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Abstract
Deep neural networks have achieved great suc-
cess on a variety of machine learning tasks.
There are many fundamental and open questions
yet to be answered, however. We introduce the
Extended Data Jacobian Matrix (EDJM) as an
architecture-independent tool to analyze neural
networks at the manifold of interest. The spec-
trum of the EDJM is found to be highly corre-
lated with the complexity of the learned func-
tions. After studying the effect of dropout, en-
sembles, and model distillation using EDJM, we
propose a novel spectral regularization method,
which improves network performance.

1. Introduction
Deep Learning has achieved significant success in the past
few years on many challenging tasks (Krizhevsky et al.,
2012; Hinton et al., 2012; Simonyan & Zisserman, 2014;
Bahdanau et al., 2014; Mnih et al., 2015; Silver et al., 2016;
Sutskever et al., 2014) , but there is still much work needed
to understand why deep architectures are able to learn such
effective representations.

One proposal (Pascanu et al., 2013; Montufar et al., 2014)
argues that deep neural networks with rectified units are
able to separate the input space into exponentially more
linear response regions than shallow networks given the
same number of computational units, thus enabling deep
networks to learn highly complex and structured functions.
Empirical results in (Romero et al., 2014) show that deep
but thin networks can mimic the function learned by shal-
lower (but still deep) and wide networks. Even for deep
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linear networks, (Saxe et al., 2013) found that they exhibit
non-linear training dynamics similar to non-linear deep
neural networks. Although deep linear networks are equiv-
alent to shallow linear networks in representational power,
their training dynamics are rich in mathematical structure
that alter key aspects of the network such as training time,
and the effects of pre-training, random initialization, and
generalization. Better understanding of the trajectory of
the functions learned by different architectures during and
at the end of training is important for understanding why
deep learning is so effective, how different architectures
affect what is learned, and for developing networks with
better regularization and generalization abilities. For
example, in (Neyshabur et al., 2015), understanding
and enforcing scale invariance in ReLU networks led to
developing a more resilient update rule than standard SGD
for networks with unbalanced weights.

We started this work motivated by trying to understand
what qualities deep networks possess that shallow net-
works do not, and also how convolutional neural networks
differ from feed-forward ones. Recently, model compres-
sion and distillation (Ba & Caruana, 2014; Hinton et al.,
2015) show that it is possible to train compact models
to approximate the functions learned by more complex
models. Empirically, on some datasets, shallow networks
can be improved dramatically to the point of even matching
the best deep network by learning from the soft labels
generated by a large and deep model or an ensemble of
such models. Such improvement may result from the extra
information provided by the soft labels which preserves
the relative confidence of different outputs learned by the
bigger model. The distillation results posed yet another
interesting question: in what way does the more complex,
“teacher”, network alter the function learned by the
less complex, “student”, network compared to a similar
network learning without the benefit of a teacher?

In this paper, conditioned on a set of data points that define
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the manifold of interest, we propose the Extended Data Ja-
cobian Matrix (EDJM) as an analysis tool for neural net-
works. By studying the spectrum of EDJM, which we be-
lieve is highly correlated with the complexity of the func-
tions learned by networks, we can compare networks with
different depths, architectures, and training techniques in a
unified way. First, we introduce the Extended Data Jaco-
bian Matrix for feed-forward and convolution neural net-
works. Then we show the characteristics of the spectrum of
the EDJM for the best performing networks over multiple
datasets. We also show in section 4, that different methods
such as model compression and dropout increases the same
measure of the spectrum of the EDJM. Finally, motivated
by these observations, we propose a regularization tech-
nique for improving performance of deep neural networks.

2. Data Jacobian Matrix
Given a deep neural network consisting of m linear layers,
the entire network is a series of matrix multiplies that can
be represented merely by a single matrix:

Wnet =WmWm−1 . . .W1 (1)

Suppose we are given a data set D, and |D| = n, where
each data point (x, y) ∈ D consists of input features x
of din dimensions, and an output label y of dout dimen-
sions. Using the linear network described above, we have,
for (xi, yi):

ŷi =WmWm−1 . . .W1xi, or ŷi =Wnetxi, (2)

where ŷi is the predicted label of xi using the network.

