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Abstract
Motivated by extremely large-scale machine
learning problems, we introduce a new multi-
stage algorithmic framework for submodular
maximization (called MULTGREED), where at
each stage we apply an approximate greedy proce-
dure to maximize surrogate submodular functions.
The surrogates serve as proxies for a target sub-
modular function but require less memory and are
easy to evaluate. We theoretically analyze the per-
formance guarantee of the multi-stage framework
and give examples on how to design instances of
MULTGREED for a broad range of natural sub-
modular functions. We show that MULTGREED
performs very closely to the standard greedy
algorithm given appropriate surrogate functions
and argue how our framework can easily be
integrated with distributive algorithms for further
optimization. We complement our theory by
empirically evaluating on several real-world prob-
lems, including data subset selection on millions
of speech samples where MULTGREED yields
at least a thousand times speedup and superior
results over the state-of-the-art selection methods.

1 Introduction
Data sets are large and are getting larger. This, on the one
hand, is useful as “there is no data like more data.” On
the other hand, it presents challenges since the information
in vast quantities of data may be difficult to ascertain
simply due to the computational difficulties created by
vastness itself. An important goal in machine learning and
information retrieval, therefore, is to develop methods that
can efficiently extract and summarize relevant and useful
information in large data sets.

One recent class of methods gaining some prominence in
machine learning is based on submodular functions for com-
binatorial selection. Traditionally studied in mathematics,

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

economics, and operations research, submodular functions
naturally occur in many real world machine learning
applications. A submodular function (Fujishige, 2005) is
a discrete set function f : 2V → R that returns a real value
for any subset S ⊆ V , and satisfies f(A) + f(B) ≥ f(A ∩
B) + f(A ∪ B),∀A,B ⊆ V . Equivalently, f satisfies the
diminishing returns property, f(j|S) ≥ f(j|T ),∀S ⊆ T ,
where f(j|S) , f(j ∪ S) − f(S) is the gain of adding
element j a set S. A submodular function f is monotone
non-decreasing if f(j|S) ≥ 0,∀j ∈ V \ S, S ⊆ V , and f
is normalized if f(∅) = 0.

Submodular functions naturally measure the amount of
information that lies within a given set A ⊆ V , what is
actually meant by “information” depends very much on
the particular function. For example, given a collection
of random variables X1, X2, . . . , Xn, where n = |V |, the
entropy function f(A) = H(∪a∈AXa) is submodular.
The rank of a subset A of columns of a matrix is also
submodular and can be seen as representing information
as the dimensionality of the vector space spanned by the
vectors indexed by A. There are other submodular functions
that could represent “information” in some form (Fujishige,
2005; Kempe et al., 2003; Krause et al., 2008; Lin and
Bilmes, 2011). Given a large collection of items V whose
information content is f(V ) where f is submodular, a
natural and common optimization problem is:

max
S⊆V,|S|≤`

f(S). (1)

Problem (1) asks for the most informative subset of items of
size ` or less. This problem has already found great utility
in a number of areas in machine learning, including docu-
ment summarization (Lin and Bilmes, 2011), speech data
subset selection (Wei et al., 2013), feature subset selection
(Krause and Guestrin, 2005a; Liu et al., 2013), social influ-
ence (Kempe et al., 2003), and sensor placement (Krause
et al., 2008). Though the problems are NP-hard, a well-
known result by Nemhauser et al. (Nemhauser et al., 1978)
shows that Problem 1 can be solved near-optimally by a sim-
ple greedy algorithm with a worst case approximation factor
of 1− 1/e. Moreover, (Feige, 1998) shows that this is tight
unless P=NP. The greedy algorithm starts with the empty
set S0 = ∅. In each iteration i, it identifies the element si
that maximizes the marginal gain f(si|Si−1) (i.e., si ∈
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argmaxe∈V \Si−1
f(e|Si−1)) with ties broken arbitrarily

and updates as Si ← Si−1∪{si}. Submodularity can be fur-
ther exploited to accelerate (Minoux, 1978) this greedy algo-
rithm – a procedure often called the “accelerated” or “lazy”
greedy algorithm (LAZYGREED) (Leskovec et al., 2007).

In many cases, the very advanced machine learning algo-
rithms that we need to use to process large data sources are
too computationally costly for the amount of data that exists.
For example, when the data source is very large (e.g., n in
the billions or trillions), even LAZYGREED becomes unten-
able. Moreover, even smaller sized n can be prohibitive,
particularly when evaluating the function f itself is expen-
sive. For example, in document summarization (Lin and
Bilmes, 2011) and speech data subset selection (Wei et al.,
2013) certain submodular functions (which we call graph-
based), are often defined via a pair-wise similarity graph,
having a time and memory complexity of O(n2). This
is infeasible even for medium-scale values of n. Another
application is the feature selection (Krause and Guestrin,
2005a; Iyer and Bilmes, 2012; Liu et al., 2013), where a
common objective is to maximize the mutual information
between a given set of random variables XA and a class C
(i.e I(XA;C)). The mutual information depends on com-
puting the entropy H(XA) which can be expensive (or even
exponential cost) to evaluate. Similarly, the recent promis-
ing work on determinantal point processes (DPPs) (Kulesza
and Taskar, 2012), where one wants to maximize the sub-
modular function f(A) = log det(SA) for a given matrix S,
becomes problematic since computing log-determinant can
require an O(n3) computation which is impractical already
on medium-sized data sets.

