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Abstract
In previous work, we proposed a new graph-based semi-
supervised learning (SSL) algorithm and showed that it outper-
forms other state-of-the-art SSL approaches for classifying doc-
uments and web-pages. Here we use a multi-threaded imple-
mentation in order to scale the algorithm to very large data sets.
We treat the phonetically annotated portion of the Switchboard
transcription project (STP) as labeled data and automatically
annotate (at the phonetic level) the Switchboard I (SWB) train-
ing set and show that our proposed approach outperforms state-
of-the-art SSL algorithms as well as a state-of-the-art strictly
supervised classifier. As a result, we have STP-style annota-
tions of the entire SWB-I training set which we refer to as semi-
supervised STP (S3TP).
Index Terms: semi-supervised learning, phone classification,
graph-based learning.

1. Introduction
A large number of standard learning algorithms, such as multi-
layer perceptrons (MLP), Gaussian mixture models (GMM),
support vector machines (SVM), and hidden Markov models
(HMM), assume the existence of labeled data where each in-
put is annotated with the desired output(s). In many practical
problems, such as speech recognition, annotating training data
is time-consuming, cumbersome and error-prone [1]. As a re-
sult, in the recent past there has been much interest in semi-
supervised learning (SSL) [2]. Here, one makes use of small
amounts of labeled data with relatively large amounts of unla-
beled data to train classifiers. As unlabeled data is obtained very
easily, SSL does not suffer from the same drawbacks as super-
vised learning. For a survey of SSL algorithms, see [3] (and the
references therein).

In transductive learning, one is only interested in classify-
ing a closed set of inputs [4]. In other words, in transductive
learning, the training set is treated as labeled data, the test set
as unlabeled data and goal is to infer the labels of the unlabeled
data – this is very similar to the goal of SSL, the difference being
that in transductive learning we are only interested in obtaining
a classification for the samples in the test set [2]. In practice
though, the above difference is often blurred as a transductive
learner can be utilized to classify any given input [3]. For the
purposes of completing a partially transcribed corpus, however,
transductive learning is precisely the problem we wish to solve.

There are a number of instances of the successful applica-
tion of SSL to speech recognition. For example, training an
HMM-based speech recognizer using the Baum-Welch algo-
rithm when intra-unit segmentations are not given is an instance
of SSL. Self-training [6] is another SSL algorithm that has been
successfully applied to a number of problems in speech and lan-
guage. There one trains a system using the labeled data which
is then used to annotate the unlabeled data. Subsets of the unla-

beled data that have been classified above some confidence are
then added to the training set (i.e., treated as being labeled) and
used to train a new model. The above is repeated until conver-
gence. Examples include [7, 8], where acoustic and language
models for broadcast news were trained in a semi-supervised
manner. In [7] the confidence measures were generated by com-
paring the recognizer output against the closed captions. In
problems related to conversational and/or spontaneous speech,
however, one does not usually have access to closed captions
or other sources of information from where accurate confidence
measures may be derived. In this paper, we explore an alterna-
tive set of models for semi-supervised learning where a graph is
used as a regularizer on both the labeled and unlabeled data to
train models.

In graph-based SSL, one assumes that the data (both labeled
and unlabeled) is embedded within a low-dimensional manifold
expressed by a graph. In other words, each data sample is rep-
resented by a vertex within a weighted graph with the weights
providing a measure of similarity between vertices. For a sur-
vey of current state-of-the-art graph-based SSL algorithms, see
section 9 in [3]. Graph-based SSL algorithms are discrimina-
tive, transductive and non-parametric. There are a number of
reasons why graph-based algorithms are well-suited for our pur-
poses here – (a) they have been shown to outperform other SSL
approaches (see chapter 19 in [2]), and more importantly (b) as
human speech is produced by the movement of a small (finite)
number of articulators, it has often been argued that speech can
be embedded within a low-dimensional manifold thereby mak-
ing it particularly suitable for graph-based SSL [9].

