Statistical Modeling of Feedback Data
in an Automatic Tuning System

Richard Vuduc*

Abstract

Achieving peak performance from library subroutines
usually requires extensive, machine-dependent tuning
by hand. Automatic tuning systems have been devel-
oped in response which typically operate, at compile-
time, by (1) generating a large number of possible im-
plementations of a subroutine, and (2) selecting a fast
implementation by an exhaustive, empirical search.
In this paper, we show how statistical modeling of
the performance feedback data collected during the
search phase can be used in two novel and important
ways. First, we develop a heuristic for stopping an ex-
haustive compile-time search early if a near-optimal
implementation is found. Second, we show how to
construct run-time decision rules, based on run-time
inputs, for selecting from among a subset of the best
implementations. We apply our methods to actual
performance data collected by the PHiPAC tuning
system for matrix multiply on a variety of hardware
and compiler platforms.

1 Introduction

Standard library interfaces have enabled the develop-
ment of portable applications that can also achieve
portable performance, provided that optimized Ili-
braries are available and affordable on all platforms
of interest to users. Examples of such standards in
science and engineering applications include the Ba-
sic Linear Algebra Subroutines (BLAS) [12, 6, 5],
the Vector and Signal Image Processing Library API
[14], and the Message Passing Interface (MPI) for
distributed parallel communications.

However, both construction and machine-specific
hand-tuning of these libraries can be tedious and
time-consuming tasks. Thus, several recent research
efforts are automating the process using the following

*CS Division, U.C. Berkeley, Berkeley, CA 94720 USA,
richie@cs.berkeley.edu

fDepartment of Electrical Engineering, Univ. of Washing-
ton, Seattle, WA 98195 USA, bilmesQee.washington.edu

iDepartment of Mathematics and Department of EECS,
CS Division, U.C. Berkeley, Berkeley, CA 94720 USA,

demmel@cs.berkeley.edu

Jeff Bilmes'

James Demmel*

two-step method. First, rather than code particular
routines by hand, these systems contain parameter-
ized code generators that encapsulate possible tuning
strategies. Second, the systems tune for a particu-
lar hardware platform by searching, i.e., varying the
generators’ parameters, benchmarking the resulting
routines, and selecting the fastest implementation.’

In this paper, we focus on the possible uses of feed-
back data (i.e., benchmark results) during the search
task. Specifically, we first justify the need for exhaus-
tive searches in Section 2, using actual data collected
from an automatic tuning system. However, users of
such systems cannot always afford to perform these
searches. Therefore, we discuss a statistical model
of the feedback data that allows users to stop the
search early based on meaningful information about
the search’s progress in Section 3. Of course, a single
implementation is not necessarily the fastest possible
for all possible inputs. Thus, we discuss additional
feedback modeling techniques in Section 4 that allow
us to select at run-time an implementation believed
to perform best on a particular input.

We apply these techniques to data collected from
the PHIiPAC system for matrix multiply [1, 2].
PHiPAC was the first system to propose the “gen-
erate and search” methodology. Its code generator
produces matrix multiply implementations with var-
ious loop unrolling depths, varying register and L1-
and L2-cache tile sizes [13], different software pipelin-
ing strategies, among other options. The output of
the generator is C code, both to make the system
portable and to allow the compiler to perform the
final register allocation and instruction scheduling.
The search phase benchmarks combinations of these
generator options to select the best implementation.

There have been a number of other similar and
important tuning systems. These include FFTW for
discrete Fourier transforms [7], ATLAS [18] for the
BLAS, Sparsity [9] for sparse matrix-vector multi-
ply, and SPIRAL [8, 15] for signal and image pro-
cessing. Vadhiyar, et al. [16], explore automati-
cally tuning MPI collective operations. These sys-

IThe performance of routines targeted by this approach are
assumed to be of paramount importance, and the search pro-
cess need only be performed once for a particular platform.

tems employ a variety of sophisticated code genera-
tors that use both the mathematical structure of the
problems they solve and the characteristics of the un-
derlying machine to generate high performance code.
All match hand-tuned vendor libraries, when avail-
able, on a wide variety of platforms. Nevertheless,
these systems also face the common problem of how
to reduce the lengthy search process. Each uses prop-
erties specific to their code generators to prune the
search spaces. While this will always be a necessary
and effective approach in practice, in this paper we
consider complementary techniques for pruning the
search spaces independently of the code generator.

The search task deserves particular attention not
only because of its central role in specialized tun-
ing systems, but also because of its potential utility
in compilers. Researchers in the Espirit OCEANS
compiler project [11] are integrating such an empiri-
cal search procedure into a general purpose compiler.
Their techniques for searching the space differ from
ours in that we attempt to model statistically the
search space itself, in order to provide users with a
more meaningful early stopping criterion.

As far as we know, the methods for run-time se-
lection that we discuss in Section 4, which are based
on using feedback data in a statistical classification
setting, have not been discussed previously.

