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Abstract— In this paper we propose a hierarchical dynamic
Bayesian network to jointly recognize the activity and environ-
ment of a person. The hierarchical nature of the model allows
us to implicitly learn data driven decompositions of complex
activities into simpler sub-activities. We show by means of
our experiments that the hierarchical nature of the model is
able to better explain the observed data thus leading to better
performance. We also show that joint estimation of both activity
and environment of a person outperforms systems in which
they are estimated alone. The proposed model yields about10%

absolute improvement in accuracy over existing systems.

I. I NTRODUCTION

In the recent past, advances in wearable sensing and com-
puting devices have made possible the fine-grained estimation
of a person’s activities over extended periods of time [1]. The
interest in human activity recognition stems from a number
of applications that rely on accurate inference of activities
that a person is performing. These include, context aware
computing [2] to support for cognitively impaired people [3],
long-term health and fitness, monitoring and automatic after
action review of military missions.

Bao and Intille [4] used multiple accelerometers placed on a
person’s body to estimate activities such as standing, walking,
or running. Kernet al [5], [6] and Lukowiczet al [7] added
a microphone to a similar set of accelerometers in order to
extract additional context information. One of the drawbacks
of the system in [5], [7] is that they utilize multiple sensors and
measurements taken all over the body. This can often lead to
unwieldy systems with large battery packs. To overcome this,
Lesteret al [1] developed a small low-power sensor board that
is mounted on a single location on the body.

Once a wearable sensor system is in place, the next logical
step is to design algorithms to extract pertinent features from
the sensor streams, and then classifiers that make use of these
features to infer the activities being performed. [1] also showed
how to apply boosting in order to learn activity classifiers
based on the sensor data. However, a common drawback
in all previously proposed approaches is that they feed the
sensor data or features into static classifiers [4], [2], or a
bank of temporally independent HMMs [1]. Further, most
of the previously proposed algorithms [1], [4] do not make
a distinction between ‘complex’ and ‘simple’ activities. In
practice, it might be advantageous to decompose complex
activities into simpler activities that might be easier to learn.

A number of ‘complex’ activities that we perform in our
daily lives can be broken into smaller, simpler activities.For

example, the process of driving a car involves, getting into
the car, turning on the engine, driving, etc. Or getting onto
an elevator, could comprise calling for the elevator, waiting
for the elevator, etc. In this paper we refer to these simpler
activities assub-activities. Intuitively, it might be easier for
the model to learn the simpler sub-activities rather than the
complex ones. In practice though, it is not entirely clear how
a given activity can be split into its constituent sub-activities,
i.e., consider the car example above, we could say that when
a person is in the process of turning on the engine, his motion
state isstationary, on other hand since he is really sitting
inside the car, his motion state could also be classified as
vehicle. Thus, a statistically ideal approach would be to let
the model learn the best constituent sub-activities for a given
activity from the data during training. In this paper, we propose
a hierarchical dynamic Bayesian network that implicitly learns
these sub-activities during training.

Yet another novelty of our work here is the joint estimation
of both the motion state and the environment. In many
situations, the type of activity that we perform is constrained
by our surroundings (environment). For example, if a person
were inside a building, he is very unlikely to be driving a car.
Similarly, it is more likely that a person is going up/down stairs
when indoors rather than when he is outdoors. In this paper, we
propose a model that in addition to estimating the motion state
(activity) of a person, jointly estimates his environment,i.e.,
whether a person is indoors, outdoors or in a vehicle. We also
show how jointly estimating both the state and environment
outperforms systems that estimate them independently.

In addition to the above, this paper describes the models
used in the first NIST evaluations for the DARPA ASSIST
project. While the models proposed here can be applied to
any activity recognition task, we use automatic after-action-
review (AAR) of military missions to explain the models. An
AAR is essentially a summary of a military mission and is
created from memory by the mission leader. It reports on
various activities/incidents that took place during the mission.
As the duration of the mission increases, it becomes difficult
for the leader to remember all the incidents to a significant
degree of detail. The proposed system is supposed to aid the
leader towards creating better summaries of the mission.

In our previous work on the same problem [8], [9], we have
proposed algorithms to jointly infer the activity and location
of a person. These systems make use of information from a
GPS unit in addition to the sensors streams used in this paper.



[9] makes use of a Rao-Blackwellised particle filter, while [8]
makes use of a dynamic Bayesian network in order to track the
activity and location of a person. [8] also shows how virtual
evidence can be used to train an activity recognition system
in a semi-supervised manner (i.e. when labels are missing).
However, the part of the system that infers the users activities
in our previous work is a subset of the models proposed here.