Related Work: Parallel computing approaches are of
course a natural pursuit for solving large-scale algorithmic
challenges, and some instances of distributed algorithms
for submodular optimization have already been investigated.
For example, (Chierichetti et al., 2010) propose a distributed
algorithm to solve Problem 1 with the set cover function as
the objective, and with an approximation factor of 1−1/e−ε.
Similarly, (Kumar et al., 2013) propose a distributed algo-
rithm to solve Problem 1 with any submodular objective
and with an approximation factor of 1/2− ε. Motivated by
the difficulty of rendering the entire data set centrally for
function evaluation, (Mirzasoleiman et al., 2013) propose a
two-stage algorithmic framework to solve Problem 1 with
an approximation factor of O( 1

min (`,m) ), where ` and m
are the cardinality constraint and the number of distributed
partitions, respectively. The performance guarantee can
be improved to be close to optimum if the data set is mas-
sive and satisfies certain geometric assumptions. All these
algorithms can be implemented in a Map-Reduce style.

Our Contributions: In this work, we propose a multi-
stage framework (MULTGREED) that directly addresses
the time and memory complexity issues of running LAZY-
GREED in three ways: (a) reducing the number of function
evaluations required for the algorithm, (b) decreasing

the complexity of function evaluations by using simpler
surrogate (proxy) functions, (c) reducing the ground set
size. Though quite different in spirit from the distributive
framework, our approach could easily be performed in
concert with existing distributed algorithms. For instance,
we can apply MULTGREED instead of LAZYGREED for
solving each sub-problem in (Mirzasoleiman et al., 2013).
Conversely, their distributed procedure could also be used
to solve the sub-problem in each stage of MULTGREED.
The theoretical analysis for both frameworks could easily
be combined with each other, and they could be integrated
to provide still more efficient large-scale algorithmic
frameworks for these problems. Hence, our approach is
complementary to the existing distributive architectures,
although in the present paper we will concentrate on our
novel multi-stage uni-processor approach.

Outline Section 2 gives an overview of our framework.
In Section 3, we theoretically analyze its performance while
Section 4 offers several choices of surrogate functions for
certain practical and useful classes of submodular functions.
In Section 5, we focus on the design of MULTGREED on
a broad range of submodular functions, and instantiate
our general framework for several submodular functions,
thereby providing recipes for many real-world problems.
In Section 6, we empirically demonstrate the performance
of MULTGREED, where we apply MULTGREED to a
large-scale speech data subset selection problem and show
that it yields superior results over the state-of-the-art
selection methods.

2 Multi-Stage Algorithmic Framework
Often in applications, there is a desirable in quality but pro-
hibitive in computational complexity submodular function
that we shall refer to as the target function f . We assume
a ground set size of n = |V |, a cardinality constraint of `,
and that the optimal solution to Problem (1) is SOPT.

For completeness, we first describe how LAZYGREED ac-
celerates the naive greedy implementation. The key insight
is that the marginal gain of any element v ∈ V is non-
increasing during the greedy algorithm (a consequence of
the submodularity of f ). Instead of recomputing f(v|Si−1)
for each v, the accelerated greedy algorithm maintains a list
of upper bounds ρ(v) on each item’s current marginal gain.
They are initialized as ρ(v) ← f(v) for each v ∈ V , and
sorted in decreasing order (implemented as a priority queue).
In iteration i, the algorithm pops the element v off the top of
the priority queue and updates the bound ρ(v)← f(v|Si).
v is selected if ρ(v) ≥ ρ(u), where u is at the current top of
the priority queue, since submodularity in such case guaran-
tees that v provides the maximal marginal gain. Otherwise,
we appropriately place the updated ρ(v) back in the priority
queue and repeat.

To this end, we consider three schemes to further accelerate
LAZYGREED: (a) reduce the number of function evaluations
(Approximate greedy), (b) reduce the complexity of function
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evaluations (using simpler proxy functions), (c) reduce the
ground set size (Pruning). This ultimately leads to our multi-
stage greedy framework MULTGREED.

