Hierarchical Models for Activity Recognition
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Abstract—In this paper we propose a hierarchical dynamic example, the process of driving a car involves, getting into
Bayesian network to jointly recognize the activity and environ- the car, turning on the engine, driving, etc. Or getting onto
ment of a person. The hierarchical nature of the model allows 5 glevator, could comprise calling for the elevator, wagiti
us to implicitly leam data driven decompositions of complex for the elevator, etc. In this paper we refer to these simpler
activities into simpler sub-activities. We show by means of o v - = ;
our experiments that the hierarchical nature of the model is activities assub-activities Intuitively, it might be easier for
able to better explain the observed data thus leading to better the model to learn the simpler sub-activities rather tham th
performance. We also show that joint estimation of both activity complex ones. In practice though, it is not entirely cleawho
and environment of a person outperforms systems in which 5 given activity can be split into its constituent sub-atits,
they are estimated alone. The proposed model yields about% . .
absolute improvement in accuracy over existing systems. €., COI’]SI.de'.I’ the car example abpve, we Could_say t.hat When

a person is in the process of turning on the engine, his motion
|. INTRODUCTION state isstationary on other hand since he is really sitting

In the recent past, advances in wearable sensing and canside the car, his motion state could also be classified as
puting devices have made possible the fine-grained estimativehicle Thus, a statistically ideal approach would be to let
of a person’s activities over extended periods of time [He T the model learn the best constituent sub-activities forvaryi
interest in human activity recognition stems from a numbectivity from the data during training. In this paper, we poee
of applications that rely on accurate inference of actwiti a hierarchical dynamic Bayesian network that implicitlgries
that a person is performing. These include, context awdleese sub-activities during training.
computing [2] to support for cognitively impaired peopld,[3 Yet another novelty of our work here is the joint estimation
long-term health and fithess, monitoring and automaticr aftef both the motion state and the environment. In many
action review of military missions. situations, the type of activity that we perform is consteai

Bao and Intille [4] used multiple accelerometers placed onlyy our surroundings (environment). For example, if a person
person’s body to estimate activities such as standing,imglk were inside a building, he is very unlikely to be driving a.car
or running. Kernet al [5], [6] and Lukowiczet al [7] added Similarly, itis more likely that a person is going up/dowais$
a microphone to a similar set of accelerometers in order wdhen indoors rather than when he is outdoors. In this paper, w
extract additional context information. One of the dravksac propose a model that in addition to estimating the motiotesta
of the system in [5], [7] is that they utilize multiple sens@nd (activity) of a person, jointly estimates his environmeirg,,
measurements taken all over the body. This can often leadwbether a person is indoors, outdoors or in a vehicle. We also
unwieldy systems with large battery packs. To overcome thghow how jointly estimating both the state and environment
Lesteret al [1] developed a small low-power sensor board thatutperforms systems that estimate them independently.
is mounted on a single location on the body. In addition to the above, this paper describes the models

Once a wearable sensor system is in place, the next logigakd in the first NIST evaluations for the DARPA ASSIST
step is to design algorithms to extract pertinent featuresf project. While the models proposed here can be applied to
the sensor streams, and then classifiers that make use ef tleaw activity recognition task, we use automatic aftereacti
features to infer the activities being performed. [1] alsowged review (AAR) of military missions to explain the models. An
how to apply boosting in order to learn activity classifier&AR is essentially a summary of a military mission and is
based on the sensor data. However, a common drawbackated from memory by the mission leader. It reports on
in all previously proposed approaches is that they feed tharious activities/incidents that took place during thession.
sensor data or features into static classifiers [4], [2], or &s the duration of the mission increases, it becomes difficul
bank of temporally independent HMMs [1]. Further, mosfor the leader to remember all the incidents to a significant
of the previously proposed algorithms [1], [4] do not makdegree of detail. The proposed system is supposed to aid the
a distinction between ‘complex’ and ‘simple’ activitiem | leader towards creating better summaries of the mission.
practice, it might be advantageous to decompose complexn our previous work on the same problem [8], [9], we have
activities into simpler activities that might be easier ¢arn. proposed algorithms to jointly infer the activity and Idoat

A number of ‘complex’ activities that we perform in ourof a person. These systems make use of information from a
daily lives can be broken into smaller, simpler activiti€sr GPS unit in addition to the sensors streams used in this paper



[9] makes use of a Rao-Blackwellised particle filter, whid¢ [ example,D 4, represents the set of values that thedycan

makes use of a dynamic Bayesian network in order to track ttake.