In Section II, we give a brief overview of our sensor
board. Section III describes the proposed hierarchical model
and the feature extraction process. Experiments are described
in Section V, followed by conclusions and future work in
Section VII.

II. W EARABLE SENSORSYSTEM

We make use of the sensor board developed by [1]. It
consists of a multi-sensor board and a Holux GPS unit with
SIRF-III chipset which are connected (using Bluetooth) to an
iPAQ PDA for data storage.

Fig. 1. Multi-sensor board (MSB).

Our customized multi-sensor board shown in Fig. 1 is ex-
tremely compact, low-cost, and uses standard electronic com-
ponents. It weighs only 121gincluding battery and processing
hardware. Sensors include a 3-axis accelerometer, several
microphones for recording speech and ambient sound, photo-
transistors for measuring light conditions, and temperature and
barometric pressure sensors. The overall system is able to
operate for more than 8 hours with a single battery charge.

III. M ODEL DESCRIPTION

Fig. 2 shows two consecutive time slices of the hierarchical
model that is used to jointly infer the activity and environment
of a person. Note that all observed variables are shaded,
deterministic dependences are depicted using solid black lines,
value specific dependences (see equation 1) are shown using
a dot-dash lines and random dependencies are represented
using dotted lines. In this model,At represents the current
activity (motion state),Et the environment,AP

t models the
‘sub-activity’, EP

t models ‘sub-environment’,AT
t , ET

t , AST
t

and EST
t are random variables that turn on when there is

an activity, environment, sub-activity and sub-environment
transition respectively. Note that all variables in the model are
discrete. Also note that in the following, given any random
variable (rv)X, we useDX to denote the domain ofX. For

example,DAt
represents the set of values that the rvAt can

take.
The proposed model exhibits a synchronous hierarchy at

two levels. The first at the activity level, where the activity
observations are explained by the simpler sub-activity vari-
ables, which in turn depend on the activity variables. A similar
hierarchy is also seen at the environment level. In the joint
model, these two levels are synchronized at the activity and
environment levels. The proposed model is in essence a multi-
steam asynchronous dynamic Bayesian network.
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Fig. 2. Graphical model representation of the joint activityand environment
recognizer

As described in section I, we assume that there are
a finite set of states that a person can be in at any
given instant of time. In our current system, these states
include At ∈ {stationary, walking, running,
driving vehicle, going up-stairs, going
down-stairs, situation assessment from
cover, incapacitated}. The above activities were
chosen by NIST/DARPA as relevant to a soldier for AARs.
The interaction betweenAt and the other variables in the
model is defined by

P (At = i|At−1 = j, Et = l, AT

t−1
)

=











P (At = i|At−1 = j, Et = l) if AT
t−1

= 1,

1 if i = j, AT
t−1

= 0,

0 if i 6= j, AT
t−1

= 0.

(1)



where P (At = i|At−1 = j, Et = l) is a dense conditional
probability density that is learnt during training. In comparison
to some of the previous work, here, we model the temporal
dependencies of the bothAt andEt. These allow the system
to capture information such as “it is very unlikely to get into
the driving state right after going upstairs”.

The conditional probability of the transition variableAT
t

given its parents is assumed to be

P (AT

t = 1|AP

t = j, At = l, AST

t = m)

=

{

1 if gA(m) + j > fA(l),

0 otherwise.
(2)

where,fA is a mapping from the set of motion states to the
number of sub-activities for each motion state andgA is a
mapping fromAST

t to the increment it causes inAP
t . The

sub-activity variableAP
t is modeled using

P (AP

t = i|AP

t−1
= j, AT

t−1
, AST

t−1
= m)

=











1 if i = 0, AT
t−1

= 1,

1 if i = gA(m) + j, AT
t−1

= 0

0 otherwise.

(3)

The conditional distributions of the sub-activity and sub-
environment transition variablesAST

t and EST
t are dense

CPTs and are learnt from data. Once again, we do not specify a
particular division of an activity into sub-activities, but let the
model learn them implicitly. These ‘sub-transition’ variables,
could for example, enforce the constraint that for someone to
have performed the activity drive, they must have performed
the sub-activities which might include, getting into a vehicle,
turning on the engine, driving, and so on.