Approximate greedy: In this part, we introduce a mecha-
nism called APPROXGREED, to reduce the number of func-
tion evaluations in LAZYGREED. We give a theoretical
analysis for APPROXGREED in Section 3 — the current
section defines and then offers intuition for the method. The
key idea of APPROXGREED is that it does not insist on
finding the item that attains exactly the maximum marginal
gain in each iteration, but instead, looks for an item whose
marginal gain is close to this maximum. APPROXGREED
only modifies LAZYGREED by weakening the selection
criteria in each iteration. More formally, if an item v is se-
lected by LAZYGREED, the optimality of its marginal gain
is guaranteed if the exact condition ρ(v) ≥ ρ(u) (u is the
current top of the priority queue) is met. APPROXGREED
relaxes this to an approximate condition ρ(v) ≥ βρ(u),
where 0 < β < 1. Since a potentially large number of
items’ marginal gains need to be reevaluated until the exact
condition is met, using the approximate condition could ef-
fectively reduce the number of function evaluations at a loss
of the original guarantee. The parameter β controls the level
of sub-optimality: the smaller β is, the number of function
evaluations reduces as does the performance guarantee. In
other words, APPROXGREED, as an approximate scheme to
LAZYGREED, has its performance guarantee carried over
from that of LAZYGREED, with an additional level of ap-
proximation governed by the value β (the formal guarantee
of (1− e−β) is given in Lemma 2). We would like to point
out the resemblance of APPROXGREED to the recently pro-
posed fast greedy algorithm for Problem 1 (Badanidiyuru
and Vondrák, 2014). Similar to APPROXGREED, they seek
to identify an item whose marginal gain is within a fraction
β of the maximum marginal gain in each iteration and yield
the an approximation factor of (1− e−β). Unlike their algo-
rithm, APPROXGREED builds on top of the LAZYGREED,
hence, further exploits the submodularity. Though quite
similar in spirit, APPROXGREED might run significantly
faster, in practice, than their algorithm, while yielding the
same performance guarantee.

APPROXGREED can be further generalized by setting
the value of β individually for each iteration, i.e., a se-
quence {βi}`i=1 = {β1, . . . , β`}. Intuitively, we would
design {βi}`i=1 to be non-decreasing, i.e., the allowed sub-
optimality decreases as the algorithm proceeds. One possi-
ble schedule would be βi = c + 1−c

` (i − 1), where c < 1
determines the initial sub-optimality degree of the algorithm.
Then, βi grows linearly in i from c to 1, and the choice of c
determines the trade-off between the running time reduction
and performance guarantee loss. Given f , `, and {βi}`i=1,
we shall instantiate the approximate greedy procedure as
S ∈ APPROXGREED(f, `, {βi}`i=1).

Multi-stage framework: APPROXGREED yields
effective reduction on the number of function evalu-
ations in LAZYGREED, however, the complexity of

each function evaluation could still be so high that the
greedy procedure is rendered impractical. To address
this issue, we propose an approach, MULTGREED, that
utilizes classes of simple surrogate functions which
could be applied to a broad range of submodular
functions. The idea is to optimize a series of surrogate
(proxy) functions instead of optimizing the target function f .

Algorithm 1 MULTGREED

Input f , `, J , {fj}Jj=1, {`j}Jj=1, {βi}`i=1

C ← ∅, L← 0 ;
for j = 1 . . . J do

Define Fj(S) , fj(S|C) for all S ⊆ V
S ∈ APPROXGREED(Fj , `j , {βi}

L+`j
i=L+1)

L = L+ `j , C ← C ∪ S
Output C

Given a sequence {βi}`i=1, a set of cardinality constraints
{`1, . . . , `J} such that

∑J
j=1 `j = ` and `j > 0,∀j, and a

corresponding set of J surrogate (proxy) submodular func-
tions {fj}Jj=1, we define our framework MULTGREED as
shown in Algorithm 1. The series of the surrogate functions
should be designed in increasing order of complexity, and
at the last stage of MULTGREED, fJ can even be the target
function f . The algorithm should typically start with a
computationally simple surrogate submodular function f1

(which could even be modular). Since the surrogate func-
tions fj’s are designed to be computationally cheaper than
the target function f , and since APPROXGREED is applied
instead of LAZYGREED in each stage, we are guaranteed
to achieve an overall reduction in computation. In prac-
tice (see Section 5 and 6), we often observe an instance of
MULTGREED with J = 2 suffices to yield good enough
performance and complexity reduction as well, though our
results are much more general.

Pruning: In addition to the above two schemes, it is also
desirable to prune out items of the ground set that will never
be chosen anyway, especially for large-scale data set. This
is commonly done for submodular minimization (Fujishige,
2005; Iyer et al., 2013b). Arbitrary pruning procedures,
however, can significantly weaken the theoretical guarantee
for Problem 1. We introduce here a simple new method that
can prune away items without a corresponding performance
loss. Consider the sequence of items {u1, . . . , un} ordered
non-increasingly in terms of their gain conditioned on all
other items, i.e., f(u1|V \ u1) ≥ · · · ≥ f(un|V \ un). For
an instance of Problem 1 with cardinality constraint `, we
have the following Lemma:

Lemma 1. LAZYGREED applied on the reduced ground
set V̂ = {j ∈ V |f(j) ≥ f(u`|V \u`)} is equivalent to that
applied on the ground set V .

The proofs for all the results in this paper are given in (?).
This procedure can easily be implemented in parallel, since
f(j) and f(j|V \ j) can be computed independently for all
j ∈ V . The pruning procedure is optional and is applicable
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only when the complexity of evaluating f(u|V \ u) is no
greater than that of f(u). This is the case, for example, in
our graph-based submodular functions. MULTGREED
may optionally start with this ground set pruning step, but it
does not influence our analysis.