activity and location of a person. [8] also shows how virtual The proposed model exhibits a synchronous hierarchy at

evidence can be used to train an activity recognition systamio levels. The first at the activity level, where the activit

in a semi-supervised manner (i.e. when labels are missingpservations are explained by the simpler sub-activity- var

However, the part of the system that infers the users ae8vit ables, which in turn depend on the activity variables. A Emi

in our previous work is a subset of the models proposed hekgerarchy is also seen at the environment level. In the joint
In Section Il, we give a brief overview of our sensomodel, these two levels are synchronized at the activity and

board. Section Ill describes the proposed hierarchicalaho@nvironment levels. The proposed model is in essence a-multi

and the feature extraction process. Experiments are tescristeam asynchronous dynamic Bayesian network.

in Section V, followed by conclusions and future work in

Section VII. P e s

Il. WEARABLE SENSORSYSTEM @ @

A
We make use of the sensor board developed by [1]. It Observation e
consists of a multi-sensor board and a Holux GPS unit with @
SIRF-III chipset which are connected (using Bluetooth) 1to a = [
iPAQ PDA for data storage. S e -
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Fig. 1. Multi-sensor board (MSB). \ \
Our customized multi-sensor board shown in Fig. 1 is ex- : .
tremely compact, low-cost, and uses standard electrome co | Observation g g
ponents. It weighs only 121ligcluding battery and processing @ @
hardware Sensors include a 3-axis accelerometer, severs

mlcrqphones for recor'dlng speech _gnd ambient sound, phq§ . 2. Graphical model representation of the joint actietd environment
transistors for measuring light conditions, and tempeea&nd recognizer

barometric pressure sensors. The overall system is able to
operate for more than 8 hours with a single battery charge. As described in section I, we assume that there are
a finite set of states that a person can be in at any

IIl. M ODEL DESCRIPTION ) . .
. h . . i £ the hi hi given instant of time. In our current system, these states
Fig. 2 shows two consecutive time slices of the hierarc |Cﬁqc|ude A, e {stationary, walking, running,

model that is used to jointly infer the activity and envirczmh driving vehicle goi ng up-stairs goi ng
of a person. Note that all observed variables are shad@d,\n_stairs ’ situation assessr;ent from
deterministic dependences are depicted using solid biaek, | cover. i nca[’)aci tated}. The above activities were

value specific dependences (see equation 1) are shown ugifisen by NIST/DARPA as relevant to a soldier for AARS.

a dot-dash lines and random dependencies are represemigd interaction betweeni, and the other variables in the
using dotted lines. In this modeHl, represents the current o del is defined by

activity (motion state),F5; the environmentA’ models the

‘sub-activity’, £’ models ‘sub-environment'A”, ET, AST P(Ay =ilAy = j, By =1,A )
and E°T are random variables that turn on when there is P(Ay=i|lAi=j, By =1) if AT | =1,
an activity, environment, sub-activity and sub-environtne N
.. . . . =<1 if i=4,A4;,_1=0,
transition respectively. Note that all variables in the mloare e,
0 if i#7,A,_,=0.

discrete. Also note that in the following, given any random
variable (rv) X, we useDx to denote the domain oX. For @)



where P(A; = i|A;—1 = j,E: = ) is a dense conditional high-dimensionality feature vectors are not possible tlizat
probability density that is learnt during training. In coanigon directly in a model, and typical approaches either require
to some of the previous work, here, we model the tempomilmensionality reducing linear transforms (e.g., priteipom-
dependencies of the both, and E;. These allow the system ponent analysis (PCA), or linear-discriminant analysi3Al))
to capture information such as “it is very unlikely to getaint or alternatively feature selection. We utilize the apptotadken

the driving state right after going upstairs”. in [1] to select pertinent features for classification. Esisdly,
The conditional probability of the transition variabl¢/  for each activity we learn boosted one-level decision-tias-
given its parents is assumed to be sifiers. In other words, for each activity, we learn a coltatt
P(AT = 1|AP = j A, =1, 45T = m) of decision trees that each have a depth of unity, and where th
. ) next decision tree is obtained via boosting. Since the @ees
— Lt ga(m)+37 > fa(l), ) of depth one, we can also view each tree as a simple threshold
0 otherwise detector. Each decision tree essentially acts as a weakelea

%Ione incapable of making an accurate detection decisiain, b
when combined with kindred classifiers, capable of making
highly accurate decisions. This collection of decisiores$réor
each activity is then used to produce a final event detection
probability 0 < p; < 1 for activity i. The detection probability

where, f4 is a mapping from the set of motion states to th
number of sub-activities for each motion state apdis a
mapping fromA7” to the increment it causes iA]. The
sub-activity variabled!” is modeled using