2 The Case for Searching

In this section, we present data to motivate the need
for search methods in automated tuning systems, us-
ing PHiPAC as a case study. We begin with an
overview of PHiPAC, and then discuss data collected
with the system to show the difficulty and necessity
of searching,.

PHiPAC searches a combinatorially large space de-
fined by possible optimizations in building its imple-
mentation. Among the most important optimizations
are (1) register, L1, and L2 cache tile sizes, where
non-square values are allowed, (2) loop unrolling, and
(3) a choice of six software pipelining strategies. To
limit search time, machine parameters, such as the
number of registers available and cache sizes, are used
to limit tile sizes. In addition, the search first finds
the best register tile size, then uses that to find an
L1 tile size, and similarly with L2, etc. Still, searches
generally can take hours to weeks depending on the
user-selectable thoroughness of the search.

Figure 1 shows the performance on two platforms
of PHiPAC-generated matrix multiply routines com-
pared to hand-tuned vendor libraries and a “naive” C
implementation (3-nested loops) on a square matrix
multiply benchmark. PHiPAC routines compare fa-

N x N Matrix Multiply [Ultra-1/170]
300 — T T T

Performance (Mflop/s)

I I I I I
0 100 200 300 400 500 600 700 800
N

N x N Matrix Multiply [Pentium—iI 300 MHz]
250 : T

intel Math Kernel Library 2.1

200~

PHIPAC

150

ot
S
N
\\
50 142 4
f
/ v <

J \/ T = _ Naive C (gcc)

Performance (Mflop/s)

I I I I I I I
0 100 200 300 400 500 600 700 800
N

Figure 1: Performance (Mflop/s) on a square matrix
multiply benchmark for the Sun Ultra 1/170 worksta-
tion (top) and a 300 MHz Pentium-II platform (bot-
tom). The theoretical peaks are 333 Mflop/s and 300
Mflop/s, respectively.

vorably with the vendor routines, and are much faster
than the naive versions which were compiled with
full compiler optimizations enabled. Thus, although
the PHiPAC generator optimizations are available in
modern compilers, there is still a significant benefit
to coding them explicitly.?

In addition, exhaustive searches are often neces-
sary to find the very best implementations, although
a partial search can find near-optimal implementa-
tions. Consider the case in which we fix a particular
software pipelining strategy and explore the space of
possible register tile sizes on six different platforms.
This space is three-dimensional and we index it by

2Moreover, searches conducted on a number of platforms
selected widely varying and often unanticipated combinations
of generator options.

Cumulative Distribution of Performance over Implementations
10° sy
Sy

S
++++++++
=

PN
o
T

H
O\
T

— Sun Ultra-1/170
—G- Pentium 11-300
PowerPC 604e
—— 1BM RS/6000 590
MIPS R10k/175 '

fraction of implementations

—-- Cray T3E Node !
107k !
]
t

i i i i i i i i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
fraction of machine peak speed

Figure 2: The fraction of register-tiled implementa-
tions (y-axis) attaining at least a given level of peak
machine speed (x-axis) on six different machine plat-
forms. Note the log scale on the y-axis.

integer triplets (mo, ko,no).> Using heuristics based
on the maximum number of registers available, this
space was pruned to contain between 500 and 2500
reasonable implementations on each platform.

Figure 2 shows what fraction of implementations
(y-axis) achieved what fraction of machine peak (x-
axis). On the IBM RS/6000-590, a machine with gen-
erous memory bandwidth, 5% of the implementations
achieved at least 90% of the machine peak. By con-
trast, only 1.7% on a uniprocessor Cray T3E node,
4% on a 300 MHz Pentium-II, and 6.5% on a Sun Ul-
tral/170 achieved more than 60% of machine peak.
And on a majority of the platforms, fewer than 1% of
implemenations were within 5% of the best; 80% on
the Cray T3E ran at less than 15% of machine peak.
Two important ideas emerge: (1) different machines
can display widely different characteristics, making
generalization of search properties across them diffi-
cult, and (2) finding the very best implementations
is akin to finding a “needle in a haystack.”

The difficulty in finding the best implementation
appears again in Figure 3. The plot shows a 2-D slice
(ko = 1) of the 3-D tile space described above on the
Ultra. The plot is color coded from black=50 Mflop/s
to white=270 Mflop/s. The lone white square at
(mo = 2,ng = 8) was the fastest. The black region to
the upper-right was pruned (i.e., not searched) based
on the number of registers. We can see that perfor-
mance is not a smooth function of algorithmic de-
tails, making accurate sampling and interpolation of

3The specifics of why the space is three dimensional are, for
the moment, unimportant.

|

Figure 3: A 2-D slice of the 3-D register tile space on
the Sun Ultral/170 platform. The best implementa-
tion, shown in white at mg = 2,ng = 8, achieved 271
Mflop/s.

10 12 14 16

2 4 6 8

Mo

the space difficult. Like Figure 2, this motivates an
exhaustive search.