Our analysis of Algorithm 1 is given in Section 3, while
in Section 4, we illustrate examples on how to design
surrogate functions. In Section 5, we shall instantiate our
framework and provide recipes for choosing the parameters
of MULTGREED for several submodular functions which
occur as models in real world applications.

3 Analysis
In this section, we formally analyze the methods presented
in Section 2. We first define several crucial constructs that
will facilitate this analysis.

Greedy ratio: We define a new construct we call the
greedy ratio that will quantify the performance of a given
instance of MULTGREED, which is characterized by the
parameters: {fj}Jj=1, {`j}Jj=1, {βi}`i=1. Guidelines on
how to design the parameters of the multi-stage framework
for several natural instances of useful submodular functions
are given in Sections 4 and 5, but for now assume they are
given. Let s1, . . . , s` be the sequence of items selected by
the instance of MULTGREED. Let Si = {s1, . . . , si}, be a
set element of the chain S1 ⊂ S2 ⊂ · · · ⊂ S`, with S0 = ∅.

Define the individual greedy ratio αi for i = 1, . . . , ` as:

αi =
maxu∈V f(u|Si−1)

f(si|Si−1)
(2)

Each αi captures the ratio of the marginal gain of the
greedily selected element to the marginal gain of the el-
ement si selected by MULTGREED. Therefore, αi is
a function of both the target function f but also, indi-
rectly via ordered list (s1, s2, . . . , si), all of the remain-
ing parameters {fi}Ki=1, {`i}Ki=1, {βi}`i=1. Also, since
maxu∈V f(u|Si−1) ≥ f(si|Si−1), we have that αi ≥
1,∀i. Moreover, since under APPROXGREED we have
f(si|Si−1) ≥ βif(u|Si−1) for all u ∈ V \ Si−1, it fol-
lows that αi ≤ 1/βi for each i.

The list {αi}`i=1 collectively measures the quality of the
multi-stage framework. We therefore define the greedy ratio
α to be an aggregation of the individual greedy ratios. While
there are many ways of aggregating, the harmonic mean,
as we will show, provides the tightest characterization. We
thus define the greedy ratio α as:

α =
`∑`

i=1 1/αi
(3)

The greedy ratio, as we shall see, will provide a tight ap-
proximation guarantee. Ideally, we would like to have each
individual greedy ratio αi = 1 for all i, and thus a greedy

ratio of α = 1. In particular, our strategy for choosing sur-
rogate functions and other parameters is to induce a greedy
ratio that is as small as possible.

Curvature: Another important construct we shall need
is the curvature. Given a submodular function f , we de-
fine κf (S) as the curvature of f with respect to a set S as
follows:

κf (S) = 1−min
v∈V

f(v|S \ v)

f(v)
(4)

κf (S) lies in the range of [0, 1], and is monotonically
non-decreasing in S. It measures the distance of f from
modularity and κf = 0 if and only if f is modular (or addi-
tive, i.e., f(S) =

∑
i∈S f(i)). The total curvature (Conforti

and Cornuejols, 1984) κf is then κf (V ). A number of
approximation guarantees for submodular optimization are
improved when using curvature (Conforti and Cornuejols,
1984; Iyer et al., 2013a; Iyer and Bilmes, 2013).

We now provide our main result:
Theorem 1. Given a target submodular function f with
total curvature κf , an instance of MULTGREED with
greedy ratio α is guaranteed to obtain a set S` s.t.

f(S`)

f(SOPT)
≥ 1

κf

(
1− (1− 1

α`
)`κf

)
≥ 1

κf
(1− e−

κf
α )

≥ (1− e− 1
α )

Conversely, for any value of α ≥ 1 and κf ∈ [0, 1], there
exists a submodular f with the total curvature κf , on
which an instance of MULTGREED with the greedy ratio
α achieves an approximation factor 1

κf

(
1− (1− 1

α` )
`κf
)
.

Theorem 1 states that MULTGREED’s guarantee is quanti-
fied tightly by the greedy ratio α. Moreover, the bound is,
indirectly via α, dependent on all the parameters {fi}Ki=1,
{`i}Ki=1, {βi}`i=1 of MULTGREED. Theorem 1 generalizes
bound 1

κf
(1− e−κf ) (Conforti and Cornuejols, 1984) when

α = 1. By accounting for curvature, the bound 1
κf

(1−e−κf )

itself generalizes the well-known result of 1−1/e for LAZY-
GREED on Problem 1. Also, as an immediate corollary of
Theorem 1, we obtain the theoretical guarantee for APPROX-
GREED in terms {βi}`i=1.
Lemma 2. Given a submodular function f with total cur-
vature κf , APPROXGREED(f, `, {β}`i=1) is guaranteed to
obtain a set S`: (here β̄ = 1/`

∑`
i=1 βi)

f(S`)

f(SOPT)
≥ 1

κf
(1− e−κf β̄)

≥ (1− e−β̄),

If the {βi}`i=1 are set as βi = c + 1−c
` i with 0 ≤ c ≤ 1

(c.f. Section 2), we have β̄ ≥ 1+c
2 ≥

1
2 . Hence, this choice

endows APPROXGREED with a solution having a factor no
worse than 1− e−1/2 ≈ 0.39.
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The performance loss in MULTGREED comes from two
sources, namely the approximate greedy procedure and the
surrogate functions. To simplify our analysis, we henceforth
utilize only the exact greedy algorithm, (∀i, βi = 1). It
should be clear, however, that our results will immediately
generalize to the approximate greedy case as well.