Now we introduce non-linearity into the linear network.
Without loss of generality, we use Rectified Linear Units
(ReLU), which sets negative entries in a vector to 0 while
preserving the positive entries (We will show how to gen-
eralize to other types of activation functions later):

φReLU (z) = max(0, z) (3)

If we apply ReLU to all the linear layers except for the last
layer, we have the following network:

ŷi =WmφReLU (Wm−1φReLU (. . . φReLU (W1xi))) (4)

2.1. ReLU Network as a Collection of Linear Systems
Suppose for input xi, the output at layer l is hil , then hil =
φReLU (Wlh

i
l−1). If (Wlh

i
l−1)[k] < 0, then hil[k] = 0 ac-

cording to the ReLU function, which is equivalent to setting
the k th row ofWl to be all 0, while if (Wlh

i
l−1)[k] ≥ 0, the

row is left exactly the same. Therefore, we can eliminate
the non-linear ReLU functions by modifying certain rows
of weight matrices to 0 while keeping the rest, and we end
up with a linear system for data point xi:

ŷi =WmŴ
i
m−1Ŵ

i
m−2 . . . Ŵ

i
1xi (5)

ŷi =W i
netxi (6)

where:

Ŵ i
l [a, b] =

{
Wl[a, b] if hil[a] > 0

0, otherwise
. (7)

Note that W i
net is xi specific, as the modification that

transforms Wl into Ŵ i
l depends on the values of hil , and

therefore is based on the input features xi. For each
individual data point in a finite data set, we can construct
a linear model W i

net of dimensions dout × din in such
manner, and that generates the same output as the original
neural network consisting of arbitrary number of layers
and hidden units.

Clearly, for different data points xi and xj , different linear
systems will most likely be constructed. However, for an
xj that is close enough to xi, the output of the first layer hi1
and hj1 could have the same patterns of ReLU activations
In other words, (W1xi)[k] < 0 ⇐⇒ (W1xj)[k] < 0 ∀k,
so in this case, the modified weight matrices are the same
for both data points. If such pattern is carried over multiple
layers, the constructed linear systems could be the same.
Therefore, for input data points in a small region around xi,
the constructed linear system for xi remains unchanged, so
that the ReLU network is piece-wise linear.

2.2. Data Jacobian Matrix
For dataset D = {(xi, yi)}, where x is of dimension din
and y is of dimension dout, and a deep neural network
ŷi = fm(φm−1(fm−1(φm−2(. . . φ1(f1(xi)))))), where f
is a linear operation, and φ is a differentiable non-linear
function, we denote the Data Jacobian Matrix for input
features xi as:

DJM θ(xi) =
∂ŷi
∂xi

=
∂ŷi

∂him−1

∂him−1
∂him−2

. . .
∂hi1
∂xi

(8)

=
∂fm(him−1)

∂him−1

∂him−1
∂fm−1(him−2)

. . .
∂f1(xi)

∂xi
. (9)

The subscript θ in the DJM denotes that depends on the
neural network parameters θ. For ReLU feed-forward net-
work in specific, we have:

DJM θ(xi) =Wm
∂him−1

∂Wm−1him−2
Wm−1

∂him−2
∂Wm−2him−3

. . .W1

In addition, under ReLU non-linear function, we have:

∂hil+1[a]

∂(Wl+1hil)[b]
=

{
1 if a = b and (Wl+1h

i
l)[b] ≥ 0

0 otherwise
.

It is easy to see that:

DJM θ(xi) =WmŴ
i
m−1Ŵ

i
m−2 . . . Ŵ

i
1 =W i

net (10)
ŷi = DJM θ(xi)xi, (11)
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For ReLU feed-forward network, the Data Jacobian Matrix
for xi is equivalent to the per-data point linear system
for xi (Eq 11). Such equivalence also holds for ReLU
convolutional networks with max/average pooling layers.
Convolution, as a linear transformation, can be written in
the form of matrix multiplication, and thus no different
from the feed-forward layers when calculating the gra-
dients. Average pooling is a special case of convolution,
which can be viewed as a matrix multiplication as well.
Max pooling outputs the highest value out of a certain
receptive field, which is equivalent to removing certain
rows of the weight matrix based on the input values. Sim-
ilar to the ReLU function, when calculating the gradients,
elements in the removed rows receive 0 gradients and
therefore the equivalence holds.