3 Early Stopping Criteria

Unfortunately, exhaustive searches can be demand-
ing, requiring dedicated machine time for extended
periods. Thus, tuning systems prune the search
spaces using heuristics based on properties of the
code generator, machine, or routine being generated.
We consider a complementary method for stopping a
search early based soley on feedback data collected
during the search. This provides a generic way to re-
duce search times when dedicated resources are lim-
ited or a near-optimal implementation is acceptable.
Below, we describe one model and then demonstrate
it on PHiPAC data.

3.1 A formal model

The search proceeds by first generating an implemen-
tation at random, then measuring its performance,
and repeating these steps until the search space is ex-
hausted. However, we would like to stop the search
early if we find a near-optimal solution. The follow-
ing formal model of the search captures this idea.
Suppose there are N possible implementations.
When we generate implementation i, we measure its
performance z;. Assume that each x; is normalized
to lie between 0 (slowest) and 1 (fastest). Define the
space of implementations as S = {z1,...,zny}. Let
X be a random variable corresponding to the value of

an element drawn uniformly at random from S, and
let n(x) be the number of elements of S less than or
equal to . Then X has a cumulative distribution
function (cdf) F(z) = Pr[X < z] = n(x)/N.

At time ¢, where ¢ is between 1 and N inclusive,
suppose that we generate an implementation at ran-
dom without replacement. Let X; be a random vari-
able corresponding to the observed performance. If
we let M; be the maximum observed performance at
time ¢, i.e., M; = max;<;<; X;, then we can ask about
the chance that M; is less than some threshold:

PriMy<1—¢]<a, (1)

where € is the proximity to the best performance,

and « is an upper-bound on the probability that the

observed maximum at time ¢ is below 1 —e. A user

could specify € and « in hopes of ending a search

at a time ¢ smaller than N while still having some

assurance of the quality of the implementation found.
To compute equation (1), observe that

PriMy<z] = PriX;<zXe<uxz,...,X; <z
= H pr(m)' (2)

1<r<t
where p,(z) = Pr(X, < z[X; < ,...,X, 1 < al.
We can compute p, (z) explicitly as follows, assuming
no replacement:

pr(z) = {

Note that since n(xz) = N - F(x), we cannot know its

true value since we don’t know the true distribution

F(x). However, we can use the ¢ observed samples to

approximate F(x). One possible approximation is to

use the empirical cdf (ecdf) based on the t samples:
: ()

Fifa) = ™4 (@)

where 7i;(x) is the number of observed samples less
than or equal to . We rescale the samples so that
the maximum is one, since we do not know the true
maximum.? Both this rescaling policy and, more gen-
erally, alternative forms of equation (4) are opportu-
nities for further experimentation.

In summary, the procedure is as folows. A user
or library designer specifies the search tolerance pa-
rameters € and a. Then at each time t, the auto-
mated search system, using all observed samples so
far, builds the ecdf in equation (4) to estimate equa-
tion (2). The search ends when the condition in equa-
tion (1) is satisfied.

4 As we will show in the next section, this was a reasonable
approximation on actual data. We are currently developing
bounds on the quality of this approximation under rescaling,

which we expect will be close to the known bounds on ecdf
approximation developed by Kolmogorov and Smirnov [3].

0 n(z) <r

MO e) >

(3)

3.2 Results with PHiPAC data

We apply the above model to the register tile space
data on the platforms shown in Figure 2. Specifically,
on each platform we simulate 200 searches following
the model above, using the benchmark data collected
during actual runs. We measure, as a function of the
two tolerance values € and «, statistics on (1) the
stopping time, and (2) proximity of the performance
found to the best.

Figures 4 and 5 show the results on the Pentium
and Cray T3E platforms, respectively. The left plots
show the average stopping time plus the standard de-
viation as a function of € and «; this gives a slightly
pessimistic bound on the average value. The right
plots show the average proximity of the implementa-
tion found to the best one (again, plus the standard
deviation), as a fraction.

On the Pentium (Figure 4), setting ¢ = .05 and
a = .1 (ie., “find an implementation within 5% of
the best with probability of error .1”), we see that
the search ends after sampling less than a third of
the full space (left plot), having found an implemen-
tation within about 6.5% of the best (right plot). By
contrast, on the Cray T3E (Figure 5) where the best
is difficult to find, the same tolerance values produce
an implementation within about 8% of the best while
still requiring exploration of 80% of the search space.
Thus, the model adapts to the characteristics of the
implementations and the underlying machine.

There are many other possible combinatorial
search algorithms. In prior work on PHIiPAC [1],
we experimented with search methods including ran-
dom, ordered, best-first, simulated annealing. The
OCEANS compiler project [11] has also reported on
a quantitative comparison of these methods as well
as others. In both projects, the random search was
found to be comparable and easier to implement than
the others. This is not surprising for the highly non-
smooth spaces, littered with local minima, that we
observe with PHiPAC data. The technique we are
presently proposing adds user-interpretable bounds
to the simple random method. This allows for an in-
teresting possibility: if we allow the user to specify a
maximum search time (e.g., “stop searching after 3
hours”), the bounds could be computed and reported
to the user.