The greedy ratio α is the harmonic mean of the values
{αi}`i=1 that themselves can be partitioned into J blocks
based on the J stages of MULTGREED. For j = 1 . . . J ,
define Lj =

∑j
j′=1 `j′ , and let Ij = {Lj−1 + 1, Lj−1 +

2, . . . , Lj} be the set of `j indices for the jth block. Each
stage j provides a bound on the greedy ratio since α ≤
`/
∑
i∈Ij 1/αi. As a particularly simple example, if the tar-

get function f itself were to be utilized as the surrogate in the
jth stage for `j items, then each corresponding greedy ratio
has value αi = 1 leading to the bound α ≤ `/`j . Therefore,
from the perspective of this upper bound, one is afforded the
opportunity to design each stage semi-independently. On
the other hand, to achieve a given desired α, it is not pos-
sible to design the stages entirely independently since the
individual greedy ratios interact within the harmonic mean.

The greedy ratio can work in additional scenarios above
and beyond MULTGREED. Consider, for example, the
following two problems more general than Problem 1:

max
c(S)≤B,S⊆V

f(S) (5) min
f(S)≥C,S⊆V

c(S) (6)

where c(S) =
∑
j∈S c(j) is a modular function with c(j) ≥

0 being the cost of j ∈ V , B is a budget constraint, and C
is coverage constraint. Problem 1 is a special case of Prob-
lem 5, while Problem 6 is a dual form. Problem 5 asks for
a set with maximum coverage (information) under a budget
constraint on the cost, while Problem 6 asks for a minimum
cost solution having a given amount of information (cover-
age). Many machine learning applications, including sen-
sor placement (Leskovec et al., 2007), document summariza-
tion (Lin and Bilmes, 2011), social networks (Singer, 2012)
and training data subset selection (Wei et al., 2013), can
be formulated in these forms. While it is known that LAZY-
GREED can be modified slightly to solve Problems 5 and 6,
by adapting MULTGREED and the definition of the greedy
ratio, we can obtain guarantees similar to those in Theo-
rem 1 for both Problem 5 and 6. Due to space limitations,
details are given in the extended version of this paper (?).

4 Surrogate Functions
In this section, we investigate the interplay between the
greedy ratio and several choices of surrogate functions for
classes of submodular functions which appear often in prac-
tice. Since providing bounds on the performance of each
stage individually implies an upper bound on the greedy
ratio, we shall restrict ourselves to the analysis of the surro-
gate function at a given stage j, and the final performance
guarantee is easily obtained by combining the guarantees
for the different stages.

Uniform Submodular Mixtures: We first consider a
class of submodular functions that can be represented as

f(S) =
1

|T |
∑
t∈T

ft(S), (7)

where |T | > 1, and ft is monotone submodular ∀t ∈ T .
We name this class uniform submodular mixtures as they
are similar to the submodular mixtures previously defined
in the context of learning (Lin and Bilmes, 2012). They
are also similar to the decomposable submodular functions
of (Stobbe and Krause, 2010) but without the requirement
that ft(S) be a non-decreasing concave function composed
with a non-negative modular function. A number of natural
submodular functions belong to this class.

The complexity of evaluating f is determined both by |T |
and the complexity of evaluating individual ft’s. Given such
an f , a natural class of random surrogates takes the form

f̂sub(S) =
1

|T ′|
∑
i∈T ′

ft(S), (8)

where T ′ ⊆ T , and T ′ is generated by sampling individual
elements from T with probability p. As p decreases, so
does the complexity of evaluating f̂sub but at the cost of
a worse approximation to f . Applying a random function
f̂sub derived in this way to MULTGREED, and assuming
|ft(S)| ≤ B,∀t ∈ T , S ⊆ V , we obtain:

Lemma 3. Using the surrogate uniform mixture f̂sub for
stage j in MULTGREED gives individual greedy ratios of
1 ≤ αi ≤ 1

1−ε ,∀i ∈ Ij with probability 1 − δ, where δ =

(1−5n`e−
np(g`)2ε2

64B2 ) and g` = maxu∈V \S`−1
f(u|S`−1) >

0.

