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ABSTRACT dition to the intra-word segmentation and the emission distributions,
the recognizer also learns the inter-word segmentations.

We propose a technique for annotating data used to train a speech | the general context of learning, training using FL data falls
recognizer. The proposeq scheme. i§ based on labeling only a Sigyore into the category of supervised Iearrﬂ@raining a speech
gle frame for every word in the training set. We make use of theecognizer using SL data is an instance of semi-supervised learning
virtual evidence (VE) framework within a graphical model to take 3] and a more general semi-supervised learning setting involves
advantage of such data. We apply this approach to a large vocabyaining using both labeled and unlabeled data. In the case of speech
lary speech recognition task, and show that our VE-based trainingacognition, this means we have transcripts (in most cases in the SL
scheme can improve over the performance of a system trained usifgrm) for a subset of the training data, and no annotations for other
sequence labeled data by 2.8% and 2.1% on the dev01 and evalgarts of the training data. One popular approach to semi-supervised
sets respectively. Annotating data in the proposed scheme is not Sigsarning isself-training Self-training has been used in the past to
nificantly slower than sequence labeling. We present timing resultgain speech recognizefs [2[506, 7]. In most of the above approaches,
showing that training using the proposed approach is about 10 times previously trained recognizer is used to generate transcripts for
faster than training using sequence labeled data while using onlynjapeled data, which are then used to re-train the recognizer after

about 75% of the memory. rejecting the erroneous transcripts based on some measure of recog-
nizer confidence. The algorithms usually differ in the way the rec-
1. INTRODUCTION ognizer confidence is measured and the manner in which erroneous

parts of the transcript are handled. For example, in the case of lightly
pervised training [7], the output of the recognizer is compared

One of the obstacles to large scale adoption of speech recognitioiP - . . . .
9 P P g ainst closed-captions to determine the reliable regions. In addi-

technology is lack of robustness in current state-of-the-art spee . )
recognizers. In order for recognizers to be practical, it is importan jon, a language model is glso used to gengrate conﬂdgnce valugs.
that they are robust towards various types of noise, speaker specifi ch approaf:hes are partlcularl_y useful while developing recogni-
variations, changes in recording device setting, etc. One of the sinjion systemsin languages for which Igr_ge amounts of annotated data
plest ways of building robustness into a speech recognition systemﬁ not exist. The success of .self-tralnlng pased approaches Iqrggly
to increase the amount of training data. Today state-of-the-art spee pends on accurate estimation of recognizer confidence. While in

recognizers use thousands of hours of training data, collected fr0|11"i‘SkS such as broadcast news, we can make use of closed-captions

a large number of speakers with various backgrounHs [1]. Yet ari© estimate these confidence values, in the case of conversational

other way to build robustness into a recognition system is to trairzpee‘:h* \;\_/e dtf’ nc_Jt ha\;]e I;’;\cce_ss to cbli)sed-captions and thus confi-
it on hand-transcribed data with all appropriate word level segmen-ence estimation IS a chaflenging probiem.
While the techniques proposed in this paper may be extended

tations (i.e. the exact time of the word boundaries are given). | . i . . : .
[2], we showed that phone recognition systems can benefit from be>" semi-supervised Ieam'ng’ the focus of this paper is to |n_troduce
new method for annotating speech data and show how it can be

ing trained on such data. However in the case of LVCSR systemé‘, d in| bul h ition (LVCSR
such segmentations are extremely hard to get and thus training usi edtotrain large vocabulary speec recog_nmon ( ) systems.
IT'the amount of training data is fixed and finite, the FL case con-

sequence labeled data (see below) been used extensively. . . ; ) .
There are three ways to annotate data used to train a speech r%ﬁlns at least as much information about the hidden variables as SL

ognizer in a non unsupervised fashion: (a) fully-labeled (FL): all ata. In addition, under the above assumptions, a learner trained on
. ) - ) " FL data can potentially outperform a similar learner trained on SL
appropriate word level time segmentations (i.e., all word bounda% 2], In thpe case ofyspeepch recognition, however, SL data is usu-
points) are known, (b) sequence labeled (SL): only the sequence i S " ’ S L
words in an utterance is given, which implies their segmentationg ly employed for training as obtaining FL data involves significant

