
ric rate parameter, we can discover exactly how that rate of
return diminishes for the population being studied.

Features for CERGMs
The simple counts used in ERGMs to model social ties can
lead to model degeneracy (Handcock 2003), but they often
also do not fully capture the intuitions that motivated the fea-
tures. For example, one expects social networks to exhibit
transitivity, but only up to a point. Networks do not eventu-
ally become their complete transitive closures.

To model more nuanced notions of social processes, (Sni-
jders et al. 2006) replaced simple counts with geometri-
cally weighted sums. We take three of those features for
our model: the geometrically weighted degree distribution
(GWD), the geometrically weighted edgewise shared part-
ner distribution (GWESP) and the geometrically weighted
dyadwise shared partner distribution (GWDSP).

For an n actor network, these three features (as defined by
(Hunter 2007)) all take a similar form:

f (H(y) , θHr ) = eθ
H
r

n−1∑
i=1

[
1−

(
1− e−θ

H
r

)i]
Hi(y) (5)

where H(y) is a histogram describing the empirical distribu-
tion of some statistic of the network y. Each feature of this
form seen as a sum of geometrically diminishing weights—
reflecting an intuition about diminishing rates of return—
multiplied by a fundamental statistic. A separate multi-
plicative weight θHw —which can be positive or negative—
is learned for each feature so that the complete model is a
linear weighted combination of these features.

For the GWD, θHr = θDr and H(y) = D(y), the degree
histogram of the network, whereDi(y) is the count of actors
in the network with degree i. Intuitively, this feature models

a geometrically diminishing increase in the probability that
any node will increase its degree.

For the GWESP, θHr = θTr and H(y) = T(y), the edge-
wise shared partners histogram, where Ti(y) is the number
of ties in the network where the actors involved in that tie
have mutual ties to i other actors. (In other words, the num-
ber of ties that form the base of exactly i triangles.) Similar
to the GWD, this models the intuition that two friends will
have the same mutual friends but that the value of adding a
new mutual friend will gradually diminish.

For the GWDSP, θHr = θSr and H(y) = S(y), the dyad-
wise shared partner histogram, where Si(y) is the number
of unconnected pairs of actors in the network with mutual
ties to i other actors. It models the probability that two indi-
viduals with mutual friends are likely to not be friends.

In (Snijders et al. 2006) each of these three weighted
sums defined a single feature to be used in the model.
So a model that used just these three features would have
φ(y) =

[
f(D(y), θDr ), f(S(y), θSr ), f(T(y), θTr )

]
. Each

feature has a multiplicative weight associated with it, but
the geometric rate parameters are buried.

(Hunter and Handcock 2006) redefine these features us-
ing the CERGM framework. If the three sums above are
replaced by the larger set of fundamental statistics (the his-
tograms, so φ(y) = [D(y),S(y),T(y)]) and the weights
learned for this larger set of features are constrained to be ge-
ometrically diminishing, then the model becomes a curved
exponential family where p is the number of statistics and q
is the number of θ’s. The reformulation allows the model to
learn the geometric rate parameter directly while maintain-
ing the parsimonious description of the likelihood.

The weights that are learned for these features retain
their socially intuitive interpretations. Specifically, for any
feature parameterized as above, if θHw is its multiplica-
tive weight and θHr is its geometric rate parameter, then
θHw (1 − e−θHr )k is the log odds ratio for moving an obser-
vation from bin k to bin k + 1. This means that the learned
parameters can still be used to state useful properties of the
social process that formed the network. Additionally, other
features that are functions of these statistics can be incorpo-
rated into the model by incorporating their weights into the
function η without increasing the number of statistics (p).
For example, network density can be computed from the de-
gree distribution as

∑
i

1
2Di(y). (Hunter 2007) provides a

thorough history and derivation of these features.

Hidden CERGMs to Infer Latent Networks
All work to date with CERGMs assumes that the network
is fully observed during learning (Hunter 2007). Even for
ERGMs, we are aware of only one other paper that learns the
hidden structure from noisy observations (Guo et al. 2007).

Due to their probabilistic nature, it is straightforward to
extend CERGMs to handle noisy observations. By treating
the network itself as hidden, we can marginalize it out and
consider only the marginal likelihood of the observations.
Let x be the observed interaction behavior for all nodes n
and let y be realizations of graphs. The marginal likelihood
of x can be written as:



p(X = x) =
1
Zθ

∑
y

eη(θ)Tφ(x,y) (6)

Capturing Social Activity via Conversational
Features
In our model the x represent data about face-to-face con-
versations. Specifically, for any pair (i, j) we observe two
variables: cij , the amount of time that i and j spend in con-
versation, and oij the total amount of time observed for i and
j. tij = cij/oij is the proportion of time that i and j spend
in conversation.