P _ AP _ ; T ST __ . . . 3 ..
PAy =ilAy =5, Ay, A2y = m) p; iS obtained by viewing the decision tree threshold as a
1 if i=0, AT | =1, decision boundary, the distance to which constitutes a imarg
=<1 if i=gam)+j, AL | = 3) Cpnsidering the;g margins togethe.r, we can obtain an averag
0 otherwise distance to decision boundary, which is then passed through

a sigmoid function to produce [8, 1]-valued probability. It is
The conditional distributions of the sub-activity and subthese probabilities that are then uniformly quantized itfo

environment transition variableg?” and E°T are dense bins to produce the integer observations — e®.,= 3 if

CPTs and are learnt from data. Once again, we do not specif§.a < p; < 0.3.

particular division of an activity into sub-activities, tet the Thus for each activity and environment we learn a tree

model learn them implicitly. These ‘sub-transition’ vdri@s, (depth one) of boosted classifiers, which implies that the

could for example, enforce the constraint that for someone dimensionality ofO;* is |D4,|, and that ofOF is |Dg,|. In

have performed the activity drive, they must have performexdir current system, the dimensionality ©f' and OF are 8

the sub-activities which might include, getting into a & and3 respectively. The observation model make use of a naive

turning on the engine, driving, and so on. Bayes like implementation, i.e.,
The variablel;, captures the person’s spatial context, where ™
we assumely; € {i ndoor s,out door s,vehi cl e}. Note ' .
€ 4 ) p(02147) = T p(07(i)|47) (4)

that due to the edge betweds) and A;, there can be (both
soft and hard) constraints imposed between the motion state
and the environment. For example, whenever it is the case tadiere,0; (i) is thei'" dimension of the observation at tirke
the environment is in thendoor s or out door s state, we The distribution forp(OF|E;) is defined in a similar fashion.
a priori precludedri vi ng from being a possible value of
the motion type (i.e., it has zero probability). Whenever the
environment is in thevehi cl e state, the motion type may In order to collect data, users were asked to perform a
not be up/ down stairs (but it may bestationary, Vvariety of activities on the University of Washington, Skt
for example). Like the motion state variable, the environmecampus. These activities included walking, running, going
variable is observed during training. The variablgs and EX  up/down a flight of stairs, driving around in a vehicle, etc.
are modeled in a manner similar t4] and A” explained Users were instructed to perform the above activities in a
above. The only difference though, was that we usednatural manner and neither the sequence of activities nor
different set of mapping functiongz and gz in place of f, their durations was choreographed. The users were instfuct
andga. to label the different activities that they performed asythe
In the remaining part of this section, we discuss the featugellected data. This meant that we had frame level labels for
extraction algorithm. The sensor board produces a varidtaining our models. In all, there were 8 participants in the
of signals at different rates. We employ a feature extractiglata collection effort, resulting in about 25 data tracesctE
process developed by our colleagues [1]. Briefly, the sendtace had an average duration of 30 minutes.
sample rates are first normalized by low-pass filtering and/o
up/down-sampling to an appropriate rate so that informaso
not lost. Next, each signal is windowed, and in each signal aln order to evaluate the proposed hierarchical model in
feature vector is extracted, giving us, for each underlyinge different settings, we did the following: In the first expaent,
window, a feature vector of very high dimensionality. Suctve setfa(l) = fg(l) =1 V [. Thus in this case|D,r| =

=1

IV. DATA COLLECTION

V. EXPERIMENTS



|Dgr| = 1. Also |D ysr| = [Dgsr| = 2, which implies that VI. RESULTS

at each time_instant you are .making a p_robabilistig phoice For each trace, accuracy was determined by counting the
bfatween staying the same activity or makmg' a transition (Ig\mper of correctly labeled frames divided by the total nemb

either the same or different activity). In this model eacl fames. we separately determined accuracy in estimating
activity has an geometric duration model and is referred {go horson's motion state and accuracy in estimating the
as the ‘single state model" in the rest of the paper. With the,ironment. The mean and 95% confidence intervals of the

above parameterization, we are making the assumption thafiion state and environment accuracies achieved forrelifte
each activity contains only a single sub-activity, whiciiself. o5 o the 25 test traces are summarized in tables | and Ii
Another parameterization that we tried was to set