e urkonn durng g, a9 a echnigue nvoduced by e S0t Furher,n e case of coniuous speech accat
in [2], which we call partially-labeled (PL): in addition to the word 9

sequence, we also know the word identity of at least one frame (th (_)-_artlculanon_ and/or word-boundary_ af.“b'gu"y- To |II1_Jstrate this
ifficulty, consider the spectra shown in fig{ije 1. In the first spectro-

acoustic observation) that was produced by each word in every utte ram, as a result of co-articulation, the boundary between the words
ance in the training set. In terms of human supervisory effort, FL an s o L y
Qne” and “winter” is not clearly defined. In the second case, the

L represent th rem her r PL method, li . . . .
SL cases represent the extremes, whereas ou ethod, lies So'l;?oundary between all the three words is ambiguous at best. Listening

where in between the two. In the case of FL data, learning usual [ these utterances onlv strenathens this @)im such cases. pro-
involves tuning emission distributions (the model may need to lear y 9 P

intra-word segmentations). On the other hand, in the SL case, in ad- 10f course, since only word and not phone segment information is known,
this still would not be a fully supervised learning setting.
This work was supported by an ONR MURI grant, No. N000140510388.  2Manual segmentation of word segmentation for the above two exam-
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Fig. 2. Virtual Evidence Training Graph.

algorithm [12], data in the proposed approach can easily be used for
) . ) ) __discriminative training. Further it is possible to train systems using
Fig. 1. Spectra of cuttings obtained from Switchboard conversatior) ~ombination of data in FL, SL and PL formats. For example, if we

sw02423. The first figure was obtained by cutting the B-channef,5q access to say, 2000 hours of SL data, and, 200 hours of PL data,
from 1:44:741s to 1:45:704s and the second one was obtained by Cyfz can use both the SL and PL data to train a recognizer (see section
ting the A-channel from 8:05:530s to 8:06:622s. The arrows shor\m)_

0_

word boundaries hypothesized by speech researchers asked to a
tate these cuttings.
2. BASELINE SYSTEM

viding accurate word level segmentations with high inter-annotatoff he probabilistic models used for parameter training are expressed
agreement is difficult, certainly extremely costly, and might be im-Using Dynamic Bayesian Networks (DBNs). The baseline model is
possible. On the other hand, it is extremely easy to label a frame th&duivalent to a standard speech recognition Hidden Markov Model
belongs somewhere in the middle of each of these words. (HMM), but expressing it as a DBN allows us to extend the baseline

In this work, we propose a technique to label training data fort© include Virtual Evidence training. _ _
speech recognition that does not require the annotator to provide ac- The training graph is given in Figuf¢ 2. For a detailed descrip-
curate segmentation information (i.e. the FL case). The proposedn of how speech recognition systems can be represented using
scheme requires the annotator to provide only labels for at least orléBNS seel[13], a brief introduction will be given here. The shaded
frame associated with each word in all the utterances. We show thtrcles represent observed variables and non-shaded circles repre-
annotating speech data using the proposed approach is about 3 tinfé&t hidden variables. Determlnlstlc relationships are given by splld
as fast as fully-labeling, and only about 2 times slower than sequen@Tows, random dependencies are wavy, and value specific “switch-
labeling. Thus, in comparison to providing accurate segmentatioR’d” dependencies are dashed arrows. The Word Counter, labeled
information, this method involves a significantly smaller amount of W*, keeps track of the position in the current word sequence. Vari-
human effort, but only slightly more effort than annotating the se-ableW is a deterministic hidden varlaple that repres_ents the identity
quences. Furthermore, it removes the possibility of labeling error§f the word. The value o can be uniquely determined froiv*®
at word boundaries since the annotator need only provide labels giince the word sequences are known. Word TransilioH, is a bi-
or near the center of the word. In the past, this annotation techniqueay variable that indicates if the graph is currently on the last frame
has been successfully applied to activity recognitidn [8] and phon&f @ word. WherW'" is false, W* gets its value from th&v* in the
recognition domaing[2]. The training algorithm uses the notions oPrevious frame. Whet™" is true, W changes its value to the next
virtual evidence (VE)[[9]. VE based ASR systems have been sudvord in the sequence. Pronunciatidt, is a random variable that
cessfully used in the past to help decoding [10, 11], but to the best gih00ses what dictionary pronunciation is being used for the given
our knowledge this paper presents the first system to express traiord. P is the Phone Counter and it indicates the current position
ing uncertainty and show improvements using VE in the LVCSRIN the sequence of phones associated with the given word and pro-
domain. nunciation. The Phone variabl@?, gives the identity of the current