Conceptually, the Data Jacobian Matrix is the gradient of
the outputs of the neural network with respect to the in-
puts. Suppose the neural network is applied to a classifica-
tion task, ReLU networks are characterized with piece-wise
linear classification boundaries, which collide with the gra-
dients. For non-linear functions other than ReLU (e.g. sig-
moid, and tangent), the gradients are linear approximations
to the classification boundaries.

3. Extended Data Jacobian Matrix
For simplicity, suppose dout = 1 (i.e. the task is binary
classification or a single value regression), for data point
xi, DJM θ(xi) is a single vector. Stacking such vectors
across different data points in X with |X| = n, we get a
matrix of dimension n × din. We denote such a matrix as
the Extended Data Jacobian Matrix (EDJM). In the general
case, for every dimension of the output, we can construct
such Extended Data Jacobian Matrix, so that we have dout
EDJMs all of which are of dimension n× din.

The Extended Data Jacobian Matrix is a collection of linear
systems across data points, allowing us to study and com-
pare various neural networks conditioned on certain set of
data. For ReLU networks in particular, EDJM is equivalent
to the neural network for the input dataset. For the rest of
the paper, we will focus on ReLU networks for the equiva-
lence we get, yet all the analysis described in the following
applies to non-ReLU networks as well.

An EDJM has fixed dimension n × din for a given data
set regardless of the network structure, thus allowing us
to compare different networks (e.g., deep vs. shallow, or
convolutional vs. feed-forward) through the same lens.

The spectrum, or distribution of singular values, of EDJM
reflects the principle components of the space spanned
by different linear systems for different data points. We
choose to use matrix factorization over each EDJM instead
of tensor factorization on the tensor formed by dout EDJMs
for the following reasons: 1) tensor factorization in gen-

eral is NP-hard and there is identifiability issue with tensor
factorization; 2) the computational cost for tensor factor-
ization in our experiment setting can be intractable; 3) ma-
trix factorization of EDJMs can be used to investigate and
compare different linear systems that map inputs to differ-
ent output classes. A spectrum with one single component
suggests that the linear system for certain output dimension
is the same for all data points, making the neural network
very simple, and indeed linear for that output dimension.
The other extreme is when the spectrum of EDJM is uni-
form across all components meaning that the space spanned
by the data points’ linear systems is extremely complex and
the underlying neural network behaves dramatically differ-
ent for different data points. The distribution of singular
values of the EDJM, therefore, naturally reflects the “com-
plexity” of the function learned by the neural network. For
the rest of this paper, we will compare many neural net-
works with different architectures to demonstrate the con-
nection to the spectrum of the EDJM.

4. Empirical Analysis with EDJMs
In this section, we will show that the EDJM spectrum cor-
relates well with our natural notion of model complexity
and more advanced training methods, as well as being pre-
dictive of model accuracy.

Experiments in this paper are conducted on three differ-
ent datasets: MNIST for hand-written digit recognition,
CIFAR-10 for image recognition, and TIMIT for phone
recognition. MNIST consists of 60000 training data points,
out of which we randomly extract 10000 data points as
the validation set, and 10000 testing data points. Each
data point is a single channel image of size (1, 28, 28) and
thus has 784 dimensional features. CIFAR-10 consists of
50000 training images and 10000 testing images. Similar
to MNIST, we extract 10000 out of the training dataset as
a validation set. Each image in the CIFAR-10 dataset is of
size (3, 32, 32), which is of dimension 3072. Both MNSIT
and CIFAR-10 has 10 output classes, so 10 Extended Data
Jacobian Matrices can be constructed. For MNIST, the di-
mensions of the EDJM are n × 784, and for CIFAR-10,
the dimensions the EDJM are n × 3072, where the value
of n depends on the subset of data selected. For valida-
tion set, n = 10000 for both MNIST and CIFAR-10. The
TIMIT corpus consists of a 462 speaker training set, a 50
speaker validation set, and a 24 speaker test set. 15 frames
are grouped together as inputs where each frame contains
40 log mel filterbank coefficients plus energy along with
their first and second temporal derivatives.

We use stochastic gradient descent with momentum for
training all the following reported models. Learning rates
gets halved if the performance does not improve over a
succession of 5 epochs on the validation set. No regular-
ization/batch normalization is applied if not specified. The
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reported models are all selected by grid search for best per-
formance to cover a broad range for each parameter in order
to ensure a fair comparison between models.