4 Run-time Selection Rules

The previous sections assume that a single, optimal
implementation can be found. For some applications,
however, several implementations may be “optimal”
depending on the input parameters. Thus, we may

Stopping time [Intel Pentium~-I1 300 MHz]
T T T

Proximity to best [Intel Pentium~-I1 300 MHz]
T T T T

T ~ T T T T T T 0.25
0.9 01 . 1 0.9 1
X 0.9 °
©
0.8F : P 08l J
<N 08 2 02
o *®
0.7F N 4 J
07 07
06] 06 06 1 015
o
° %
305F 4 0.5 205r0 S q
=}
3
p °
0.4 R 0.4 0.4l % 01
03 1 03 03
: } 0,
02 0.05
=) 4 Q 4
025 - 0.2F q 05
; 0 °
22 0.1 oo °
- =) > 2,
0.1} — 0.1 ,\ Qo% o ‘\\ %]
% ‘ ‘ 0 AN ‘ ‘ ‘ ‘ ‘ 0
001 002 003 004 005 006 007 008 009 0.1 001 002 003 004 005 006 007 008 009 0.1

3

€

Figure 4: Average stopping time (left), as a fraction of the total search space, and proximity to the best
performance (right), as the difference between normalized performance scores, on the 300 MHz Pentium-IT
class workstation as functions of the tolerance parameters e (x-axis) and « (y-axis). Note that the values
shown are mean plus standard deviation, to give an approximate upper-bound on the average case.

Stopping time [DEC Alpha 21164/450 MHz]

1 Proximity to best [DEC Alpha 21164/450 MHz]
T T 2 T T 0.25
~ ~ T T T T T T T T
09k % 9> : 0.9 \ [1
1) - "3
R4 0.9
0.8 1
=] 0.8 B 1
K 0.8 Q.
o ° > 0.2
25 ~
0.7f R 4 1
\ 07 0.7 o ~]
° o
2, »
068 7 0.6 06 o q 015
\ 2 el
v
305 o T 0.5 = 4
g > 305 ©
o 3
04l i 0.4 0l 2, | 01
%
03[b 03 0.3
: o 31 ° 4
g Q
\ 7 Zs
0.2 té 0.05
02t % 05 1 02l =) 2 i
0.1 \
01f ’ o g 01l . 3
i i id i h i 7 0 i n i 01 i o5 0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
€

Figure 5:

€

Same as Figure 4 for a uniprocessor Cray T3E node.

wish to build decision rules to select an appropriate
implementation based on the run-time inputs.®

In this section, we describe a possible general
framework for addressing this problem based on the
modeling of feedback data, and highlight the key is-
sues involved. We then discuss three methods for
solving the problem in the context of the framework.
We then present some preliminary results on PHiPAC
data to illustrate how these issues interact.

4.1 A formal framework

Formally, we want to solve the following problem.
Given:

e A set of m “good” implementations of an algo-
rithm, A = {a1,...,an} which all give the same
output when presented with the same input.

e A set of samples Sy = {s1,52,...,S,} from the
space S of all possible inputs (i.e., Sp C S). We
will treat each s; as a d-dimensional real vector,
where each element is some input parameter.

e The execution time T'(a, s) of algorithm @ on in-
put s, where a € A and s € S.

Find:

e A decision function f(s) that maps an input to
the best implementation in A, i.e., f: 5 — A.

The idea is to construct f(s) using the performance
data of the good implementations A on a sample of
the inputs Syp. We will refer to Sy as the training
set. A geometric interpretation is that we would like
to partition the input space by implementation, as
illustrated in Figure 6 (left), using the performance
on samples of the space. This would occur at compile
(or “build”) time. At run-time, the user calls a single
routine which, when given an input s, evaluates f(s)
to select and execute an implementation.

There are a number of important issues. One is
the cost and complexity of building f. Another is
the cost of evaluating f(s); this should be a fraction
of the cost of executing the best implementation.

A third issue is how to compare the prediction ac-
curacy of different decision functions. We will con-
sider two metrics. The first is the average misclassi-
fication rate, Apiss:

Amiss == Z 5 (f(s)v arglninaeAT(a‘v 8)) (5)

1
S
57 2

where §(a,a’) is 1 if a = a/, and 0 otherwise. The
sum is over some subset S’ of the input space. We

5This is similar in spirit to run-time specialization.

always choose the test set S’ to exclude the training
data Sy, that is, S” C (S — Sp).