It is important to highlight that, while all models in this paper phone. Pho_ne Transitiof'”, is a binary variable that indicates if
are generatively trained using the expectation maximization (EM}he graph is in the last frame of the current phone. Each phone model

Is represented by a sequence of three states, and the State Counter,

ples by 5 seasoned speech researchers yielded boundaries with a standiird K€€PS track of what state the model is in. State Transiddh,
deviation of 95ms. The speech files used in figdre 1 may be obtained heri§ & binary random variable that determines if the model should stay
http://ssli.ee.washington.edu/"asubram/annotation-examples in the same state or transition to the next. The State varidpbig-



http://ssli.ee.washington.edu/~{ }asubram/annotation-examples

termines what mixture model to use, and the Observatigis the ~ word “what” started at time; and ended at time,, “was” started
observed feature vector. The variablds always observed to be 1 at ¢4, and so on, then this would be FL data. In other words, we
and is introduced into the model so that we can represent VE. It ikave the exact start and end times of all the words in the utterance.
not used in the baseline (SL) system. It is described in detail in th&his is depicted below the spectrogram in figure 3 where the shaded
following section. regions mark the start and end of each word. Annotating thousands
of hours of data with such word segmentation information is not only
3. VIRTUAL EVIDENCE time consuming, but in many circumstances may be impossible. As
shown in figurg ], co-articulation effects in conversational speech
In this section we introduce the notion of VE. Consider a DBN overlead to fuzzy word boundaries. Thus, the general training scenario
n random variables (rv{Xi,...,X,}. Evidence simply means in most large vocabulary speech recognition systems does not have
that, by some external process, we have come to know the vallRECeSS to these starting/ending times, and they are trained knowing
of a set of rvs in the model. For example, if without the loss ofOnly the sequence of word labels (e.g., that the word “other” follows
generality (w.l.0.g)X; = Z; is given, the joint distribution is no the word “the” follows the word “was” and so on).
longer a function ofz; and is given byp(zi,...,z,). Such evi- Consider a new transcription based on Fiﬁk\#here the an-
dence is sometimes also referred tospecific evidence Specific ~ notator, for every word in the corpus, only labels a region some-
evidence in a model can also be represented in another way by tredthere within the start and end of the word. For example, in the case
ing z1 as hidden, but introducing a new variablanto the network  Of the word “was”, whose actual start and end timestarandi;

(V ¢ {X1,...,X,}). The variabléV is made the child of; (or in respectively, we are given thatpart this word occurred in the re-
general the child of the sets of variables on which we have evidenc&on [ts, te], ta < t5 < t¢ < t7. Similarly we are given that in
and their relationship is expressed as the region|ts, to], a part of the word “the” was uttered. The region
[t6 + 1,ts — 1] is left unlabeled. Thus, in the proposed scheme, the
p(V=1|z1,...,20n) = (X1 = T1) 1) annotator no longer labels frames in the word transition regions, but

on the other hand, provides labels for the unambiguous (and there-
fore more reliable) parts (i.e. on or near the center of the word).
This technique of annotation results in PL data. Given the anno-
tations in figur{]ﬁl, we know thatV, = “was”, V5 < t < tg,
ZP(V =La1,..., Zn) @y, = “then”, V ts < t < to, and no other word, except for
o1 “was” or “then”, was uttered in the regiofts + 1,¢s — 1]. It is
= Zp(\? =1lz1,...,za)p(z1,...,2,) (3)  clear that the word “was” ended at sortle€ [tg + 1,ts — 1],
1 and the word “the” began at tim¢ + 1. This implies thatW; €

whered(z,y) returns a 1 whenr: is equal toy, and 0 on all other
occasions. As a result we have that,