4.1. EDJM for Feed-forward Networks
We compare EDJM of neural nets with various depths (#
layers = 1, 2, 3, 4) while we either fix the total number of
parameters, or the total number of hidden units. Fixing the
total number of parameters constrains the size and com-
putational costs of the network. Moreover, for ReLU net-
works, fixing the number of hidden units restricts the upper
bound on the number of different DJMs that can be gener-
ated. Specifically, for ReLU networks withH hidden units,
at most 2H different DJMs can be generated, as the acti-
vation/deactivation of ReLU on any hidden unit may con-
tribute to construct a different linear system. Also note that
such upper bound is irrespective of the number of layers.

Plotted in Figure 1 is the normalized spectrum (normalized
by the max singular value, so the curves start with 1.0 on
the left) of EDJMs for different feed-forward networks con-
ditioned on the validation set of MNIST and CIFAR-10,
and averaged over 10 output dimensions. As we apply soft-
max to the output of the networks for classification tasks,
which may result in significantly different scales for lin-
ear systems of different networks, we report the normalized
spectrum. We observe same patterns for training set, vali-
dation set and testing set. We choose to present the valida-
tion set results as 1) a natural selection of the conditioning
dataset for EDJMs is the data utilized during the training
process; 2) the accuracy associated with each curve on the
validation set is more informative than the training set; 3)
analysis of the validation set results can be beneficial to tun-
ing the hyper-parameters of training, which should never be
done on the testing set. For all the following comparisons
of spectra, we always report the validation set results.

From Figure 1, we observe a clear trend that EDJMs of
deeper networks tend to have more dominating singular
values. To quantify the plotted shape in one simple met-
ric, we propose the following score:

score(Sθ(X, j)) =
∑

σ∈Sθ(X,j),σ>ε

σ

max(Sθ(X, j))
, (12)

where Sθ(X, j) denotes the singular values for EDJM con-
ditioned on data input X and jth output. Conceptually, the
score is the sum over normalized singular values excluding
the small ones. From Figure 1 we observe that the sin-
gular values decrease at a super-linear rate, and therefore
there are lot of small singular values, whose corresponding
components are more likely to be noise for our analysis.
On the other hand, the proposed score captures the relative
power of the important components. Higher score suggests
that there are more important components embedded in the
given EDJM, or the underlying neural network represents

a more complex set of linear systems. The value of ε is
chosen to be 90 percentile of the singular values (we keep
the top 10% singular values since the rest 90% values are
small and likely to be noise). The scores averaged over 10
output dimensions for different neural network structures
are reported in Figure 1 (C) and (F), which coincide with
the trend observed from the spectra.

For either fixed number of hidden units or fixed number
of parameters, deeper networks have higher normalized
singular values for the major components of the spectrum.
The depth of the neural network acts like a prior on the
spectrum of the EDJM: deeper neural networks are likely
to be trained to generate a more complex set of linear
systems conditioned on the dataset of interest, which is
consistent with the common belief that more complex
functions are learned with deep neural networks than
shallow neural networks.

4.2. EDJM for Convolutional Networks
In Figure 2, we show a comparison between the best
performing feed-forward network with convolutional
networks that have comparable number of parameters. For
both datasets, large gaps between the spectrum of convolu-
tional and feed-forward networks are observed, suggesting
that the learned functions for the convolution networks are
tremendously more complex than the feed-forward ones.

Our contention is that the reason behind the large gaps is
in the difference between the number of hidden units of the
feed-forward and the convolutional networks. Suppose, for
every filter, the output size is the same as the input size (i.e.
we do not lose the boundary region when performing con-
volution). The total number of output units is therefore the
number of filters × the input size. For CIFAR-10, suppose
we have 64 filters as our first layer, we then end up with
32 ∗ 32 ∗ 64 = 65536 hidden units. As stated above, the
total number of hidden units puts a restriction on the upper-
bound of the number of independent linear systems that can
be constructed through the ReLU network. Therefore, con-
volution networks have a much higher upper-bound, which
may result in more complex systems.