However, if the performance difference between two
implementations is small, a misprediction may still be
acceptable. Therefore we will also use the following
evaluation metric which is the average slow-down of
the selected implementation relative to the best, Agpy:

1 T
DI Frwrs . B ST
oy’ acA (av 5)

There are a number of additional issues that are
worth mentioning but which we will not directly ad-
dress in this paper. The first is how to choose A and
So- The selection of implementations must be ad-
dressed by the library builder and in an automatic
tuning system will be largely a function of the code
generator. Sy could be chosen randomly from S, or
specified by the library builder according to some
workload of interest. In addition, the accuracy of the
prediction model f will depend on the size of Sy. We
will assume that both A and Sy are given. Another
issue is the cost of evaluating T'(a,s). Here, we im-
plicitly assume that this is feasible to do repeatedly,
but of course this will depend upon the application.

As a concrete example, consider the matrix multi-
ply operation C' = C'+ AB, where A, B, and C are
dense matrices of size M x K, K x N, and M x N, re-
spectively, as shown in Figure 6 (right). In PHiPAC,
it is possible to generate different implementations
tuned on different matrix workloads. For instance, we
could have three implementations, tuned for matrix
sizes that fit approximately within L1 cache, those
that fit within L2 cache, and all larger sizes. The in-
puts to the implementation are M, K, and N, making
the input space S three dimensional. We will refer to
this example in the following sections.

4.2 A cost minimization method

Suppose that we associate with each implementa-
tion a a weight function we,(s), parameterized by
0., which returns a value between 0 and 1 for some
input value s. Let our decision function select the
algorithm with the highest weight on input s:

(7)

One intuitive approach is to compute the weights so
as to minimize the average execution time over the
training set, expressed as the following cost function:

a) =30 S wo () Tla,s). (8)

a€A s€Sy

f(s) = argmax,e 4 {wo, ()} -

C(ba,, ...

Our goal is to minimize equation (8).

a3 fastest

Figure 6: (Left) A hypothetical two-dimensional input space, partitioned by the algorithm. (Right) A matrix
multiply operation C' = C' + AB is specified by three dimensions, M, K, and N.

Of the many possible choices for wy,, we choose
the softmax function [10],

02 8+0a,0

0T s+aar
20, € °

)

wy, (s) =

where 0, has the same dimensions as s, and 6, is
an additional parameter to estimate. Note that the
weights vary smoothly with s, and that for fixed s
the sum of the weights over all implementations is
1. Since the derivatives of the weights are easy to
compute, we can estimate 6, and 6,0 by minimizing
equation (8) numerically using Newton’s method. A
nice property of the weight function is that it makes f
cheap to compute at run-time. Specifically, we only
need to evaluate the argument of the exponent of
the numerator in equation (9), which is linear in the
dimension d of the input.

One drawback to this approach is that Newton’s
method can be sensitive to the initial guess making
multiple training runs necessary. Another disadvan-
tage is that the linear form 62's+ 6, o makes this for-
mulation equivalent to asking for hyperplane bound-
aries to partition the space. However, hyperplanes
may not be a good way to separate the input space
as we shall see below. Other forms are certainly pos-
sible, but positing a form a priori can be difficult and
could also complicate the numerical optimization.

4.3 A regression model

Another natural idea is to postulate a parametric
model for the running time of each implementation.
Then at run-time, we can choose the fastest imple-
mentation based on the execution time predicted by
the models. This approach, which we describe below,
was originally proposed by Brewer [4].6

6A similar technique is also used in SPIRAL [15] to prune
search spaces of FFT implementations.

Consider the case of conventional matrix multiply
on square matrices of size N x N. Since the time
complexity is O(N?), we might postulate the running
time of implementation a to be of the form

To(N) = BsN? + 2N? + BN + fo.

Given sample running times on some inputs Sy, we
can use standard regression techniques (i.e., least-
squares fitting) to determine the i coefficients. The
decision function is just

(10)

(11)

An advantage of this approach is that the models,
and thus the accuracy of prediction as well as the
cost of making a prediction, can be as simple or as
complicated as desired. For matrices of more gen-
eral sizes, (M, K, N), we might hypothesize a model
To(M, K, N) with linear coefficients and the terms
MKN, MK, KN, MN, M, K, N, and 1. We can
even eliminate terms whose coefficients are “small”
to reduce the run-time prediction costs. Another
advantage is that training the model is likely to be
faster than the cost-minimization method, depend-
ing on the model. Furthermore, no assumptions are
being made about the geometry of the input space,
as with the cost-minimization technique. However, a
difficult disadvantage is that it may not be easy or
obvious to postulate a run-time model with enough
terms to capture the potentially complicated behav-
ior of implementation running time.

f(s) = argmin, ¢ ,T,(s)

4.4 Support vector method

Another approach is to view the problem as a statisti-
cal classification task. One sophisticated and success-
ful classification algorithm is known as the support
vector (SV) method [17].

Suppose that there are only two implementations
and that we assign each point s; in the training set a

class label y; € {+1,—1}. The SV method constructs
a classifier L(s) € R whose sign is the predicted class
label for input s. The specific form of the classifier is

L(s)=—=b+ Y_ BiiK(si,s). (12)

5;€50

The SV method determines the coefficients {/;} and
b to maximize the minimum distance between the two
classes” using the labeled training data. This requires
solving a quadratic programming problem. The func-
tion K (s;,s) is any symmetric positive definite func-
tion, and is related to the shape of the boundary sep-
arating the classes [17].