We define two features that relate the proportion of time
two people spend in conversation to the probability of a tie
between them existing in the latent network. Similar to the
structural features above, we model the intuition that spend-
ing more time in conversation increases the probability of
a tie, but with ever diminishing returns. This intuition is
captured using geometrically weighted features similar to
GWD, GWESP, and GWDSP. We use two such features:

c(C(x,y), θCr ) = eθ
C
r

v∑
i=1

[
1−

(
1− e−θ

C
r

)i]
Ci(x,y)

(7)

n(N(x,y), θNr ) = eθ
N
r

v∑
i=1

[
1−

(
1− e−θ

N
r

)i]
Ni(x,y)

(8)

The statistics C(x,y) and N(x,y) are histograms of pairs
where the i-th bin counts how many pairs spent approxi-
mately i × z% of their observed time in conversation and v
is an arbitrary upper limit that specifies the maximum pro-
portion of the total observed time that any pair could spend
in conversation. For our data, z = 0.14% ≈ 3 minutes for
the pair with the largest oij and v = 180 ≈ 25%/0.14%.
Pairs are counted in the C(x,y) histogram if a tie exists be-
tween them and in the N(x,y) histogram if there is no tie
between them. One expects the weights for C(x,y) to in-
crease and then level off reflecting the reduced social utility
in spending more and more time in conversation.

Our model In the model considered in this paper we use
the three structural and two conversational features defined
above. In addition, we include features for the density of the
network and the global propensity of any pair to spend time
in conversation. These two additional features can be in-
corporated into the weight function η without increasing the
total number of statistics that need to be computed for the
curved model in the p-dimensional space. The density can
be computed from the degree histogram D, and the global
propensity for conversation can be computed from both con-
versation histograms.

Concretely, if we let the n − 1 bins of D(y) be our first
1 . . . n−1 features, the portion of η(θ) that defines the map-
ping for the weights on Di(y) is

ηi(θ) = [θd] +
[
θDw e

θDr [(1− (1− e−θ
D
r )i]

]
(9)

where θd is the multiplicative weight for the density fea-
ture, θDw and θDr are the multiplicative weight and geometric

rate, respectively, for the GWD feature. The weights for the
Ti(y) and Si(y) statistics are defined similarly, but without
the additional density weight.

If the k-th feature is the first bin of C(x,y), then the por-
tion of η(θ) that constrains the weights of the v “tie exists”
conversation histogram bins is

ηk(θ) = [θc] +
[
θCw e

θCr [(1− (1− e−θ
C
r )i]

]
(10)

where θCw is the multiplicative weight for the “tie exists”
conversation feature and θCr is its geometric rate parameter.
The weights for the “no tie” histogram are defined similarly.

In addition to time spent in conversation we include one
feature that attempts to capture preferential attachment be-
tween highly social people. Let ti =

∑
j cij/

∑
j oij be

the total proportion of time that i spends in conversation.
In other words, ti captures how prone to conversation—or
chatty—i is. This is a more behavioral observation of so-
ciability than simple degree since it measures not how many
people i interacts with but how much time i spends interact-
ing.

Let ti\j =
∑
k 6=j cik/

∑
k 6=j oik. ti\j represents i’s base-

line sociability for all partners other than j. Let mt be the
median sociability for all ti. Each pair can be put in one of
three pair-sociability categories:
(i) both are highly social: ti\j > mt and tj\i > mt,
(ii) one is highly social, the other is not ti\j > mt and
tj\i ≤ mt, or
(iii) neither is highly social ti\j ≤ mt and tj\i ≤ mt.
From these categories we define six new features: the three
counts of pair-sociability categories for pairs with a tie be-
tween them, and the three counts of pair-sociability cate-
gories for pairs with no tie between them.

Overall, the 431 dimensional η is represented using an 18
dimensional θ in the curved model.

Learning and inference The maximum likelihood esti-
mate (MLE) for a curved exponential model is the point θ̂
that satisfies∇η(θ̂)

T
(
φi(y)− Eθ̂ [φi(y)]

)
= 0. This makes

learning possible using simple gradient ascent methods that
move in the direction of greatest increase in likelihood.

The addition of hidden variables to our model means that
computing the gradient requires computing two expecta-
tions: ∂

∂ηi
= Eθ [φi(y)|x]− Eθ [φi(x,y)] (11)

We compute these expectations using MCMC, sampling
y with x fixed to find the left term, and sampling both y and
x to find the right term.