A majority of the current graph-based SSL algorithms have
a number of drawbacks: (a) they are based on minimizing
squared error, which is not suitable for classification prob-
lems [10, 11, 12]; and (b) they assume binary classification re-
quiring the use of computationally expensive extensions such
as one vs. rest for multi-class problems. To overcome the
above issues, in [13] we proposed a graph-based SSL algorithm
based on minimizing the Kullback-Leibler (KL) divergence be-
tween distributions that encode class membership probabili-
ties. Unlike squared loss, which is based on absolute error,
KL-Divergence is based on relative error. In addition KL-
Divergence is asymptotically consistent w.r.t. the underlying
distributions [12]. In [13], we showed that the above algorithm
generalizes in a straightforward manner to multi-class problems
and outperforms the state-of-the-art in the case of the semi-
supervised document and web-page classification tasks.

Yet another common criticism of graph-based SSL algo-
rithms (and SSL in general) is the lack of algorithms that scale
to very large data sets. Most of the results in SSL thus far have
been on relatively small-sized data sets. For example, the largest
graph-based SSL application to date had about 900,000 sam-
ples [14]. To give the reader an intuition of the scale of the
above data set, if we had a phone classification problem with



about 2.5 hours of training data and assumed a frame rate of 100
Hz, we would have about 900,000 frames. Clearly 2.5 hours of
training data is very small compared to the thousands of hours
of training data used to train current state-of-the-art speech rec-
ognizers [15]. Thus, as the basic premise in SSL is that adding
large amounts of unlabeled data leads to improved performance,
we require algorithms that scale easily to large amounts of data.

In this paper we extend the algorithm proposed in [13] in
two important ways: 1) We show how the algorithm may be
scaled to very large data sets by making use of a multi-threaded
implementation. 2) We use the above parallel implementation to
annotate the SWB-I training set at the phonetic level. We use the
phonetically annotated portion of STP as labeled data and treat
the rest of SWB-I as unlabeled and transduce their labels. This
phonetically annotated version of SWB-I, which we refer to as
semi-supervised STP (S3TP). S3TP data could be useful for the
training of large vocabulary systems and for speech research in
general.

2. Graph-based Semi-Supervised Learning
Given a set of labeled samples, denoted byDl = {(xi, yi)}li=1,
and a set of unlabeled samples, denoted by Du = {xi}l+u

i=l+1,
our goal is to infer the labels of the unlabeled samples (this is
the transductive learning problem). We define X and Y to be
the input and output spaces of the classifier respectively, with
xi ∈ X and yi ∈ Y (here, Y is the set of phones to be rec-
ognized). The first step in any graph-based SSL algorithm is
the construction of a weighted undirected graph, G = (V,E)
where V = {1, · · · , l + u} is the set of vertices representing
both the labeled and unlabeled samples and E ⊆ {V × V } is
the set of edges. We use wij = [W]ij to denote the weight of
the edge between vertices i and j which represent samples xi

and xj respectively. W is referred to as the weight (or affinity)
matrix of G. As will be seen shortly, the input features xi affect
the final classification results via the graph, W. Thus graph
construction is crucial to the success of any graph-based SSL
algorithm and currently “is more of an art, than science” [16].
While there are a number of ways of constructing the graph (see
section 6.2 in [3]), in our case, we use symmetrized k-nearest
neighbor (k-NN) graphs. We set wij = sim(xi,xj) if vertex
j is one of vertex i’s k nearest neighbors or vice versa, and
otherwise wij = 0. In the above sim(xa,xb) is a measure
of similarity between samples xa and xb. It is assumed that
sim(xa,xb) = sim(xb,xa). We discuss more about the choice
of the similarity measure in section 4.