4.3. EDJM for Model Compression
So far, we have seen that EDJM scores vary with neural
network architecture. In the rest of the paper we will show
that the scores also vary with the training technique uti-
lized. Model compression or distillation (Ba & Caruana,
2014; Hinton et al., 2015), focuses on training a compact
model to approximate the function learned by a more com-
plex model. Empirically, for certain datasets, a shallow
(but not too small) network can be improved dramatically,
even matching the best deep network, by learning from the
soft labels generated by a large and complex model, or al-
ternatively an ensemble of such models. Such improve-
ments may result from the extra information provided by
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MNIST CIFAR-10
# layers score / acc score / acc

1 4.25 / 98.53% 5.99 / 53.94%
2 5.49 / 98.59% 13.94 / 54.23%
3 7.35 / 98.62% 16.58 / 56.06%
4 7.70 / 98.66% 21.40 / 56.34%

(A) MNIST, Fixed # Hidden Units (B) CIFAR-10, Fixed # hidden units (C) Scores for Fixed # Hidden Units (Eq 12)

MNIST CIFAR-10
# layers score / acc score / acc

1 4.04 / 98.52% 5.99 / 53.94%
2 5.55 / 98.52% 18.64 / 55.16%
3 7.55 / 98.62% 20.39 / 56.18%
4 7.65 / 98.68% 21.40 / 56.34%

(D) MNIST, Fixed # Parameters (E) CIFAR-10, Fixed # Parameters (F) Scores for Fixed # Parameters

Figure 1. Spectra of EDJMs of feed-forward networks with various number of layers. Validation set accuracy is reported in the legends
of each figure and in the tables (D) and (E) (same for following figures and tables). (A) Spectra of EDJMs for networks with 1 - 4
layers and fixed number of total hidden units equal to 6k on MNIST. Each spectrum consists of singular values normalized by the largest
singular value (i.e., the curve starts at 1.0 on y-axis), sorted in decreasing order, and then averaged over 10 output classes. We set the
maximum value of y-axis to be 0.25 for the purpose of better visual display. (B) Spectra of EDJMs for networks with 1 - 4 layers and
fixed number of total hidden units equal to 12k on CIFAR-10. (C) Scores for the spectra plotted in (A) and (B). (D) Spectra of EDJMs
for networks with 1 - 4 layers and fixed number of parameters equal to 10 million on MNIST. (E) Spectra of EDJMs for networks with
1 - 4 layers and fixed number of parameters equal to 46 million on CIFAR-10. (F) Scores of the spectra plotted in (D) and (E).

the soft labels, referred as “dark knowledge” in (Hinton
et al., 2014), which preserves the relative confidence of dif-
ferent outputs learned by the complex model.

We analyze the EDJM for models trained with the model
compression framework to further illustrate EDJM’s ability
measure the relative complexity of models trained in very
different ways, as well as to try to better understand the
model compression process. Specifically, we compare the
EDJM for five models on the CIFAR-10 dataset (the per-
formance gap between the complex and simple models on
MNIST without distillation is too small to be interesting).
The five models are as follows:

1) Convolutional Teacher Model: A deep convolution
network of structure: 64 filter 3 * 3 conv - 64 filter 3 * 3
conv - 2 * 2 max pooling - 128 filter 3 * 3 - 128 filter 3 *
3 - 2 * 2 max pooling - 256 filter 3 * 3 - 256 filter 3 * 3 -
256 filter 3 * 3 - 256 filter 3 * 3 - 2 * 2 max pooling - 2 *
1024 feed-forward layer, and trained with hard 0-1 labels.
2) Convolutional Student Model: A shallow convolution
network of structure: 128 filter 5 * 5 - 2 * 2 max pooling
- 800 linear layer - 1 * 5000 feed-forward layer, with
soft labels provided by the convolution teacher model.
3) Convolutional Shallow Model: Same structure as the
convolution student model, but trained on the original hard
0-1 labels. 4) Feed-forward Student Model: A shallow

feed-forward network of structure: 1200 linear layer - 1
* 30k feed-forward layer, with soft labels provided by
the convolution teacher model. 5) Feed-forward Shallow
Model: Same structure as the feed-forward student model,
but trained on the original hard 0-1 labels.

The linear bottleneck layer in the models above are uti-
lized to reduce the computational cost, which is also ap-
plied in (Ba & Caruana, 2014).