“was”,“the"}, Vits + 1 < t < tg — 1. In other words, the value

= Zp(\? = Lza)p(z1, ..., 2n) ) of the word variable in the unlabeled regidte(+ 1,ts — 1]) must
w1 be either “was” or “the”. Thus in the case of PL data, in the labeled
= Zd(xl =Z1)p(x1,. ., Tn) (5)  regions we know the identity of the word variable, whereas in the
) unlabeled regions, we know a set of possible values that the word
= p(Z1,...,2n). (6) variable could take on.

Next we address how PL data can be used within the VE frame-
Now consider setting(V = 1|z1) = kf(z1), wheref() is an  work. We first introduce an observed child of the word vari-
arbitrary non-negative function andis a normalization factor so able in the training graph in figufg 2. In the following we define
thatp(V = 1|z1) is a valid probability density function (pdf). With W, £ “was”, and,W> £ “the”. The conditional probability table
this, different treatment can be given to different assignmentsto (CPT) forV,, t5s <t < t9 is given by
but unlike hard evidence, we are not necessarily insisting on only
one particular value. This is referred to\agual evidencgVE). In p(Ve = 1|Wy) @)
practice, the value of does not effect the results of inference (see

[14] for details). In essence, the VE framework allows us to deal L ?f Wi =Wi&ts <t <t
with situations when we have evidence represented as a distribution fiW) i We=Wi &t +1<t<ts—1,
over the domain of a set of rf$ There is in fact a relationship =qgt(W2) if We=Wa&te+1<t<ts—1, (8)
between VE and priors used in Bayesian inference, but they are not 1 if Wy =Ws&ts <t<ty,
exactly the same. More details about this can be obtainedin [14]. 0 otherwise
4. PROPOSED ANNOTATION SCHEME where f;(1W1) andg.(W>) represent our relative beliefs in whether

the value ofW,, t5 < t < tg is either “was” or “the”. It is important
Figure[3 shows the time and frequency domain renditions of a speecb highlight that rather than the absolute values of these functions,
segment obtained from Switchboard conversation sw4@4Bhe it is their relative values that have an effect on inference [14]. Note
utterance in this segment is “what was the otférif the training  that the above CPT can be defined for any two consecutive words in
data included the time points, t4, t7, t10, and,t13, and also that the g similar manner.

3Does not necessarily have to be a probability measure, any Lebesg There are number of different ways of Choos.lﬁg) andg(.).
measure will suffice. ’ e could setf;(W1) = g:(W2) = 3,8 > 0. This encodes our
“Note that in figure§]4.]4, the solid-blue vertical lines showing the segUNCertainty regarding the identity of the word in unlabeled region
mentations between words are not necessarily the best segmentations. Wile still forcing it to be eithed/, or W2, and equal preference is
fact, the “best” segmentation might not even exist (see Fighre 1). Rather,
these figures illustrate the basics of the proposed algorithm. 5Same utterance as shown in FigE}e 3.
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Fig. 3. Fully-Labeled (FL) case Fig. 4. Proposed Partially-Labeled (PL) case
given for both (referred to as “uniform over two assignments” in the Annotation Type| FL PL SL
rest of the paper). Alternatively, other functions could take into ac- Mean 0.052| 0.134| 0.272
count the fact that, in the frames ‘close’tig W, is likely to beW, Std. Dev. 0.056 | 0.097 | 0.302