Since the log likelihood is not convex for models with
hidden variables we use stochastic gradient ascent to find
the MLE. We take one gradient step for each training net-
work. Even with the CERGM features we found that learn-
ing could diverge if gradient steps moved too far beyond a
realistic range of the parameters (Handcock 2003). To avoid
this, we normalize the gradient by its norm so that no step
will increase any weight by more than 1. We use a Gaussian
prior to aid with regularization. All multiplicative weights
have a mean of zero and unit variance. All rate weights have
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Figure 1: Distances from true to learned weights during learning.

a mean of 1 and variance of 0.5. The “edge on” conversa-
tion weight has a mean of 1, and the “edge off” weight has a
mean of -1. Both have unit variance. The six pair-sociability
features have means of 0 and unit variances.

Once the parameters have been learned, they can be
used to infer the posterior distribution of the latent struc-
ture given the observations: p(y|x). Any properties of the
global social structure can be computed from that posterior.
We believe that using the posterior will yield more plau-
sible analyses of global properties since it carries through
any uncertainty inherent in the observations. Furthermore,
as mentioned above, the parameters themselves encode in-
terpretable global properties—density, transitivity—of the
latent network. By learning these parameters using the
marginal likelihood of the observations, the parameter es-
timates will include any observational uncertainty.

Experimental Results
We performed two sets of evaluations of our model: one on
synthetic data and one on data gathered from a real social
network.

Both evaluations take the same form. Each must learn the
parameters for a 24 node network given 6 separate sets of
noisy observations for that network. Each set of observa-
tions contains information about all of the

(
24
2

)
= 276 pairs.

We assume that all 6 observations were generated by a sin-
gled, fixed distribution and thus use all six observation sets
to learn one set of parameters for the model specified above.
Note that learning one set of parameters is not the same as
learning a single latent structure. Each of the 6 observations
may be generated by different latent networks. We only as-
sume that all of the latent networks have the same global
properties (density, transitivity, etc.).

After the parameters have been learned, they are used to
sample from the posterior distribution for the latent social
network of each of the 6 examples separately. The mean of
the samples for each latent edge variable is interpreted as the
posterior probability of that edge. A concrete realization of
the posterior network can be had by fixing a threshold and
assembling the network of all edges with posterior probabil-
ity greater than that threshold.

Synthetic Data
To test that our model is capable of recovering latent struc-
ture we ran it on a synthetic data set designed to simulate our
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Figure 2: Solid lines are ROC curves for 6 synthetic data experi-
ments. Dashed line indicates equal TPR and FPR.

Table 1: Mean performance on synthetic data at varying thresholds.

threshold Acc. True Pos. Rate False Pos. Rate
0.50 87.4% 96.3% 15.2%
0.75 93.0% 92.6% 6.9%
0.90 94.8% 89.1% 3.6%
0.95 95.5% 85.9% 1.7%

real data. We used weights that had been fit to actual data
to generate synthetic tie and time in conversation variables.
In the synthetic data we know both the true parameters and
the true latent structure, so we can evaluate our technique
in terms of how well it recovers the original parameters and
how well it can infer the latent structure.

Figure 1 shows, for each gradient step in the learning
procedure, both the Euclidean distance between the current
learned weights and the true weights and an approximation
of the Kullback-Leibler divergence between the two sets of
weights. The expectation required for the KL divergence is
estimated using only the 6 training examples, so the KL ap-
proximation is extremely coarse.

Figure 2 shows the ROC curves for all 6 examples. For
a threshold t, the true positive rate is the number of edges
with posterior mean greater than t that are in the true latent
network, divided by the total number of edges in the true la-
tent network. The false positive rate is the number of edges
with mean greater than t that are not in the true network, di-
vided by the total number of non-edges (unconnected pairs)
in the true network. As t is raised, the true positive rate in-
creases sharply while the false negative rate remains small.
Table 1 shows specific values for aggregate accuracy, true
positive rate, and false positive rate at 4 different thresholds.
For example, at a threshold of 0.75, we can recover the la-
tent structure with 93% accuracy while only suffering a 7%
false positive rate. In the synthetic data, the model is able to
recover the latent structure quite successfully.

The Social Network Dataset
We have collected a social network corpus that contains
sensor-derived measurements of conversations occurring
within a cohort of 24 subjects. All of the subjects were mem-
bers of the incoming graduate class of a single department at
a large research university. To collect data each subject wore
a wearable sensing device containing 8 different sensors use-
ful for detecting conversations, activities, and environmental
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Figure 3: Conversation, inferred, and survey networks for Week 1.