Figure 3 shows the spectrum of the EDJMs for the mod-
els described above. The very complex and deep teacher
model achieves significantly better performance than the
other models as well as highest normalized singular values
for the major components. The student models, which ben-
efit from the soft labels provided by the teacher models, get
better performance and higher normalized singular values
than the shallow models with the same architecture trained
on the 0-1 hard targets. Once more, we observe gaps in
major component singular values that correlate with the
performance gaps between convolution networks and feed-
forward networks. It appears that the deep teacher model
is able to learn the most complex model, and that the stu-
dent models trained to mimic the teacher model are able to
learn more complex functions than those learned by shal-
low models of the same architecture that were trained on
the original 0-1 hard targets.
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MNIST CIFAR-10
Model score / acc score / acc

Feed-for. 7.70 / 98.66% 21.40 / 56.34%
Conv. 21.55 / 99.26% 59.65 / 73.77%

(A) MNIST, Conv. v.s. Feed-forward (B) CIFAR-10, Conv. v.s. Feed-forward (C) Scores for Conv. v.s. Feed-forward

Figure 2. Spectra of EDJMs of convolution networks compared to feed-forward networks. (A) Spectra of EDJMs of a 4 * 1536 feed-
forward network compared with a 64 filter 3 * 3 - 2 * 2 max pooling - 128 filter 3 * 3 - 2 * 2 max pooling - 2 * 1943 network on MNIST
dataset. (B) Spectra of EDJMs of a 4 * 3072 feed-forward network compared with a 64 filter 3 * 3 - 2 * 2 max pooling - 128 filter 3 * 3
- 2 * 2 max pooling - 2 * 3072 feed-forward network. (C) Scores for the spectra plotted in (A) and (B).

 

       
 

 

 

 

 

 

 

 

 

 

 

 

(A) CIFAR-10, Model Compression
Model Score Acc

Feed-forward shallow 33.7 62.3%
Feed-forward student 73.6 73.6%
Convolutional shallow 147.8 83.1%
Convolutional student 162.7 86.7%
Convolutional teacher 172.7 92.1%

(B) Scores for Model Compression Results

Figure 3. Effects of model compression training on spectra of ED-
JMs. (A) shows the spectra of EDJMs for different models in
model compression training on CIFAR-10. (B) Scores for (A).

4.4. EDJM for Networks with Dropout
Dropout (Srivastava et al., 2014) is a widely-used tech-
nique that disentangles the dependencies among neural
network units by randomly deactivating each neural unit
with certain probability. As neural units are dropped out
randomly for each mini-batch, dropout effectively provides
an efficient way of approximately combining a large collec-
tions of neural networks with different structures, and thus
often improves the performance of the neural networks.

Figure 4 shows that on both MNIST and CIFAR-10, and
two different network structures, the dropout networks con-
sistently have higher values on the major components of
EDJMs as well as higher performance.

The increase of the major components singular values
for dropout networks may result from the independence
over hidden units created by dropout. As neural units are

dropped-out at random, the correlation among weights is
reduced, forcing rows of weight matrices to be more inde-
pendent of each other. We observe from the EDJMs, which
are products of individual weight matrices, that the nor-
malized singular values for major components are higher.

4.5. EDJM for an Ensemble of Networks

(A) CIFAR-10, Ensemble of Networks
Model Score Acc

Feed-forward 2 layer 13.94 54.23%
Feed-forward 3 layer 16.58 56.06%
Feed-forward 4 layer 21.40 56.34%

Ensemble 8.75 57.60%

(B) Scores for Ensemble Results

Figure 5. Spectra of EDJMs for ensemble of networks. (A) shows
the spectra of 3 different feed-forward networks and their ensem-
ble on CIFAR-10. (B) Scores for spectra plotted in (A).

Figure 5 shows the normalized singular values of the EDJM
for three DNNs trained on CIFAR-10, and for an ensemble
of those DNNs. As shown before, deeper DNNs are more
accurate: the 4-DNN has 56.34% accuracy, the 3-DNN has
56.05%, and the 2-DNN has only 54.23%. Also, the nor-
malized singular value scores correlate with the accuracy
of the individual models: the 4-DNN has the highest score
and the 2-DNN the lowest score.