whereas in the frames ‘close’ tg, W5 is more likely. This can be
represented by using a decreasing function of timeff¢fV;) and ~ Table 1. Mean and Standard Deviations of number of words anno-
an increasing function of time fay, (W>) (for example linearly in- tated per sec for Switchboard. There were a total of 8 annotators in
creasing or decreasing with time). In the past, we have found that tH&e test.
“uniform over two assignments” approach performs better than the
interpolation based approaches for both activity and phone recogni-
tion tasks (se€[8]2]). The success of interpolation based approachié&g sequence of words, in the FL case, the annotators were asked to
relies on having access to (a) an estimate of the word durations, af@bel the start and end times of all the words in the speech file as
(b) the position of the labeled frame relative to the start or end oficcurately as possible, and for the PL case, the annotators were in-
the word (e.g. middle of the word). In the absence of the abovestructed to simply mark one time point that belonged to each word.
interpolation based approaches can lead to reduced performance ¥ means and standard deviations of the number of words anno-
a result of over (or under)-weighting a particular assignment. Thugated per second by the annotators for the three formats is shown in
in this paper we only use the “uniform over two assignments” tech{able[1. As expected annotation time in the case of SL is the small-
nique in all our experiments (see sectjgn 7 for a further discussio@st (i.e. most number of words per second), FL the largest and PL
on this topic). lies between the two. Also, given a fixed amount of time, if one can
In the above we suggested one way of generating the proposé@dnotateX words in FL format, it is possible to annotate ab8nf
PL data. PL data can also be generated by taking FL data and th&rds in PL format, and abo@tX words in SL format. Further we
dropping labels of frames around word transitions. As more labelfound that in the PL case, a large majority of annotations were close
are dropped around transitions (e.g.tas- ts decreases), we use 10 the center of the word (even though there were no explicit instruc-
smaller amounts of labeled data. In an extreme situation, we calons to do so). We also collected the following informal feedback
drop all the labelst < ¢s) to recover the case where only se- from the participants: (a) SL case was the easiest to annotate, both
quence and not segment information is available. Alternatively, wdn terms of time taken and the amount of effort involved, (b) most
can havets = ¢5 + 1, which means that only one frame is labeled annotators felt that it was very tedious to do annotations in the FL
for every word in an utterance — all other frames of a word areformat, and finally, (c) some annotators felt that the PL case was not
left un-transcribed. Once again, note that, from the perspective ghuch more difficult than the SL case.
a transcriber, this simulates the task of going through an utterance
and identifying only one frame that belongs to each particular word
without having to identify the (potentially ill-defined) word bound-
aries. In contrast to the task of determining the word boundaries
identifying one frame per word unit is much simpler and less pron
to error [15/16].

6. EXPERIMENTAL RESULTS

Il systems in this paper were trained using 248 hours of Switch-
oard | [17] data. One issue with applying the proposed technique
is the unavailability of PL Switchboard | data. In order to overcome
this impediment, we used the following procedure to mimic a human
5. ANNOTATION TIMING EXPERIMENT annotator who labels speech data in the proposed approach: word
level time annotations for Switchboard | were determined from a
In order to compare the annotation times for SL, PL and FL formatsforced alignment using the state-of-the-art Microsoft Research large
we asked 8 native American English speakers to annotate Switclvocabulary decoder. Next, as explained in sedfipn 4, PL data was
board utterances in the three formats. In each case, the annotatgenerated by dropping labels for frames around word transitions (see
were given 9 utterances (each of lengthl5 seconds) chosen ran- figure[4). For example, in order that theresbenlabeled frames in
domly from the Switchboard training set. They were instructed toa word, we dropped labels on the first and lag2 frames of that
annotate 3 utterances each in the SL, PL and FL formats. In theord (assuming is even). If the total number of frames in the
case of SL, the annotators simply listened to the speech file and gat&ining set isA, and we drop labels of frames, the amount of



FL PL SL FL PL | SL

U=0% | U=96.8% | U=100% Time Speed-Up 13.23| 949 | 1

Dev Set (dev01l)| 54.9 53.3 56.1 Relative Memory Usage 0.534 | 0.745| 1
Eval Set (eval0l) 53.1 51.8 53.9

Table 3. Comparison of per-utterance inference time speed-ups and
Table 2. WER obtained on the 2001 Development and Evaluatiormemory usage in the cases of using fully-labeled, proposed partially-
sets.U represents the amount of unused labeled data. labeled and sequence-labeled data for training. All entries in the
table are shown relative to the corresponding SL case result. The

inference times and memory usage statistics were measured using
unused data is given by = % * 100. It is important to note that  GMTK [I3].