For every i ∈ V , we use two multinomial distributions
pi(y) and qi(y), y ∈ Y. Here, the pi’s and qi’s are the dis-
tributions to be learned. In addition, for all the labeled vertices
j = 1 . . . l, we define rj(y), y ∈ Y. The rj’s are derived from
the labels as follows – if yj = ȳ ∈ Y, then rj(y) = δ(y = ȳ).
If there is uncertainty associated with the labels, it can be en-
coded using rj . We define p = (p1, . . . , pl+u) (in practice, p
is a (l + u)× |Y| matrix) and q = (q1, . . . , ql+u). In [13], we
proposed optimizing the following objective

C(p, q) =

l∑
i=1

DKL

(
ri||qi

)
+ µ

l+u∑
i=1

∑
j∈N ′ (i)

w′ijDKL

(
pi||qj

)

− ν
l+u∑
i=1

H(pi) s.t.
∑

y

pi(y) = 1,
∑

y

qi(y) = 1,

and pi(y), qi(y) ≥ 0. In the above, H(pi) =
−
∑

y pi(y) log pi(y) is the Shannon entropy function of pi,

DKL(pi||qj) is the KL-divergence between pi and qj , µ and ν
are hyper-parameters whose selection we discuss in section 4.
Also w′ij =

[
W
′
]

ij
, W

′
= W + αIn, N

′
(i) = {i} ∪ N (i)

and α ≥ 0. While it may seem that we have two ways of
computing the most likely class for vertex i (i.e., using pi(y)
or qi(y)), α, which is a hyper-parameter in C ensures that
pi(y) = qi(y) ∀ i, y. For all experiments in this paper we set
α = 1.0.

The first term in C penalizes the solution qi, i ∈
{1, . . . , l}, when it is far away from ri, but does not insist
that qi = ri, as allowing for deviations from ri can help es-
pecially with noisy labels [17]. The second term in C, the so-
called graph-regularizer, penalizes a lack of consistency with
the geometry of the data induced by the graph. If wij is large,
we prefer a solution in which pi and qj are close in the KL-
divergence sense. While KL-divergence is asymmetric, given
that G is undirected implies W is symmetric (wij = wji) and
as a result the second term is inherently symmetric. In addition
the second term acts as a ‘glue’ between the pi’s and qi’s. The
last term maximizes entropy and thus encourages each pi to be
close to the uniform distribution. This acts as a guard against
degenerate solutions commonly encountered in SSL [18, 19]. It
can be seen that the above approach generalizes easily to multi-
class problems and also has the ability to incorporate label un-
certainty [13].

It can be shown that C(p, q) is convex in (p, q) and can
be solved using alternating-minimization (it does not admit a
closed form solution). Each iterative update has a closed form
solution and can be shown to converge to the correct minimum.
It has been shown (see [13]) that C may be solved using the
following update equations –

p
(n)
i (y) =

1

Zi
exp

β
(n−1)
i

(y)
γi ,

q
(n)
i (y) =

ri(y)δ(i ≤ l) + µ
∑

j w
′
jip

(n)
j (y)

δ(i ≤ l) + µ
∑

j w
′
ji

,

where n represents the iteration index, γi = ν + µ
∑

j w
′
ij ,

β
(n−1)
i (y) = −ν + µ

∑
j w
′
ij(log q

(n−1)
j (y)− 1), and Zi is a

normalizing constant to ensure pi is a valid probability distribu-
tion. Note that each iteration of the proposed framework is rela-
tively simple to implement. Henceforth we refer to the proposed
objective optimized using alternating minimization as measure
propagation (MP). For more details on this approach and the
use of alternating minimization for optimization, see [13].

We compare the performance of MP against that of the la-
bel propagation (LP) algorithm. We choose LP instead of other
alternatives such as spectral graph transduction [19] and man-
ifold regularization [11] because (a) LP scales easily to large
data sets, and (b) it has been shown to give state-of-the-art per-
formance on a number of benchmark SSL tasks [2] and phone
classification [20]. The LP objective is given in [17] and the
update equations are given by

p
(n)
i (y) =

ri(y)δ(i ≤ l) + νu(y) + µ
∑

j wijp
(n−1)
j (y)

δ(i ≤ l) + ν + µ
∑

j wij

where u(y) = 1/|Y|, µ and ν are hyper-parameters.