Task Adaboost | Single State| Multi State
State Only(Q4) 77.0 £2.5 | 82.0 £2.1 | 84.58 £1.02
4 if 1€ {upstairs, downstairs} Environment Only(Qg) | 82.1 £3.7 | 88.7 +3.7 | 90.90 +1.78
fa(l) =<2 if 1€ {situation assessment from cover} TABLE |
8 OtherWise, COMPARISON OF ACCURACIES FOR DIFFERENT MODELS WHEN MOTIONS
(5) STATE AND ENVIRONMENT ARE ESTIMATED INDEPENDENTLY
and fg(l) = 8 V L. In this case it can seen thab ,r| =
|Dgr| = 8 which implies that each activity/environment can Accuracy | Single State| Multi State
have at mosg components (sub-activities/sub-environments) Motion State | 82.2 +2.1 | 86.10 £0.98
; P . ' Environment | 89.4 +3.3 92.83 +£1.35
The above choice of 4 and fg was motivated by a number of TABLE I

factors including the expected minimum duration of an étgtiv
.. . . RESULTS FOR MODELQ2g 4. BOTH ENVIRONMENT AND MOTION STATE
and the amount of training data available. The above choice
. g . WERE JOINTLY INFERRED
was verified to yield the best performance on a held-out set.
Further, in this experiment, we seb ysr| = [Dgsr| = 3,

ST _ _activi i AST . )
Whelrg;élt _ho m%arllt no S”t_’_ac“"'t{‘ transnmnét =1 Taple | shows the results for independent inference of
would force the model to transition to the next sub-actiaityl activity and environment using various techniques. The col

ST __ H " ) - A
At. - 2 gave the model the freedom to skip the next SUIi’Jmn corresponding to Adaboost gives the results of using
activity. .It important to clearly upderstand _Whya mode_l tee the boosted tree of classifiers to classify each frame, i.e.,
to be given the freedom to skip sub-activities: consider, f akes use of no temporal information [1]. The ‘single state’

example, the process of traveling in a car as a passenger, g, ye| in some sense may be considered as a first step towards
if one of the sub-act|\{|t|es (for driving) is ‘turn on enginthe incorporating temporal constraints (and is closest to thieenit
m(_)de_l trying ‘to explain th_e l?assenggr_data must be c_apablesgte of the art). As it can be seen the single state model
skipping the ‘turn on engine _sub_-actlwty. In‘the follovgrwe improves system performance by abatt for both activity
refer to the above parameterization as thg mu_lt| state d_hodgdnd environment when compared to the system that makes use
In all of the apove, we make use of an identity mapping 'B only Adaboost. This suggests that temporal informatian c
the case ofy, i.e., ga(m) = g (m) = m. help improve performance. The third column shows the result

In the proposed hierarchical model (figure 2), disconnectimf the ‘multi state model'. It can be seen that giving the mode
the link betweenf; and 4; yields two (sub)-graphical models,the freedom to choose sub-states (activities/environshent
one that attempts to infer the context (environment) of & u yields about2.5% improvement in system performance over
and the other which attempts to infer the motion state of thge single state model. In addition, it can be seen that the
user. In figure 2, the part of the model that infers motionestajnulti state model is able to achieve a smaflgf% confidence
alone 24) is shown using a solid bounding box and the parfterval in comparison to other models.
of the model that infers context alon@) is depicted using  Table Il shows the results of the joint inference. Note that
a dashed bounding box. On the other hand keeping the lifgkthe case of Adaboost, as the classifiers for each individua
intact, leads to a model in which motion state and envirortmegtivity/environment are learnt independently, they carire
are jointly inferred 24). jointly estimated. It can be seen here that the multi-state

All of the above models in different settings were implehierarchical model outperforms the single state model lmpab
mented using the Graphical Models Toolkit (GMTK) [10]. In4% for both tasks.
each case, we performed leave-one-out cross validation on
our data set. We trained the binary adaboost classifiers and
discretized the margins of the weak learners, as explaimed i In this paper we have proposed a hierarchical model to
section Ill. These discrete features were then used tolyoinjointly estimate both the context and motion state of a perso
learn all the parameters of the graphical model. The mod&le have shown that modeling temporal dependencies can
were then evaluated based on the Viterbi output on the téstlp improve system performance. Further, we have also
trace. shown that it is advantageous to break a complex activity int

VIlI. CONCLUSIONS ANDFUTURE WORK



simpler/smaller sub-activities and then build models farse
sub-activities. Finally we have shown that jointly estimgt
both the motion state and context of a person performs better
than individual estimation.

In future we plan on using the proposed hierarchical models
to jointly recognize a persons activities, environment &gl
location. We also intend to investigate other approaches to
feature extraction such as Neural Networks (with approgria
regularization).
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