Note that the classifier makes explicit use of the
training data. This means that if there are many
training points, then evaluating the predictor at run-
time will be expensive. It turns out that for most
applications, many of the §; coeffients are zero which
helps reduce the prediction cost.

For m > 2 implementations, we can separately
build classifiers Lg, (), .., Lq,, (s) where Ly(s) dis-
tinguishes between class a and all other classes. Each
of these binary classifiers has its own set of {3;}, b pa-
rameters. The decision function becomes

f(s) = argmax,c 4 Lq(s). (13)

We include the SV method in our discussion be-
cause it is regarded as one of the most accurate pre-
diction methods for a large class of practical prob-
lems. Thus, it provides a useful practical upper-
bound on prediction accuracy. However, the pri-
mary disadvantages of this method are its high train-
ing costs (proportional to |Sp|?) and prediction costs
(proportional to |Sp| - d), which may make it imprac-
tical for some applications.

4.5 Results with PHiPAC data

We offer a brief comparison of the three methods on
the matrix multiply example described at the end of
Section 4.1, which consists of three implementations
tuned for different levels of cache. Recall that the
input space is defined by all positive integer values
of (M, K, N). We consider a 2-D cross-section of this
3-D space in which M = N and 1 < M, K, N < 800.
We train each of the three methods on a subset of
size 1000 points, and test the methods on a separate
subset of size 500 points. We use the same training
and test sets for each method. An example test set
is shown in Figure 7 (left), color-coded by the fastest
implementation (i.e., “truth” values). We can see
that the space is divided in a complicated, non-linear

"Formally, this is the optimal margin criterion [17].

Best Worst
Method Amiss | Derr 5% 20% | 50%
Regression | 34.5% | 2.6% | 90.7% | 1.2% | 0.4%
Cost-Min 31.6% | 2.2% | 94.5% | 2.8% | 1.2%
SVM 12.0% | 1.5% | 99.0% | 0.4% | 0%

Table 1: Comparison of the three prediction meth-
ods on matrix multiply. “Best 5%” is the fraction
of predicted implementations whose execution times
were within 5% of the best possible. “Worst 20%”
and “50%” are the fraction less than 20% and 50%
of optimal, respectively.

fashion, although distinct regions are visible. Results
are reported for the Sun Ultra-1/170.

The predictions of the three methods on a sample
test set are shown in Figures 7 (right) and 8. Quali-
tatively, we see that the cost-based method with its
hyperplane boundaries is a poor fit to the data. The
regression method captures the boundaries roughly
but does not correctly model one of the implementa-
tions (upper-left of figure). The SV method appears
to produce the best, though not perfect, predictions.

Table 1 compares the accuracy of the three meth-
ods by the two metrics A5 and Ag,r; in addition
we report the fraction of test points predicted within
5% of the best possible, and the fraction predicted
that were 20% and 50% below optimal. These values
are averaged over ten training and test sets. The val-
ues for A,iss confirm the qualitative results shown in
the figures. However, the methods are largely compa-
rable by the A, metric, showing that a high misclas-
sification rate did not necessarily lead to poor perfor-
mance. Note that the worst 20% and 50% numbers
show that the regression method made slightly worse
mispredictions on average than the cost-minimization
method. In addition, both the regression and cost-
minimization methods lead to reasonably fast predic-
tors. Prediction times were roughly equivalent to the
execution time of a 3x3 matrix multiply. By contrast,
the prediction cost of the SV method is about a 32x32
matrix multiply, which may make its use impractical
when small sizes occur frequently.®

However, this analysis is not intended to be defini-
tive. For instance, we cannot fairly report on specific
training costs due to differences in the implementa-
tions in our experimental setting. Also, matrix multi-
ply is only one possible application; it does not stress
all of the strengths and weaknesses of the three meth-
ods. Instead, our aim is simply to present the general
framework and illustrate the issues on actual data.
Moreover, there are many other possible models; our

8How to select and even combine run-time predictors auto-
matically is another interesting area for exploration.