3. Scalability to Large Datasets
We are now in an era of multi-core processing where individual
processors are not getting faster but computers come with mul-



tiple processors. As a result, algorithms need to be amenable
to parallel computing across multiple cores within the same
shared-memory machine and/or across different machines. This
is all the more important in the case of SSL as the basic premise
here is that unlabeled data is obtained very cheaply and adding
more unlabeled data leads to better performance. As stated
above, the largest dataset used within a graph-based SSL frame-
work is on the order of 900,000 samples [14]. Clearly, this is a
fraction of the amount of unlabeled data at our disposal. For ex-
ample, on the Internet we create 1.6 billion blog posts, 60 billion
emails, 2 million photos and 200,000 videos every day [21].

The updates for both p and q are easily parallelized. For
each vertex in the graph, during each iteration, we have one dis-
tribution (p or q) that is held fixed, while the other (q or p) is
updated. Consider a multi-threaded application in which each
thread operates on a subset of the graph and updates the ap-
propriate distribution while the other is held fixed. We imple-
mented such a multi-threaded application using POSIX threads
in C++. This was used to generate the results presented in the
next section and enabled us to operate on a data set as large as
STP.

4. Experimental Setup & Results
In our experiments we use the Switchboard (SWB) I training
set [15, 1]. It consists of 2,400 two-sided telephone conver-
sations among 543 speakers [22]. SWB is used almost ubiqui-
tously for the training of large vocabulary conversational speech
recognition systems [15, 1]. The SWB-I corpus comes with
word level annotations. In addition, phone level annotations
generated in a semi-automatic manner by using a large vocabu-
lary speech recognizer are also available [23]. However, as the
speech recognizer has a non-zero error rate, these phone-level
transcriptions are considered less reliable.

The Switchboard Transcription Project (STP) [24] was un-
dertaken to accurately annotate SWB at the phonetic and syl-
lable levels. One of the goals was that such data could then
be used to improve the performance of conversational speech
recognition systems. As the task of phonetically annotating
speech is time-consuming and error-prone, only 75 minutes of
speech segments selected from different SWB conversations
were annotated at the phone level and about 150 minutes an-
notated at the syllable level. Clearly, having access to such
phonetic-level annotations for all of SWB could be useful for
the speech community. Our goal here is to treat the phonet-
ically annotated portion of STP as labeled data and use it to
annotate all of SWB in STP style, i.e., at the phonetic speech-
frame level. The result of the above is what we call the S3TP
corpus and concomitantly we are able to show that our approach
scales to very large data sets.

In the following, we refer to SWB-I that is not a part of
the STP as SWB-STP. We randomly split the phonetically anno-
tated part of STP data into training, development, and test sets
containing 70%, 10% and 20% of the data respectively. The
above was repeated 10 times (i.e., we had 10 each of training,
development and test sets). In each case, the training set was
treated as labeled data, the hyper-parameters were turned on the
corresponding development set and the performance was eval-
uated on the test sets. In order to observe the effects of adding
unlabeled data to phone classification performance, we added
the unlabeled SWB-STP data in stages. The percentage, s, in-
cluded, 0%, 2%, 5%, 10%, 40%, 60%, and 100% of SWB-STP.
We ran both the LP algorithm and our proposed approach MP.
In the case when s =100%, there were about 120 million sam-
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Figure 1: Phone Accuracy vs. Percentage of SWB training data.
Phone Accuracy was measured on the STP data. Note that when
all the SWB data was added, the resulting graph had 120 million
vertices. The dashed black line shows the performance of a
MLP measured using the s = 0% case over the same training,
development and test sets as MP and LP.

ples. Both LP and MP are graph based approaches and we used
the same graph in each case (only the hyper-parameters were
tuned separately).