But what about the ensemble? As expected it has higher
accuracy than the individual models (57.60%), but its nor-
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MNIST
Model score / acc
2 layer 5.49 / 98.59%

2 layer dropout 7.15 / 98.74%
3 layer 7.55 / 98.62%

3 layer dropout 8.19 / 98.73%

(A) MNIST Dropout 2 * 3k Feed-forward Net (B) MNIST Dropout 3 * 2k Feed-forward Net (C) MNIST Scores for Dropout v.s. Non-dropout

CIFAR-10
Model score / acc
2 layer 13.94 / 54.23%

2 layer dropout 16.33 / 57.78%
3 layer 16.58 / 56.06%

3 layer dropout 17.50 / 57.88%

(D) CIFAR-10 Dropout 2 * 6k Feed-forward Net (E) CIFAR-10 Dropout 3 * 4k Feed-forward Net (F) CIFAR-10 Scores for Dropout v.s. Non-dropout

Figure 4. Effects of dropout on the spectra of EDJMs. (A) and (B) shows the spectra of EDJMs for models of two network structures
feed-forward 2 * 3k and 3 * 2k respectively on MNIST. (C) and (D) shows the spectra of EDJMs for models of two network structures
feed-forward 2 * 6k and 3 * 4k respectively on CIFAR-10. (E) Table of scores for the spectra plotted in (A), (B), (C) and (D).

malized score is less than the score of even the 2-DNN.
This is exactly what we should see if the normalized singu-
lar value score is a measure of the relative complexity of the
learned functions. Averaging ensembles increase accuracy
by reducing variance — an ensemble is lower complexity
than the individual models contained in it. Averaging sup-
presses the parts of the learned functions where the models
disagree, while emphasizing the regions where the models
agree. The net result is that the strongest singular values
in the ensemble increase relative to the individual models,
while the weaker singular values decrease, both of which
lower the score. This result for different model types such
as 2-DNNs, 3-DNNs, 4-DNNs and an ensemble of these
DNNs provides evidence that the EDJM can be used as an
architecture-independent measure of the relative complex-
ity of learned functions.

5. Boosting Performance with EDJMs
All the results shown above always find that the better per-
forming models tend to have higher normalized singular
values on the major components of EDJMs. To further in-
vestigate this and take advantage of the predictive proper-
ties of the EDJM for the success in neural network training,
we introduce a regularizer on the singular values of ED-
JMs. We wish to encourage the major singular values of
the EDJM to be high relative to the largest singular value,
and this can be done by utilizing the following term:

r(X,λ) = −λ
dout−1∑
j=0

∑
σ∈Sθ(X,j)

log σ, (13)

where λ is a hyper-parameter for the regularization term.

Recall that Sθ(X, j) denotes all the singular for EDJM con-
ditioned on data input X and jth output. The proposed
regularizer is the sum of the log of the singular values of
EDJM, which enforces the singular values to be all high
due to the diminishing return property of the log function.

While r(X,λ) is differentiable, the computational cost is
extremely expensive for training neural networks. This is
because: (1) X can be as large as the training set to get an
accurate estimate of the singular values; (2) even for ap-
proximation, where X is as small as a mini-batch, the extra
cost to run singular value decomposition (required to cal-
culate the gradients) of EDJMs every mini-batch is appre-
ciable; and (3) unlike standard back-propagation, the gra-
dient with respect to a certain weight matrix depends on all
weight matrices before and after the layer of interest.

To utilize our observations about the spectrum of EDJMs
in a more tractable manner, we instead place a regular-
ization term on the singular values of each of the layer
weights: rlayer(Wl, λ) = −λ

∑
σ∈Slayer(Wl)

log σ, where
Slayer(Wl) denotes the singular values of Wl.

As observed in Section 4.4, dropout effectively boosts
the performance as well as increasing the normalized
singular values of the major components of EDJMs by
modifying the output of every layer. Accordingly, we
expect that putting rlayer(Wl, λ) on the layer weights will
affect singular values of EDJMs. Suppose we consider
the ReLU function as a stochastic selector on the rows of
the weight matrix, by keeping certain rows while “wiping
out” the others by setting them to be zero. If the rows of
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MNIST CIFAR-10
Model score / acc score / acc

Feed-for. 7.00 / 98.58% 16.58 / 56.06%
Dropout 7.51 / 98.78% 17.50 / 57.88%

Spec. Reg. 8.99 / 98.76% 26.44 / 57.28%

(A) MNIST Spec. Regularization (B) CIFAR-10 Spec. Regularization (C) Scores for Spec. Regularization

Figure 6. The effect of layer weight spectrum regularizer on spectra of EDJMs. (A) Spectra of baseline feed-forward network, dropout
network and spectrum regularized network with same network structure (feed-forward 2 * 1k) on MNIST. (B) Spectra of baseline feed-
forward network, dropout network and spectrum regularized network with same network structure (feed-forward 3 * 4k) on CIFAR-10.
(C) Table of scores for the curved plotted in (A) and (B).