PL data generated using the procedure described above differs from
manually generated PL data due to two reasons, (a) there are inher-
ent segmentation errors in the forced alignments, and, (b) the labeleéke case that even human transcriptions will not fix these errors since
frame(s) is(are) always at the center of each word. While this canndhere is much inter-annotator disagreement at these word boundaries
be guaranteed in practice, we found that a large majority of the Plsee Sectiofi]1). These results suggest that even when one has ac-
data in the annotation experiment had labels close to the center of tlvess to automatically generated word level segmentation information
word (see sectiof]5). In addition, our proposed PL approach is rofrom a state-of-the-art system), it is advantageous to transform the
bust to word segmentation errors as only labels on or near the centdata into PL form for system training.
of each word are necessary. To summarize, we ran forced alignment We also ran an experiment to quantitatively determine the equiv-
to obtain word level segmentation information. These segmentatiorslence between SL and PL data. In other words, find x and y such
were used as FL data. We dropped labels from the FL data to yielthat, a system trained on x hours of SL data, and a system trained
PL data. Forced alignment was done using transcriptions obtainesh y hours of PL data, yield similar performances. In the SL case,
from [18]. The same transcriptions were also used as SL data. Notge used the system trained on all of Switchboard | data whose WER
that in the case of FL data word level segmentations were fixed duresults were 56.1% and 53.9% on the dev01 and evalO1 sets respec-
ing training, whereas in the case of both PL and SL systems theively (see Tabl§]2). We then constructed a new training set by ran-
model had to learn the word level segmentations. domly selecting 60% of the Switchboard | corpus (approximately
To obtain the acoustic observations, the conversations were fird48 hours of data). These utterances along with their labels in PL
segmented, and then windowed using a Hamming window of sizéormat were used to train a system whose WER results were 55.9%
25ms at 100Hz. We then extracted 13 PLP coefficients from thesand 53.9% on the dev01 and evalO1 sets respectively. Clearly, this
windowed features. Deltas and double deltas were appended ie very similar to the performance in the case of the system trained
the above observation vector. All features were mean and varianassing all of Switchboard | data in SL format. This implies that in the
normalized on a per-conversation side basis. The acoustics weeoase of the Switchboard | corpus, for example, 60 hours of PL data
modeled using 10,117 Gaussian mixtures, each representing a staiteequivalent to 100 hours of SL data. Note that this is not a formal
clustered within-word triphoné [19]. All results reported in this pa- proof of SL and PL data equivalence and we plan on investigating
per were obtained using a system with 32 Gaussians per mixturéhis further in our future work.
The language model was a bigram trained using approximately 22M  In order to compare inference times and memory requirements
words from Fisher and 3M words from Switchboard. The vocabu+to train systems using FL, the proposed PL and SL data, we ran-
lary was chosen as the 64,000 most frequent words in the trainingomly selected 100 utterances from the training set and ran infer-
data. All training was performed using GMTK [13] and decoding ence on the these utterances using labels in the three formats on a
was done using HTK [20]. In the case of the Switchboard corpus3.4MHz Intel Pentium D machine with 2GB of RAM. This was re-
using a single labeled frame for each word in every utterance corrgpeated 25 times, and we computed the minimum inference time over
sponds tdJ = 96.8%} Note that/ = 100% is the SL case, while  these runs in each of the three cases. We also measured the memory
U = 0% is the FL case. In each case the systems were trained usinged in each of the cases. The results of these experiments are re-
the EM algorithm. ported in tabl¢ 3. Rather than absolute inference times and memory
The results of our experiments are shown in T@hle 2. All WERusage numbers, we present the performance of each system relative
numbers are a result of first pass decoding (i.e. no re-scoring). Ito the SL case. Thus in the case of time speed-up, a number larger
order to ensure a rapid turn-around time for our experiments, we dthan 1 implies that the system was faster than the SL case and in
not use any form of adaptation (e.g. MLLR, SAT or VTLN), nor the case of memory usage, a number smaller than 1, implies it used
any of the standard front-end procedures (e.g. HLDA) that are comess memory than the SL case. As expected training using FL data
mon in LVCSR systems [1]. The language model (LM) scale ands the fastest and consumes the least amount of memory. It can be
word insertion penalty (WIP) values were obtained by performingseen that training using PL data is about 10 times faster than SL data
a grid search to optimize the performance on the development seind requires only 74.5% of the memory used by the SL case. Also
The results show that the system trained on PL data improves ovémining a system using PL data is neither significantly slower, nor
the performance of the SL system by 2.8% on the development seloes it require significantly larger memory than the FL case.
and 2.1% in the case of the evaluation set. The FL system showed an
improvement of about 1.2% over the SL system. This indicates that
speech recognition systems can benefit from being trained on fully-