Fixing δ, a smaller value of probability p yields a higher
value of ε, weakening the bound on each αi. Fixing both
δ and ε, increases in the ground set size n = |V | could
yield a choice of surrogate function f̂sub having a smaller
sampling probability p and thus that is easier to evaluate.
More importantly, fixing δ and p, ε can be made arbitrarily
close to 0 for n sufficiently large, a result that is of great
interest for very large-scale problems. We shall use this
result to provide bounds for several instances of submodular
functions in Section 5

Modular Upper bounds: We next focus on a class of sur-
rogate functions applicable to general submodular functions.
Given a submodular function f , its simple modular upper
bound is given as

f̂mod(S) =
∑
s∈S

f(s). (9)

For some submodular functions such as entropy (including
Gaussian entropy and the log det functions used for DPPs)
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or mutual information, evaluating f̂mod(S) is very easy,
while evaluating f(S) might sometimes even require com-
putation exponential in |S|. Though extremely simple, this
class nevertheless can act as an efficient class of surrogate
functions especially useful when the target function is not
very curved. f̂mod is not only easy to optimize exactly, but
it has previously been considered as a surrogate for various
other forms of submodular optimization (Iyer et al., 2013a;b;
Iyer and Bilmes, 2013). The curvature κf , by definition,
measures how close f is to being modular. If a modular
surrogate function f̂mod, for general submodular function
f , is applied within MULTGREED, we can thus bound the
individual greedy ratio via the curvature:
Lemma 4. Using the modular upper bound as a surrogate,
it holds that 1 ≤ αi ≤ 1

1−κf (Si−1) ,∀i ∈ Ij .

Unsurprisingly, we see that the less curved the target func-
tion f is, the tighter bound on αi’s, and the better f̂mod
performs as a surrogate. In particular, if f is modular, i.e.,
κf = 0, then, all individual greedy ratio αi’s are tightly
bounded as 1. Lemma 4 also implies that the bound of
the individual greedy ratio weakens as i increases, since

1
1−κ(Si−1) increases with i. Therefore, this modular proxy,
if applied, is best done in the first (or at most early) stages
of MULTGREED.

Graph based Submodular functions: We focus next on
a class of submodular functions based on an underlying
weighted graph and hence called graph-based. Many sub-
modular functions used in machine learning applications
belong to this class (Kolmogorov and Zabih, 2004; Wei
et al., 2013; Liu et al., 2013; Lin and Bilmes, 2011). These
functions require O(n2) time to compute and store, which
is not feasible for large n.

To form surrogates for the class of graph-based submodular
functions, a natural choice is to utilize spanning subgraphs
of the original graph. One choice is the k-nearest neighbor
graph (k-NNG), defined as the spanning subgraph formed
with each vertex v ∈ V connected only to its k most simi-
lar neighbors (under the similarity score given by the edge
weights). We write f̂k-NNG as the surrogate function de-
fined on a k-NNG for a graph-based submodular function
f . The sparsity of the k-NNG depends on the value of k.
The denser the graph (higher k), the costlier both the func-
tion evaluations and the memory complexity becomes. In
Section 5, surprisingly we will show that f̂k-NNG, even
for k as sparse as O(log n), can be good enough for certain
graph-based functions.

5 Instantiations with Real World
Submodular functions

Given the previously defined machinery to analyze MULT-
GREED, we now focus on a broad range of submodular
functions that appear as models in real world applications,
and provide guidelines on how to design the surrogate

functions as well as how to choose the size constraints.
We investigate the following special cases: 1) the facility
location function, 2) saturated coverage function, 3) feature
based function, 4) the set cover function.

Facility location function: Given a weighted graph G =
(V,E), with wu,v the edge weight (i.e., similarity score)
between vertices u and v for u, v ∈ V , the (uncapacitated)
facility location function is defined as

ffac =
∑
v∈V

max
u∈S

wu,v. (10)

Under reasonable assumptions on the weight matrix w,
we obtain the following bound (due to space constraints,
additional details are given in the extended version of this
paper (?)).

Lemma 5. For the facility location function, we have:

f̂k-NNG
fac (S) = ffac(S),∀S ⊆ V s.t. |S| ≥ m, (11)

with probability at least (1 − θ), and the sparsity of the
k-NNG being at least k = n[1− ( θn )

1
m ].

With mild assumptions on m, n and θ, we have
limn→∞ n[1 − ( θn )

1
m ] = O(log n). The Lemma implies

that with high probability, f̂k-NNG
fac and ffac share the same

function value for any sets of size greater than some thresh-
oldm, where the k-NNG can be as sparse as k = O(log n).

By Lemma 5, f̂k-NNG
fac alone provides a good approxi-

mation for ffac. It thus suffices, in this case, to apply a
single-stage greedy algorithm (MULTGREED with J = 1)
using f̂k-NNG

fac as the surrogate. As a concrete example,
consider an instance of the procedure with θ = 0.05,
n = 106, k = 0.009n, and ` = 0.1n. Then, Lemma 5
implies that with probability 95%, f̂k-NNG

fac (S) = ffac(S)

holds for any |S| ≥ 0.00186n, giving an individual greedy
ratio of αi = 1 for 0.00186n ≤ i ≤ 0.1n. The greedy ratio
α is then bounded as α ≤ 1.02, which guarantees a solution
in this instance close to optimum, thanks to Theorem 1.