Table 2: Agreements between survey networks and random networks, raw conversation networks, and inferred conversation networks.

Inferred - Random Inferred - Raw Raw - Random
Week Random Raw Inferred diff. p-value diff. p-value diff. p-value

1 59.5% 61.6% 71.7% 12.3% .0012 10.1% .0058 2.1% .3035
2 54.4% 62.9% 69.6% 15.1% 1.2E-4 6.7% .0493 8.5% .0214
3 51.1% 63.3% 63.8% 12.7% .0013 0.4% .4578 12.3% .0018
4 66.4% 80.3% 82.3% 15.9% 1.0E-5 1.9% .2788 13.9% 1.1E-4
5 76.8% 79.4% 83.0% 6.2% .0350 3.6% .1400 2.6% .2313
6 76.8% 82.2% 84.4% 7.6% .0117 2.3% .2383 5.4% .0592

Agg. 64.1% 71.3% 75.8% 11.6% 1.4E-13 4.5% .0016 7.1% 6.0E-6

context. Data was collected during working hours for one
week each month over the 9 month course of an academic
year. To collect data in an ethical (and legal) manner, no
raw audio was ever recorded. Only a set of privacy-sensitive
features necessary for conversation extraction were saved.
A complete description of this data can be found in (Wyatt,
Choudhury, and Kautz 2007).

For the experiments in this paper, we used only the 6
weeks (from consecutive months) with the most data. Using
the technique described in (Wyatt, Choudhury, and Bilmes
2007), we automatically extract multi-person conversations
from the sensor data and segment the speaker turns within
those conversations. For this analysis, we only consider con-
versations with two participants. As described above, we
learn a single set of parameters for all six weeks and use
those parameters to computer posterior distributions for the
latent networks.

Evaluation of those inferred networks is difficult since the
hidden structure that we are trying to recover is genuinely
hidden—there is no ground truth for us to compare it to.
However, at the end of each week the subjects were asked in
a survey who they worked with on coursework and research,
who they visited outside of school, and who they talked to
on the phone. Since they only recorded sensor data during
school, we can use the responses to the research and course-
work questions to build a separate observation of the same
latent network. We stress that these surveys should not be
considered ground truth, but rather a second noisy observa-
tion of the same latent social structure. Nevertheless, one
would expect there to be some agreement between our in-

ferred structures and those expressed in the surveys.
Indeed, that is what we found. Using a threshold of 0.5,

we compared the inferred networks to the survey networks
and computed the number of edges for which they agreed.
We compute the same agreements for random networks with
the same expected density as the survey network, and for
the network formed by the raw conversation data (that is,
a network with edges for any pair who ever spent time in
conversation). Results for these comparisons are in Table 2.
Samples of the raw, inferred, and survey networks for Week
1 are in Figure 3.

For all weeks, the inferred networks have better agree-
ment with the surveys than random networks, and the im-
proved agreements are statistically significant (one-tailed t-
test). The inferred networks also have better agreement than
the raw networks in all weeks. While those improvements
are not statistically significant in all weeks, they are signif-
icant in aggregate. It is well known that people have poor
recall of their own social behavior and that there can be
a divergence between perceived and behavioral social net-
works (Bernard, Killworth, and Kronenfeld 1984). An ear-
lier study similar to this one found that survey responses had
only 54% agreement with automatically extracted networks
(Choudhury 2003). In light of that, these agreements are
very promising.

Conclusion and Discussion
We present a hidden curved exponential family model as
an intuitive approach for inferring latent network structure



from noisy behavioral observations. We also propose so-
cially relevant conversational features derived from obser-
vations that, in combination with the structural features, are
informative for recovering the hidden network graph. Us-
ing a synthetic dataset, we demonstrated the predictive ca-
pabilities of our model. On a real-world interaction dataset
the network structure inferred showed better agreement with
survey data than both random networks and the raw conver-
sation networks.

An appealing property of both ERGMs and CERGMs is
that they provide a framework for formalizing the model-
ing assumptions about the network and encoding intuitions
about social processes. One of the challenges we faced
in this work was evaluating the accuracy of our inferences
for the real-world network data because the latent network
structure is not available. One possible future evaluation
strategy is to try to predict the observations for one edge
given observations for other edges. For the current model
trying to predict the time a pair spends in conversation pair
is challenging. However, that may improve if the dynamics
of the network from day-to-day or week-to-week are mod-
eled. By using the past information about a given pair’s in-
teraction as well as observations from other pairs, a dynamic
model may be able to predict held out observations for the
pair. In our future work, we plan to develop a temporal ex-
tension to our current model.
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