Truth map (500 points) Optimization-based classifier on matmul data

¢ T T T ¢ s s T T T s ¢
ox o o o oo oo o ooo 00 o o o oo oo o o0o0o0
o o o oo o o o o o oo o o
¥ © o0 o0 o0 o o o o o o o o0 o o0 o o o o o o o
700 coo o« o o o 4 7001 coo o o o o 4
% #x 00 O 00 oo oo oo o o 0 00 00 o 0o o o oo oo o o
o o o o oo oo oo o o o o oo oooo
* o o o o o o o o o o o o o o o
60 O O 00 00 o o oo o o o g 600 0 O 00 00 o o oo o o o g
o o o oo o o o o o oo o o
* 00 00 O o o o ooo o 00000 o o o o0o0o0
o o oo o o o o o oo o o o
500 O##x O O O O o o o o oA 500 *#00 O O O O o oo o0 o
v |0 o o o o o o |x o** o o o o o
S |oox x ox o o oo coo o000 S |<* % o0 o o oo coo o000
z o o xo o o o z * % 00 o o o
E 400 *% o o o o o o 4 E 4001 *% % 0 © o o o 4
S lo*x xx o= o o T o o
g |o = * oo oo o o oo o o o g o * ** *x 0 o o oo o oo
£ o *00 * o o o £ e * o o
3000 oo o o o o oo o Ao 3001 LS o o o oo o Ao
ke + % 0 o o - o o
** ¥ 0 * oo oo o o o o ¥ oK ¥ ¥ ¥ 00 o o o
O O * wk ok A% * o oo oo o oo B T * oo oo o oo
L A 0 o °o, 8 0o ° 87 W0 o w ae ok, * o, 8 oo ° 8
8, rp e 1t 8 o o 8 8 . £t oy o 0o®2 88 °
. 8w it %&i 1y o © go of° PR R 3 %«i £y o go o
0 P * * 4 © o ° 8 % PR * * . o ° 8
09 %% ? P « 0o o 8 xx e % + T3 £ + oo 8o 8
100 ®xog x 07 L0, y 1 . * N o~ T I ¥ gt og oo o4
o P SEg th toro tosl I g tEle e, Tl cglo @
% o of 50, 8 8 8o 8 0ogg o4 % N £ . % ¥ ¥« % og § o4
oo BB o o ° ° 00 0% 30 o x S < X [*x +x° 30 o
) 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
matrix dimensions M,N (equal) matrix dimensions M,N (equal)

Figure 7: (Left) A “truth map” showing the regions in which particular implementations are fastest. A
500-point sample of a 2-D slice of the input space is shown. Red *’s correspond to an implementation with
only register tiling, green x’s have L1 cache tiling, and blue o’s have L1 and L2 tiling. (Right) Prediction
results for the cost-based method.

GLS prediction gaussian SVM muliclass classifie on matmul data
¥ T T T ¥ ¢ ? T T T ¢ <
xx o o o oo oo o ooo oo oo o oo oo o o0o0o
x o o oo o o * o o oo ° °
x xx 0 o0 0 o o o ° o o ¥ o© o o0 o0 o o o o o o
700~ ocoo o o o o 4 700 coo o o o o 4
x xx x0 © oo oo oo oo o o 0 00 0o o oo oo oo oo o o
o o o oo 0cooo o o o o oo ocooo
< o o o o o o o o o ° o o o o o
600 x x 00 oo o o oo o o o B 60~ © O 00 oo o o oo o o o B
o o o oo o o o o ° oo o o
x %0 00 O o ° o ooo % 00000 o o o o0o0o
o o oo o o o o oo ° ° o
500 xxxx o ©o ©o o o oo oo oA 50 #x%+ O O O O o oo oo oA
X xx o o o ° ° « o o o o o o
x xx % 00 O o oo 000 oo0o0 s lox * o0 o o oo coo o000
o o oo o o o a * O 00 o o o]
x 400 xx o o o o o o 4 £ 400 ¥ o0 o o o o 4
Xk ko oo o o 3 |0 x o+ oo o o
o * oo o0 o o o oo o oo g |o = * co oo o o oo o oo
° #4#0 0 o o o £ o %00 © ° o o
30010 oo o o ° ° oo o 300f0 oo o o o o oo o Ao
ook ¥+ o o o ok % o ° o
P xo o co oo ° o o . *x o oo oo o o o
% % ¥k ok ¥k O o oo oo o oo 0k ok ek E wk % o oo oo o oo
w0 arr ok m 500, . o °os 8 oo g g .87 w0 e x e x . o o, 8 co g ; 5 87
. 51989 8 ° °°5 ° I B 3 8 ° °% 5 °
L L + %80 o %o 8o _=° o R * s + %o go _°
* ° " °
100] *erg x 1 Fs ; 8 g 8o 3¢ oofo Bg o+ 100 %00 070® Fu * ; Py P ie oofBo 8g o4
o tr ° oo ox*x * o oo
* o FET R 102 + 8 g°8 38 8 x 0 00,%8." "¢ ¥ 3 g°8 8 g
e ox w3 4" + F o o8 o o i o °o§ O o ¥ ¥ * s + % o o
* T g B I T 1 i Fs 9 o9 g ©o, x ° 828 of o0, 8 8 50 8 o g § %o g
* * ok % ox * * x
<0 ‘oé 0" o | * * x | ; * oo ‘og 8 o ° 9 ° o L, %% 2° 7029 °
(] 100 200 300 400 500 600 700 800 o 100 200 300 00 500 600 700 800
MN matrix dimensions M.N (equal)

Figure 8: Prediction results (c.f. Figure 7)—regression method (left) and support-vector method (right).

examples offer a flavor for the role that statistical
modeling of feedback data can play.