Saturated coverage function: Successfully applied in doc-
ument summarization (Lin and Bilmes, 2011), the saturated
coverage function is another subclass of graph-based sub-
modular functions, defined as

fsat(S) =
∑
v∈V

min{
∑
u∈S

wv,u, ξ
∑
u∈V

wv,u}, (12)

where 0 < ξ ≤ 1 is a hyperparameter that determines the
saturation ratio. The class of uniform submodular mixtures
includes fsat. In this case, we can construct a two-stage
greedy algorithm, where the modular upper bound f̂mod

and a sampling based function f̂sub (with sampling proba-
bility p) are used as the two surrogates.
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Lemma 6. Given the saturated coverage function, an in-
stance of MULTGREED with the size constraints `1 =
b nξ

(1−ξ)γ+ξ c and `2 = max{0, ` − `1} (where γ =
maxu,v wu,v

min(u,v)∈E(G) wu,v
, assuming all extent graph edges are pos-

itively weighted) yields a solution with the individual greedy
ratios αi = 1, for i = 1, . . . , `1 and with probability 1− δ,
1 ≤ αi ≤ 1

1−ε , for i = `1 + 1 . . . , `, where δ = (1 −

5n`e−
np(g`)2ε2

64B2 ) and g` = maxu∈V \S`−1
f(u|S`−1) > 0.

A main intuition of this result, is that fsat is modular up to
set of size `1. Hence it makes sense to use f̂mod for these
cases. Similarly for the second stage, it is reasonable to use
f̂sub with an appropriate p.

Feature based submodular function: Successfully ap-
plied in the speech data subset selection problem (Wei et al.,
2014a;b), the feature based submodular function has the
following form:

ffea =
∑
u∈F

g(cu(S)), (13)

where g is concave in the form g(x) = xa for 0 < a ≤ 1,
F is a set of “features”, and cu(S) =

∑
v∈S cu(s) is a non-

negative modular score for feature u ∈ F in set S, with
cu(v) measuring the degree to which item u possesses fea-
ture u. Again, ffea is a member of the class of uniform
submodular mixtures. The curvature of ffea is governed by
the curvature of the concave function g and thus is deter-
mined by a. We can construct a two-stage procedure similar
to that for fsat, where we optimize over f̂mod and f̂sub
with a suitable choice of the sampling probability p.

Lemma 7. Given the feature based submodular function,
an instance of MULTGREED with the size constraints being
`1 and `2, yields a solution with the individual greedy ra-
tio bounded as: 1 ≤ αi ≤ O(i1−a), for i = 1, . . . , `1;
and 1 ≤ αi ≤ 1

1−ε for i = `1 + 1 . . . , ` with proba-

bility 1 − δ, where δ = (1 − 5n`e−
np(g`)2ε2

64B2 ) and g` =
maxu∈V \S`−1

f(u|S`−1) > 0.

The lemma implies that with an appropriate choice of the
sampling probability p for f̂sub, the performance loss in the
second stage could be negligible. However, there is some
performance loss introduced by the first stage, depending on
a and `1. The choices for `1 and `2 determine the tradeoff
between loss of the performance guarantee and the compu-
tational reduction: larger `1 is chosen when computation is
critical or when g is less curved (larger values of a), while
larger `2 is chosen when algorithmic performance is the
priority or g is more curved (smaller values of a).

Set cover: We briefly discuss how our framework applies
to set cover. Due to space limitations, details are given in (?).
Given a set of sets {A1, . . . , A|V |}, a “universe” defined as
U = ∪v∈VAv, and a set of weights w : U → R+, the set

cover function is defined as

fsc(S) = w(∪v∈SAv), (14)

where w(A) =
∑
u∈A w(u) for A ⊆ U and w(u) gives

the weight of item u ∈ U . fsc is again a uniform sub-
modular mixture since it can be equivalently written as
fsc(S) =

∑
u∈U min{cu(S), 1}w(u), where cu(S) de-

notes the number of times that item u ∈ U is covered
by the set of sets {Av : v ∈ S}. Thanks to Lemma 3, a
single-stage procedure where we optimize over the sampling
based surrogate f̂sub with appropriate sampling probability
p, suffices to provide a good performance guarantee along
with a computational reduction.

6 Experiments
We empirically test the performance of MULTGREED for
three of the submodular functions considered above. We
address the following questions: 1) how well does MULT-
GREED perform compared to LAZYGREED, 2) how much
relative time reduction can be achieved, 3) how well does
the greedy ratio perform as a quality measure, 4) how well
does the framework scale to massive data sets. We run ex-
periments on two scenarios: 1) simulations with medium
sized data, 2) real world speech data selection on millions
of ground elements.

Simulations: All simulations are performed on the same
data with size |V | = 20, 000, formed by randomly sampling
from a large speech recognition training corpus (the “Fisher”
corpus). Each sample pair has a similarity score, and the
graph-based submodular functions ffac and fsat are instan-
tiated using the corresponding similarity matrix. A set of fea-
tures F sized |F| ≈ 75000 is derived from the same data to
instantiate ffea. In all runs of MULTGREED, we set {βi}`i=1

using the schedule βi = c+ (i−1)(1−c)
` with c = 0.5. Per-

formance of MULTGREED and LAZYGREED is measured
by the function valuations and the wall-clock running time.