The variableEt, captures the person’s spatial context, where
we assumeEt ∈ {indoors,outdoors,vehicle}. Note
that due to the edge betweenEt and At, there can be (both
soft and hard) constraints imposed between the motion state
and the environment. For example, whenever it is the case that
the environment is in theindoors or outdoors state, we
a priori precludedriving from being a possible value of
the motion type (i.e., it has zero probability). Whenever the
environment is in thevehicle state, the motion type may
not be up/down stairs (but it may bestationary,
for example). Like the motion state variable, the environment
variable is observed during training. The variablesET

t andEP
t

are modeled in a manner similar toAT
t and AP

t explained
above. The only difference though, was that we used a
different set of mapping functionsfE andgE in place offA

andgA.
In the remaining part of this section, we discuss the feature

extraction algorithm. The sensor board produces a variety
of signals at different rates. We employ a feature extraction
process developed by our colleagues [1]. Briefly, the sensor
sample rates are first normalized by low-pass filtering and/or
up/down-sampling to an appropriate rate so that information is
not lost. Next, each signal is windowed, and in each signal a
feature vector is extracted, giving us, for each underlyingtime
window, a feature vector of very high dimensionality. Such

high-dimensionality feature vectors are not possible to utilize
directly in a model, and typical approaches either require
dimensionality reducing linear transforms (e.g., principle com-
ponent analysis (PCA), or linear-discriminant analysis(LDA))
or alternatively feature selection. We utilize the approach taken
in [1] to select pertinent features for classification. Essentially,
for each activity we learn boosted one-level decision-treeclas-
sifiers. In other words, for each activity, we learn a collection
of decision trees that each have a depth of unity, and where the
next decision tree is obtained via boosting. Since the treesare
of depth one, we can also view each tree as a simple threshold
detector. Each decision tree essentially acts as a weak-learner,
alone incapable of making an accurate detection decision, but
when combined with kindred classifiers, capable of making
highly accurate decisions. This collection of decision trees for
each activity is then used to produce a final event detection
probability0 ≤ pi ≤ 1 for activity i. The detection probability
pi is obtained by viewing the decision tree threshold as a
decision boundary, the distance to which constitutes a margin.
Considering these margins together, we can obtain an average
distance to decision boundary, which is then passed through
a sigmoid function to produce a[0, 1]-valued probability. It is
these probabilities that are then uniformly quantized into10
bins to produce the integer observations — e.g.,Ot = 3 if
0.2 ≤ pi < 0.3.

Thus for each activity and environment we learn a tree
(depth one) of boosted classifiers, which implies that the
dimensionality ofOA

t is |DAt
|, and that ofOE

t is |DEt
|. In

our current system, the dimensionality ofOA
t and OE

t are 8
and3 respectively. The observation model make use of a naive
Bayes like implementation, i.e.,

p(OA

t |A
S

t ) =

|At|
∏

i=1

p(OA

t (i)|AS

t ) (4)

where,OA
t (i) is theith dimension of the observation at timek.

The distribution forp(OE
t |ES

t ) is defined in a similar fashion.

IV. DATA COLLECTION

In order to collect data, users were asked to perform a
variety of activities on the University of Washington, Seattle
campus. These activities included walking, running, going
up/down a flight of stairs, driving around in a vehicle, etc.
Users were instructed to perform the above activities in a
natural manner and neither the sequence of activities nor
their durations was choreographed. The users were instructed
to label the different activities that they performed as they
collected data. This meant that we had frame level labels for
training our models. In all, there were 8 participants in the
data collection effort, resulting in about 25 data traces. Each
trace had an average duration of 30 minutes.

V. EXPERIMENTS

In order to evaluate the proposed hierarchical model in
different settings, we did the following: In the first experiment,
we setfA(l) = fE(l) = 1 ∀ l. Thus in this case,|DAP

t
| =



|DEP
t
| = 1. Also |DAST

t
| = |DEST

t
| = 2, which implies that

at each time instant you are making a probabilistic choice
between staying the same activity or making a transition (to
either the same or different activity). In this model each
activity has an geometric duration model and is referred to
as the ‘single state model’ in the rest of the paper. With the
above parameterization, we are making the assumption that
each activity contains only a single sub-activity, which isitself.
Another parameterization that we tried was to set

fA(l) =











4 if l ∈ {upstairs, downstairs}

2 if l ∈ {situation assessment from cover}

8 otherwise,
(5)