5 Conclusions and Directions

While all of the existing automatic tuning systems
implicitly follow the two-step “generate-and-search”
methodology, one aim of this study is to draw atten-
tion to the process of searching as an interesting and
challenging problem in and of itself.

One of the challenges of the search problem is prun-
ing the enormous possible implementation spaces.
Even for a relatively simple but important operation
such as matrix multiply, the design spaces are expan-
sive. All of the existing tuning systems mentioned
have shown the effectiveness of pruning the search
spaces using problem-specific heuristics. Our black-
box pruning method for stopping the search process
early is another complementary technique. It has the
nice properties of (1) incorporating feedback informa-
tion in the form of benchmark data, and (2) provid-
ing users with a meaningful way (namely, via thresh-
olds) to control the search procedure. The idea of
empirical search to select optimizations has already
found its way into a research compilation system [11];
this draws attention to the utility and importance of
feedback-based search.

The other challenge is to find efficient ways to se-
lect implementations at run-time when several known
implementations are available. Our aim in this pa-
per has been to discuss a possible framework, us-
ing feedback-based sampling and classification, for
attacking this problem in the context of automatic
tuning systems. While we did not provide “the” so-
lution, we did give several examples of parameterized
black-box techniques. This brings together high per-
formance software engineering with statistical mod-
eling ideas. Other modeling techniques and software
applications remain to be explored.

References

[1] J. Bilmes, K. Asanovi¢, C. Chin, and J. Demmel. Op-
timizing matrix multiply using PHiPAC: a Portable,
High-Performance, ANSI C coding methodology. In
Proc. of the Int’l Conf. on Supercomputing, Vienna,
Austria, July 1997.

[2] J. Bilmes, K. Asanovi¢, J. Demmel, D. Lam, and
C. Chin. The PHiPAC v1.0 matrix-multiply distri-
bution. Technical Report UCB/CSD-98-1020, Uni-
versity of California, Berkeley, October 1998.

[3] Z. W. Birnbaum. Numerical tabulation of the dis-
tribution of Kolmogorov’s statistic for finite sample

size. Journal of the American Statistical Association,
47:425-441, September 1952.

[4] E. Brewer. High-level optimization via automated
statistical modeling. In Symposium on Parallel Algo-
rithms and Architectures, Santa Barbara, California,
July 1995.

[5] J. Dongarra, J. D. Croz, I. Duff, and S. Hammarling.
A set of level 3 basic linear algebra subprograms.
ACM Trans. Math. Soft., 16(1):1-17, March 1990.

[6] J. Dongarra, J. D. Croz, I. Duff, S. Hammarling,
and R. J. Hanson. An extended set of Fortran basic
linear algebra subroutines. ACM Trans. Math. Soft.,
14(1):1-17, March 1988.

[7] M. Frigo and S. Johnson. FFTW: An adaptive soft-
ware architecture for the FFT. In Proc. of the Int’l
Conf. on Acoustics, Speech, and Signal Processing,
May 1998.

[8] G. Haentjens. An investigation of recursive FFT
implementations. Master’s thesis, Carnegie Mellon
University, 2000.

[9] E.-J. Im and K. Yelick. Optimizing sparse matrix
vector multiplication on SMPs. In Proc. of the 9th
SIAM Conf. on Parallel Processing for Sci. Comp.,
March 1999.

M. I. Jordan. Why the logistic function? Technical
Report Report 9503, MIT, August 1995.

T. Kisuki, P. M. Knijnenburg, M. F. O’Boyle, and
H. Wijshoff. Iterative compilation in program op-
timization. In Proceedings of the 8th International
Workshop on Compilers for Parallel Computers,
pages 35-44, 2000.

C. Lawson, R. Hanson, D. Kincaid, and F. Krogh.
Basic linear algebra subprograms for Fortran usage.
ACM Trans. Math. Soft., 5:308-323, 1979.

E. E. Rothberg, M. S. Lam, and M. E. Wolf. The
cache performance and optimizations of blocked al-
gorithms. In ASPLOS, April 1991.

D. A. Schwartz, R. R. Judd, W. J. Harrod, and
D. P. Manley. VSIPL 1.0 API, March 2000.

www.vsipl.org.

[10]

1]

[12]

[13]

[14]

[15] B. Singer and M. Veloso. Learning to predict perfor-
mance from formula modeling and training data. In

Proc. of the 17th Int’l Conf. on Mach. Learn., 2000.

S. S. Vadhiyar, G. E. Fagg, and J. Dongarra. Auto-
matically tuned collective operations. In Proceedings
of Supercomputing 2000, November 2000.

V. N. Vapnik. Statistical Learning Theory. John
Wiley and Sons, Inc., 1998.

[16]

[17]

[18] C. Whaley and J. Dongarra. Automatically tuned

linear algebra software. In Proc. of Supercomp., 1998.