the weight matrix are already quite dependent, or there is
only one dominating singular value for the weight matrix,
two subsets of the rows selected by ReLU also tend to
be dependent on each other. Conversely, two subsets
of independent rows also tend to be independent. For
a one hidden layer network, the independence among
the modified weight matrices is a good indicator to the
independence of rows of EDJMs, which is a sign of high
normalized singular values of major components. Such
intuition can be carried over to deeper networks as well, as
we show in our empirical results. Though such approach
is an approximation and not mathematically related to
r(X,λ), we will show that rlayer(Wl, λ) can be easily
implemented and works well in practice

To incorporate rlayer(Wl, λ) into fully-connected layers,
we introduce SVD layers. For input hl−1, instead of
a single matrix multiplication Wlhl−1, the SVD layer
consists of a series of 3 matrices and thus we have
Uldiag(Sl)Vlhl−1, where Uldiag(Sl)Vl = SVD(Wl), so
that Ul and Vl are both orthonormal, Sl contains the sin-
gular values of Wl, and diag(∗) represents the diagonal
matrix with the input vector on the diagonal. In terms of
network structure, replacing the ordinary fully-connected
layer with dimensions |hl|× |hl−1|, the SVD layer consists
of 3 sub-layers: 1) U layer: a fully connected layer with di-
mensions |hl| ×min(|hl|, |hl−1|); 2) S layer: a layer with
a weight vector of length min(|hl|, |hl−1|); 3) V layer: a
fully connected layer with dimensions min(|hl|, |hl−1|) ×
|hl−1|. Since we decompose one fully-connected layer into
three linear layers, the computational cost for training is
about 3 times more than ordinary. However, for inference,
we can merge the three linear matrices back together, and
there is no extra cost. As the S layer corresponds to the sin-
gular values of Wl, we can regularize S layer directly and
easily: rlayer(Wl = Uldiag(Sl)Vl, λ) = −λ

∑
σ∈Sl log σ.

To enforce Ul and Vl to be ortho-normal during training,
we first update Ul, Sl and Vl to be U ′l , S

′
l , and V ′l ac-

cording to the gradients, and then set Uldiag(Sl)Vl =
SVD(U ′ldiag(S

′
l)V
′
l ). To save the extra computation intro-

duced by the singular value decomposition operation, such

Dataset Structure Feed-for. Dropout Spec. Reg.
MNIST 2 * 1k 98.48% 98.70% 98.66%
CIFAR-10 3 * 4k 56.93% 57.50% 57.43%
TIMIT 3 * 2k 77.77% 78.10% 78.78%
Table 1. Test set accuracy (phone accuracy for TIMIT) on
MNIST, CIFAR-10 and TIMIT datasets, comparing the baseline
feed-forward network with either adding dropout or the spectrum
regularization on singular values to the same network structure.

projection can be done less frequently. In practice, we do
this projection every epoch, which seems to work well.

Results shown in Table 1 shows improved performance
on test set with SVD layers on MNIST, CIFAR-10, and
TIMIT datasets. For MNIST and CIFAR-10 in particu-
lar, we analyze the spectrum of the EDJMs (see Figure 6),
and find higher normalized singular values for the major
components, which supports our intuition about putting
the log-loss spectrum regularization on layer weights. On
TIMIT, the spectrally regularized model also had higher ac-
curacy than that trained with dropout. Interestingly, even
though spectral regularization increased the EDJM score
more than dropout, the resulting models had lower accu-
racy than dropout on MNIST and CIFAR-10.

6. Discussion
In this work, we introduce the Extended Data Jacobian Ma-
trix, a novel tool to analyze deep neural networks of various
structures conditioned on certain set of data. Especially for
ReLU networks, we show an EDJM’s equivalence to the
underlying deep neural network. We find that the normal-
ized singular values of the major components of EDJMs
strongly correlate with the accuracy for networks of dif-
ferent structures. Based on such observation, we propose
a novel regularization method, which manages to improve
the network performance comparably to dropout. We be-
lieve the Extended Data Jacobian Matrix provides a tool for
measuring the relative complexity of the functions learned
by networks of different architecture on the manifold of in-
terest defined by the data sample. For future work, statistics
other than singular values, or the proposed score of EDJMs,
can be intriguing, and may lead to new theoretical results
about deep neural networks. We also plan to investigate
EDJMs applied to recurrent networks.
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