Next, we describe graph construction. We constructed a
new graph for each value of s over all the STP data and s%
of SWB-STP data. The features xi were extracted in the fol-
lowing manner – the wave files were first segmented and then
windowed using a Hamming window of size 25ms at 100Hz.
We then extracted 13 PLP coefficients from these windowed
features and appended both deltas and double-deltas resulting
in a 39 dimensional feature vector. As phone classification per-
formance is improved by context, we used a 7 frame context
window (3 frames in the past and 3 in the future) yielding a 273
dimensional xi. We used

sim(xi,xj) = exp{−(xi − xj)T Σ−1(xi − xj)}

as the similarity measure to generate the weights wij . In the
above, Σ is the covariance matrix computed using all of SWB.
As a result of the scale of the dataset, it is not possible to gen-
erate the k-NN graph using brute-force search which is O((l +
u)2). However fast k-NN search is a well researched problem
with many approximate solutions. A majority of these solutions
are based on the classic kd-tree [25] data structure. Here we
make use of the Approximate Nearest Neighbor (ANN) library
1 [26]. It constructs a modified version of the kd-tree data struc-
ture which is then used to query the nearest neighbors (see [26]).
We constructed different symmetrized k-NN graphs using ANN
for each value of s. For all the experiments, we used k = 10.
The labeled and unlabeled points in the graph changed based on
training, development and test sets used.

For each case, we ran a search over µ ∈ {1e–8, 1e–4, 0.01,
0.1} and ν ∈ {1e–8, 1e–6, 1e–4, 0.01, 0.1} for both LP and MP.
The hyper-parameters were chosen based on the performance
on the development set and the same value was used to mea-
sure the accuracy on the test set. The mean phone accuracy on
the different test sets (and the standard deviations) is shown in
figure 1 for the different values of s. The result obtained us-
ing s = 0% corresponds to the case when only STP data was
used. We would like to point out that our results at s = 0%

1Available at http://www.cs.umd.edu/˜mount/ANN/

http://www.cs.umd.edu/~mount/ANN/


outperform the state-of-the-art. As a reference, at s = 0%, a L2
regularized MLP with a 9 frame context window gave 37.3%
mean accuracy on the exact same training/dev/test sets while
MP gave 38.0% (this is a significant improvement at the 0.0001
level according to a difference of proportions significance test).
In figure 1, the performance of the MLP is shown by the dashed
black line. The MLP was evaluated using only the STP data,
i.e., no unlabeled data was used. Phone classification on con-
versational speech is considered a harder problem in compar-
ison to phone classification using read speech (e.g., using the
TIMIT corpus) and our baseline MLP result is considered state-
of-the-art for that model [27]. The results also show that MP
significantly improves over the performance of LP for all val-
ues of s. Another very encouraging trend is that the phone clas-
sification performance improves with the addition of unlabeled
data.

5. S3TP Corpus
The S3TP corpus is available at http://ssli.ee.
washington.edu/s3tp. In addition to the frame-level
classification, the above web-page also contains frame-level
posteriors. One useful application of the posteriors would be
the generation of n-best lists which can be used for the training
or re-scoring of speech recognition systems. Further, it could be
insightful to look at a comparison of the human annotations of
STP and the automatically generated machine annotations. Are
there classes of phones where the two agree and other classes
where they disagree? We believe that this can lead to new in-
sights into automatic processing of speech signals using ma-
chines. In general, we believe that semi-supervised phonetic
annotation could be a valuable tool in the hands of speech sci-
entists.

6. Discussion
We have shown how our previously proposed graph-based SSL
algorithm can scale to very large data sets by making use of
a multi-threaded implementation. We have also shown that
it outperforms state-of-the-art SSL algorithms for the phone
classification task. When running timing tests on the multi-
threaded implementation, we found that in some cases we were
able to only achieve a sub-linear speed-up. We conjecture
that this is due to poor microprocessor cache performance and
have recently developed a node-ordering algorithm that can pre-
process the graph to mitigate such problems. Another area for
future work is the extension of this approach to speech recog-
nition, i.e., SSL over sequences. We also wish to apply this
approach to articulatory labellings of speech corpora, which are
even more difficult to obtain than phonetic labellings.
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