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ABSTRACT

We conduct a comparative study on selecting subsets of acous-
tic data for training phone recognizers. The data selection
problem is approached as a constrained submodular optimiza-
tion problem. Previous applications of this approach required
transcriptions or acoustic models trained in a supervised way.
In this paper we develop and evaluate a novel and entirely
unsupervised approach, and apply it to TIMIT data. Results
show that our method consistently outperforms a number of
baseline methods while being computationally very efficient
and requiring no labeling.

Index Terms— speech processing, automatic speech
recognition, machine learning

1. INTRODUCTION

Automatic speech recognition (ASR) systems are nowadays
trained on abundant speech data, which can be easily collected
in the field, e.g., via mobile applications. However, a large
amount of acoustic training data goes hand in hand with in-
creased computational demands and with increased effort for
labeling the data. More importantly, the larger the training data
set, the more redundant it tends to be. It has been observed
numerous times that the performance curve with respect to the
amount of training data often shows “diminishing returns”: a
smaller performance gain is achieved when adding new data to
a larger pre-existing data set than when adding it to a smaller
pre-existing set [1]. Therefore, it is critical to select the most
informative and representative subset of a large data set, to
maximize the potential benefits to be gained from additional
data while minimizing resource requirements. We call this
problem data subset selection problem.

It can be further categorized according to whether tran-
scriptions of the training data are available (supervised data
subset selection) or not (unsupervised data subset selection).
Supervised data subset selection is of most interest if the desire
is to shorten system development time, by tuning parameters
on a small and representative subset of data that can be pro-
cessed much faster yet produces results of the same quality as
the original data set.

The unsupervised data subset selection scenario is appli-
cable when a new corpus of speech data has been collected
(e.g., from a new language or dialect) but has not yet been

transcribed. The available budget for transcribing or annotat-
ing a small set of speech for bootstrapping purposes may be
limited. Ideally, data subset selection methods should iden-
tify the subset that fits the budget and at the same time yields
the maximum amount of information about the entire data
set. Additionally, the selection method should require low
resources, i.e., it should not rely on existing resources such as
an already-trained ASR system for the language in question.

In this paper, we develop a novel unsupervised speech data
subset selection methodology based on submodular functions.
We first discuss relevant background literature (Section 2)
before presenting our submodular approach to data subset
selection (Section 3). Section 4 provides details about data and
systems, and Section 5 gives experimental results on TIMIT
data.

2. BACKGROUND

Previous approaches to selecting untranscribed acoustic data
have mostly relied on batch active learning, where a subset
of untranscribed training data is chosen for additional human
transcription to update an existing trained system. In [2, 3, 4]
items are selected in a greedy fashion according to their util-
ity scores, measured as the confidence scores assigned by an
existing word recognizer. Similar to the confidence-based
approaches, [5] proposes to select unlabeled utterances such
that maximum lattice entropy reduction can be achieved over
the whole dataset. In [6], two criteria (informativeness and
representativeness) are used to subselect acoustic data. The in-
formativeness score of an utterance is the entropy of its N-best
word hypothesis, decoded by an existing word recognizer. The
representative score of an utterance with respect to a data pool
is calculated as its average TF-IDF similarity with all other ut-
terances in the pool. Similar to the active learning approaches,
this method requires an already-trained ASR system with rea-
sonably high performance. Low-resource methods proposed
for speech data selection include [7]; however, this approach
has only been investigated for the supervised data subset se-
lection scenario, i.e., it assumes that transcriptions of the data
are available. Selection is performed such as to maximize the
entropy of the distribution over linguistic units (words, phones)
in the subselected set. It should also be noted that all these
methods select data in a greedy fashion but do not have any
optimality guarantee in terms of the objective being optimized.



Hence, the resulting selection, in terms of its objective crite-
rion, can in the worst case be quite poor. Another class of ap-
proaches formulates the problem as a constrained submodular
maximization problem [8, 9]. [8] introduced this approach, and
considers both the supervised and unsupervised data subset se-
lection problem, and instantiates submodular objectives using
a Fisher-kernel-based similarity measure. Similarly, [9] is also
supervised and employs methods of computing similarity mea-
sures between speech utterances that go beyond direct acoustic
characteristics. Our companion paper [10] addresses the super-
vised selection problem in the case of large-vocabulary ASR.

In the present work, we focus on the unsupervised scenario
and present different submodular functions for this problem,
in particular a novel two-level submodular function.