For ffac, use one stage with surrogates f̂k-NNG with
k ∈ {50, 100, 200, 300}. MULTGREED gives about a 20-
80 times speedup over LAZYGREED with at least 99.8%
of the standard greedy solution (first column of Fig. 1).
For fsat, the saturation ratio ξ is set as 0.25. Two stages
using surrogate functions f̂mod and f̂sub are applied,
under size constraints `1 = b nξ

5(1−ξ)+ξ c = 0.05n, and

`2 = ` − `1. We test f̂sub with various sampling prob-
abilities: p ∈ {0.25%, 0.5%, 1%, 1.5%}. The results (2nd
column of Fig. 1) show a speedup of up to 250 with at least
99.25% the quality of LAZYGREED. Next, for ffea, we
set g to be the square root function. Two stages of surro-
gates f̂mod and f̂sub are applied. f̂sub is defined on a
randomly selected feature subset of size 37,500. We test
with different combinations of size constraints `1 and `2
by setting `1 ∈ {0, 0.25`, 0.5`, 0.75`} with `2 = ` − `1.
This gives about a 2-8 times speedup with at least 99.3% of
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Figure 1. A comparison of the function values (top row), the run-
ning time (middle row), the greedy ratio (bottom row) between lazy
greedy and our multi-stage approach, under different choices of the
surrogate function for ffac (left column), fsat (middle column),
and ffea (right column).

5% 10% 20% all
Averaged Random 38.2 35.1 34.4

31.0Histogram-Entropy 37.6 34.2 fail
Multi-stage Submodular 37.3 34.1 32.7

Table 1. Word error rates under averaged random, histogram-
entropy, and the multi-stage submodular chosen subsets at various
sized percentages (lower the better). Histogram-entropy result for
the 20% condition is not available due to its objective’s saturation
after 10%.

LAZYGREED quality (right column of Fig 1). Empirically,
the greedy ratio is very tight since it is always close to 1.
For most cases, it is a good indicator of the performance for
function valuations, since lower values of α always lead to
higher performance of MULTGREED. For ffac and fsat, the
speedup reported does not include the potentially significant
additional complexity reduction on graph-construction. Es-
pecially for ffac, efficient algorithms exist for fast (approxi-
mate) construction of the k-NNG (Beygelzimer et al., 2006).

Speech Data Subset Selection: We next test the per-
formance of MULTGREED on a very large-scale problem,
where running even LAZYGREED is infeasible. We ad-
dress the problem of speech data subset selection (King
et al., 2005; Lin and Bilmes, 2009; Wei et al., 2013): given
a massive (speech) data set for training automatic speech
recognition (ASR) systems, we wish to select a representa-
tive subset that fits a given budget (measured in total time)
and train a system only on the subset. Problem 5 addresses
this where the objective is the facility location function
ffac, and the pair-wise similarity between speech samples
is computed by kernels (Wei et al., 2013). We subselect
1300 hours of conversational English telephone data from

the “Switchboard”, “Switchboard Cellular”, and “Fisher”
corpora, which, in total, comprises 1,322,108 segments of
speech (i.e., |V | = n = 1, 322, 018). The estimated running
time of LAZYGREED with ffac on such large data is at least
a week. Rendering the full O(n2) similarity matrix is even
more impractical due to memory requirements. We here test
MULTGREED using f̂k-NNG

fac with the sparsity of k-NNG
set as k = 1, 000. MULTGREED, then, runs in only a few
minutes, yielding a speedup of more than a thousand over
LAZYGREED! We measure the performance of the selection
by the word error rate (WER) of the ASR system trained
on the corresponding selected subset of the data. We test
on different budget constraints (5%, 10% and 20% of the
whole speech data). We compare our selection against two
baseline selection methods: (1) averaged random method,
where we randomly sample the data set at appropriate sizes,
train different ASR systems for each set, and average their
WER; (2) a non-submodular “histogram-entropy” based
method, described in (Wu et al., 2007). Table 1 illustrates
that our framework yields consistently superior results to
these baselines.

7 Discussion
Certain other domains may be applicable to the analy-
sis introduced in this paper. In the case of feature se-
lection, for example, one may wish to optimize the mu-
tual information function fmi = I(XS ;C) which either
is not submodular, or can become submodular by assum-
ing that the random variables XV are independent given
C (Krause and Guestrin, 2005a). In either case, how-
ever, the complexity of evaluating fmi can be daunting,
leading to previous work suggesting a tractable surrogate
f̂mi(S) =

∑
v∈S I(Xv;C)−λ

∑
v,u∈S I(Xv;Xu), where

λ is a hyperparameter (Peng et al., 2005). Under certain
assumptions, this surrogate is in fact equivalent to the origi-
nal (Balagani and Phoha, 2010). Unnoticed by these authors,
however, this function is submodular and non-monotone.
We plan in the future to extend our framework to addition-
ally handle such functions.
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