labeled data. Further, it can be seen that the PL system outperforms

the FL system by 1.6%. While this could be due to errors in the word/eé have proposed a method for labeling data used to train a LV

segment boundaries generated using forced alignment, it is probabfyStem and shown that it can yield significant improvements over
systems trained using SL data. The proposed labeling technique

6Average Number of Frames per word in Switchboard | is 31.78, whileinvolves smaller amounts of human supervisory effort in compar-
average number of words per “utterance” is 13.85. ison to labeling all word level segmentations. In addition, it also

7. DISCUSSION AND FUTURE WORK




overcomes some of the problems associated with annotating contifit0] A. Subramanya, J. Bilmes, and C. P. Chen, “Focused word

uous speech at word boundaries. While it is the case that sequence-
labeling speech data is twice as fast as the proposed approach,

have shown (see sectiph 6) that we need about 1.67 (= 100 hours/
hours) times as much SL data as PL data to obtain similar perfor-

mance.

In the future, we plan on investigating other methods to generate ) ] ) o )
[12] Dempster, Laird, and Rubin, “Maximum likelihood from in-

the VE weights (i.ef(.) andg(.)). Another avenue for future work

is to look at using a combination of data in different formats to train
a recognizer. While the structure of the DBN used in the three cases

segmentation for ASR,” iProc. of the Interspeect2005.

] C. Bartels and J. Bilmes, “Focused state transition informa-
tion in ASR,” in Proc. of IEEE Automatic Speech Recognition
and Understanding Workshop (ASR83pan Juan, Puerto Rico,
November/December 2005.

complete data via the EM algorithm,Journal of the Royal
Statistical Society, Series Bol. 39, no. 1, pp. 1-38, 1977.

has some differences, the decoding-time distributions learned durirf@3] J. Bilmes and C. Bartels, “Graphical model architectures for

the training process are exactly the same and thus it is possible to

share accumulators. This is particularly useful as there already exists

large amounts of SL speech data (e.g. the Fisher corpls [21]). V\ﬁ4]
on

would like to show that using small amounts of PL data in additi

to large amounts of SL data can lead to improved performance. We
can also get massive amounts of speech data annotated using the

speech recognition,1EEE Signal Processing Magazineol.
22, no. 5, pp. 89-100, September 2005.

J. Bilmes, “On soft evidence in Bayesian networks,” Tech.
Rep. UWEETR-2004-0016, University of Washington, Dept.
of EE, 2004.

proposed scheme by designing an ESP-like game [22], wherein tH&5] S Greenberg, “The Switchboard transcription project,” Tech.

players are instructed to label the center of the word and are rewarded
for producing labels on frames that are close to each other. Also, in

general, it is the case that recognizers use exponentially more

data for linear relative gains. By making use of PL data, if a linear
increase in the amount of data yields linear relative gains, this can
be a huge win for training systems using this PL data. We hope to

investigate the above in our future work.
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