3. SUBMODULAR DATA SELECTION

Background on Submodularity: Discrete optimization is im-
portant to many areas of speech technology and recently an
ever growing number of problems have been shown to be ex-
pressible as submodular function maximization [8, 9, 11]. A
submodular function [12] is defined as follows: given a finite
set V = {1, 2, . . . , n} and a discrete set function f : 2V → R
that returns a real value for any subset S ⊆ V , f is submodular
whenever f(A)+f(B) ≥ f(A∪B)+f(A∩B), ∀A,B ⊆ V .
Defining f(j|S) , f(j ∪ S)− f(S), an equivalent definition
of submodularity is f(j|S) ≥ f(j|T ),∀S ⊆ T . That is, the in-
cremental gain of j decreases when the set in which j is consid-
ered grows from S to T . A submodular function f is monotone
non-decreasing if f(j|S) ≥ 0,∀j ∈ V \ S, S ⊆ V . Submodu-
lar functions indeed exhibit favorable properties for discrete
optimization problems. Although NP-hard, (constrained) sub-
modular maximization admits constant factor approximation
algorithms [13, 14]. For example, the problem of maximiz-
ing a monotone submodular function subject to a cardinality
constraint can be approximately solved by a simple greedy
algorithm [13] with worst approximation factor (1 − e−1).
This is the best possible outcome in polynomial time unless
P = NP [15]. Submodularity can be further exploited to
accelerate a greedy implementation such that it has almost
linear time complexity [16]. The same scalable greedy algo-
rithm can easily generalize to approximately solve the problem
of monotone submodular maximization under knapsack con-
straints, with similar theoretical guarantees [17]. We employ
the same scalable greedy algorithm in our approach for speech
data subset selection.
Problem formulation: Suppose we have a set of speech ut-
terances V = {1, 2, . . . , N}. Consider a monotonically non-
decreasing submodular set function f : 2V → R, which maps
each subset S ⊆ V to a real number that represents the value
f(S) of subset S. The speech data subset selection problem,
then, can be viewed as maximizing the value f(S) of S such
that the cost of the selected subset S does not exceed a given
budget. Mathematically, the problem can be formulated as

monotone submodular function maximization under a knap-
sack constraint:

max
S⊆V,c(S)≤B

f(S) (1)

where B is a budget on the amount (or cost) of speech data to
be selected and c(S) =

∑
j∈S c(j) measures the amount (or

cost) of speech contained in a subset S of the whole corpus,
with c(j) being the length of the utterance j ∈ V . The same
problem formulation was applied in prior investigations of
submodular speech data subset selection [9].

In [9], the facility location, i.e.,

ffac(S) =
∑
i∈V

max
j∈S

wij , (2)

was applied as the submodular objective, where wij ≥ 0 indi-
cates the similarity between utterances i and j. The similarity
measure wij was computed by kernels derived from discrete
representations of the acoustic utterances i and j.

The facility location function usually leads to a highly rep-
resentative solution, but, in some cases, the solution might still
posses redundancy. In this work, we utilize a “diversity re-
ward” function, first proposed in [17], to penalize redundancy
by rewarding diversity. The function takes the following form:

fdiv(S) =
K∑

n=1

√√√√ ∑
j∈Pn∩S

(∑
i∈V

wij

|V |

)
(3)

where P1, . . . , PK is a partition of the set V into K (disjoint)
blocks. fdiv is monotone submodular. Maximizing fdiv en-
courages selecting items from different blocks and leads to
more diverse and less redundant selections. In order to select
a subset that is both representative and non-redundant, we can
mix both objectives ffac and fdiv together, training off be-
tween representation and non-redundancy, as in the following
objective:

ffac+div(S) = (1− λ)ffac(S) + λfdiv(S) (4)

where 1 ≥ λ ≥ 0 is a trade-off coefficient.
Both the facility location function and the diversity re-

ward function are graph-based so a pair-wise similarity graph
is required to instantiate them. Even with highly optimized
data structures, efficient computation of similarity measures,
and graph approximations, graph construction can become
computationally prohibitive when |V | is big (e.g., millions,
or greater). An alternative class of submodular functions is
feature-based, defined as:

ffea(S) =
∑
u∈U

g(mu(S)) (5)

where g() is a non-negative monotone non-decreasing con-
cave function (e.g., the square root function), U is a set of



features, the modular feature function mu(S) =
∑

j∈S mu(j)
is a non-negative score for feature u in a set S, with mu(j)
measuring the degree of feature u present in utterance j ∈ S.
Maximizing this objective naturally encourages diversity and
coverage of the features within the chosen set of elements. In
the context of speech data subset selection, U can take vari-
ous forms including triphones, words, phonemes, acoustically
derived measures, etc. Moreover, there are many different
ways to define the relevance score mu(s). One simple way
might be to define it as the amount of feature u contained
within utterance s. A more sophisticated measure utilizes term
frequency inverse document frequency (TF-IDF) normalized
counts, i.e. mu(s) = TFu(s) × IDFu, where TFu(s) is the
count of feature u in s, and IDFu is the inverse document count
of the feature u (each utterance is a “document”).

One issue with the feature-based functions is that they
represent interactions between different items in the whole set
V , but cannot represent interactions between different features
or sets of features, meaning that information within one feature
u ∈ U might be partially redundant with another feature u′ ∈
U , u′ 6= u. A solution to this issue is to use a novel construct
we call a two-layer feature-based submodular functions.
Let U1 be a set of features, U2 be a set of meta-features, where
|U1| = d1, |U2| = d2 and d1 > d2. Between U1 and U2, we
define a weight matrix W of dimension d2 × d1. Entries in
W measure the interactions between the lower-level features
in U1 and corresponding meta-features in U2. The two-layer
feature-based submodular function takes the following form:

f2-fea(S) =
∑

u2∈U2

g1
( ∑
u1∈U1

W (u2, u1)g2(mu1(S))
)

(6)

where g1() and g2() are non-negative monotonically non-
decreasing concave functions, mu1(S) takes the same form
and interpretation as in the feature-based submodular function.
W (u2, u1) is the entry in the weight matrix W that measures
the interaction between the feature u1 ∈ U1 and the feature
u2 ∈ U2. The submodularity of f2-fea(S) follows from
Theorem 1 in [18].

4. DATA AND SYSTEMS

We evaluate our approach on subselecting the TIMIT corpus
for phone recognizer training. The sizes of the training, de-
velopment and test data (without the sa sentences) are 4620,
200 and 1144 utterances, respectively. Preprocessing extracts
39-dimensional MFCC features every 10 ms, with a window
of 25.6 ms. Speaker mean and variance normalization were
applied. A 3-state monophone HMM phone recognizer is
trained for all 48 monophones. The HMM state output distribu-
tions are modeled by diagonal-covariance Gaussian mixtures.
Performance is evaluated by phone accuracy, collapsing the
48 classes into 39 for scoring purposes, following standard
practice [19]. Since we focus on acoustic modeling only we
avoid the use of a phonetic language model. The goal of this

work is not to achieve the highest phone accuracy possible;
we care most about the relative performance of the different
subset selection methods, especially on small data subsets.

We compare our approach to two different baseline se-
lection methods, random selection and the histogram-entropy
method from [7]. Following the selection of subsets (1%,
2.5%, 5%, 10%, 20%, 30% and 40% of the data, measured
as percentage of non-silence speech frames) we construct the
random baseline by randomly sampling 100 data sets of the
desired sizes, training phone recognizers, and averaging the re-
sults. The histogram-entropy baseline systems are constructed
such that utterances are selected to maximize the entropy of the
histogram over phones in the selected subset [7]. The phone
labels are derived from the true transcriptions.

5. EXPERIMENTS

In the first set of experiments we tested the performance of
supervised submodular data selection, i.e., the transcriptions
of the training data were used. We tested the objective func-
tions ffac, ffac+div, and ffea defined in Equations 2, 4, and
5, respectively. The similarity matrix used to instantiate ffac
and fdiv was computed using a gapped string kernel [20] on
a phone tokenization of the acoustic utterances. The phone
tokenization was generated by a simple bottom-up monophone
recognizer trained on the TIMIT transcriptions. In addition
we partitioned the whole data set into 64 clusters using k-
means clustering, in order to instantiate the diversity function
fdiv. The parameter λ was optimized on the development
set for all subset sizes. The set of features U in the feature-
based submodular function ffea is the set of all phone trigrams
obtained from a forced-alignment of the transcriptions. The
feature score function mu(S) is instantiated to the sum of the
TF-IDF weighted normalized counts of the feature u in the
set S. The concave function g() is the square root function.
Figure 1 shows the performance of the average random base-
line, histogram-entropy baseline and submodular systems with
different objectives. The histogram-entropy baseline outper-
forms the random baseline at all percentages, except at 1%.
Submodular selection with ffea outperforms the two baselines
at all subset sizes except at 10%. Submodular selection with
ffac or ffac+div yielded significantly (p < 0.05) better results
than both baselines, especially at small subset sizes. The diver-
sity term is indeed helpful for most subset sizes. Interestingly,
selection by ffac+div at 2.5% even beat the random baseline
at 5%, meaning that in this case the same performance could
be achieved by only using half of the training data, if selected
wisely. In the 10% case, we increase the number of random
runs from 100 to 1000, which helps to span the random selec-
tion space better. In this case, the best out of 1000 random
runs is very close to the histogram-entropy baseline, but is still
significantly outperformed by the submodular methods with
ffac and ffac+div.

In our second set of experiments we tested the performance
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Fig. 1. Phone accuracy for different subset sizes; each block
of bars lists, from top to bottom: random baseline (error bars
indicate the best and the worst performance out of 100 random
runs, except at 10%, the best and the worst performance is out
of 1000 random runs; the numbers on top of error bars indicate
the standard deviation of all runs), histogram-entropy baseline,
ffea, ffac, ffac+div.

of unsupervised submodular selection, which does not use the
transcriptions. The different submodular objectives were ffac
and f2-fea (Equations 2 and 6, respectively). The similarity
matrix in ffac was again computed by a gapped string kernel
on tokenized utterances. In contrast to the supervised case,
however, we utilized an HMM trained in an unsupervised way
to produce the tokenization. This unsupervised model had 40
HMM states and 64 Gaussian mixture components per state
and was trained on all of the training data. To instantiate the
two-layer feature based function f2-fea, we constructed the
set of meta features U2 as the set of tri-states extracted from
the sequences of HMM state labels. Each tri-state u2 ∈ U2

was distinguished by the dominating Gaussian component in-
dex at the middle state; its corresponding lower-level features
were constructed as the tri-state with all possible Gaussian
component indices in the middle state. We constrained in-
teractions between lower-level features and meta features to
the case where both features shared the same tri-state, i.e.,
W (u1, u2) = 1 if u1 and u2 shared the same tri-state, and
W (u1, u2) = 0 otherwise.

In addition to using an unsupervised HMM as the tok-
enizer we also tried using a k-component single-state unsuper-
vised GMM. This model converted acoustic utterances into
sequences of indices representing the dominant Gaussian com-
ponent at each frame. A 512-component GMM was used to
generate the set of low-level features U1, and a 32-component
GMM was used to generate meta features U2. In both cases,
we generate features as the Gaussian mixture indices for two
consecutive frames (bigrams). The weight W (u1, u2) was set
to the co-occurrence count of features u1 ∈ U1 and u2 ∈ U2

in the training set. In both instantiations of f2-fea, the concave
functions g1() and g2() were set to the square root function,
and the feature score function mu(S) was the sum of TF-IDF
normalized feature counts.
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Fig. 2. Phone accuracy for different subset sizes; each block
of bars lists, from top to bottom: random baseline (same as in
Figure 1), histogram-entropy baseline, f2-fea+ GMM-HMM,
f2-fea+GMM, ffac.

Figure 2 shows the performance of the three unsupervised
submodular selection methods described above. They all sig-
nificantly (p < 0.05) outperform the random baseline for all
subset sizes except for f2-fea+GMM at 40%. The improve-
ment is more evident for small subset sizes (1%, 2.5%, 5%).
In general, these unsupervised methods yield a performance
comparable to that of the histogram-entropy baseline, which
is a supervised method. In particular, f2-fea+GMM-HMM
outperforms the histogram-entropy baseline at all subset sizes,
except for 20%.

6. CONCLUSIONS

We have explored the problem of submodular speech data sub-
set selection from two new angles: (a) we have tested novel
submodular objectives (feature-based and two-level feature-
based functions), which do not require similarity graphs; (b)
we have extended this approach to a scenario where transcrip-
tions of the training data are not available. In both the su-
pervised and unsupervised scenario the submodular selection
methods outperformed the baseline methods. Future work will
extend these investigations to larger systems and data sets, in
particular data sets that are acoustically more diverse.
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