and fE(l) = 8 ∀ l. In this case it can seen that|DAP
t
| =

|DEP
t
| = 8 which implies that each activity/environment can

have at most8 components (sub-activities/sub-environments).
The above choice offA andfE was motivated by a number of
factors including the expected minimum duration of an activity
and the amount of training data available. The above choice
was verified to yield the best performance on a held-out set.
Further, in this experiment, we set|DAST

t
| = |DEST

t
| = 3,

whereAST
t = 0 meant no sub-activity transition,AST

t = 1
would force the model to transition to the next sub-activityand
AST

t = 2 gave the model the freedom to skip the next sub-
activity. It important to clearly understand why a model needs
to be given the freedom to skip sub-activities: consider, for
example, the process of traveling in a car as a passenger, then
if one of the sub-activities (for driving) is ‘turn on engine’, the
model trying to explain the passenger data must be capable of
skipping the ‘turn on engine’ sub-activity. In the following we
refer to the above parameterization as the ‘multi state model’.
In all of the above, we make use of an identity mapping in
the case ofg, i.e., gA(m) = gE(m) = m.

In the proposed hierarchical model (figure 2), disconnecting
the link betweenEt andAt yields two (sub)-graphical models,
one that attempts to infer the context (environment) of the user
and the other which attempts to infer the motion state of the
user. In figure 2, the part of the model that infers motion state
alone (ΩA) is shown using a solid bounding box and the part
of the model that infers context alone (ΩE) is depicted using
a dashed bounding box. On the other hand keeping the link
intact, leads to a model in which motion state and environment
are jointly inferred (ΩEA).

All of the above models in different settings were imple-
mented using the Graphical Models Toolkit (GMTK) [10]. In
each case, we performed leave-one-out cross validation on
our data set. We trained the binary adaboost classifiers and
discretized the margins of the weak learners, as explained in
section III. These discrete features were then used to jointly
learn all the parameters of the graphical model. The models
were then evaluated based on the Viterbi output on the test
trace.

VI. RESULTS

For each trace, accuracy was determined by counting the
number of correctly labeled frames divided by the total number
of frames. We separately determined accuracy in estimating
the person’s motion state and accuracy in estimating the
environment. The mean and 95% confidence intervals of the
motion state and environment accuracies achieved for different
sets on the 25 test traces are summarized in tables I and II

Task Adaboost Single State Multi State
State Only(ΩA) 77.0 ±2.5 82.0 ±2.1 84.58 ±1.02
Environment Only(ΩE) 82.1 ±3.7 88.7 ±3.7 90.90 ±1.78

TABLE I

COMPARISON OF ACCURACIES FOR DIFFERENT MODELS WHEN MOTIONS

STATE AND ENVIRONMENT ARE ESTIMATED INDEPENDENTLY.

Accuracy Single State Multi State
Motion State 82.2 ±2.1 86.10 ±0.98
Environment 89.4 ±3.3 92.83 ±1.35

TABLE II

RESULTS FOR MODELΩEA . BOTH ENVIRONMENT AND MOTION STATE

WERE JOINTLY INFERRED.

Table I shows the results for independent inference of
activity and environment using various techniques. The col-
umn corresponding to Adaboost gives the results of using
the boosted tree of classifiers to classify each frame, i.e.,
makes use of no temporal information [1]. The ‘single state’
model, in some sense may be considered as a first step towards
incorporating temporal constraints (and is closest to the current
state of the art). As it can be seen the single state model
improves system performance by about5% for both activity
and environment when compared to the system that makes use
of only Adaboost. This suggests that temporal information can
help improve performance. The third column shows the results
of the ‘multi state model’. It can be seen that giving the model
the freedom to choose sub-states (activities/environments)
yields about2.5% improvement in system performance over
the single state model. In addition, it can be seen that the
multi state model is able to achieve a smaller95% confidence
interval in comparison to other models.

Table II shows the results of the joint inference. Note that
in the case of Adaboost, as the classifiers for each individual
activity/environment are learnt independently, they cannot be
jointly estimated. It can be seen here that the multi-state
hierarchical model outperforms the single state model by about
4% for both tasks.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper we have proposed a hierarchical model to
jointly estimate both the context and motion state of a person.
We have shown that modeling temporal dependencies can
help improve system performance. Further, we have also
shown that it is advantageous to break a complex activity into



simpler/smaller sub-activities and then build models for these
sub-activities. Finally we have shown that jointly estimating
both the motion state and context of a person performs better
than individual estimation.

In future we plan on using the proposed hierarchical models
to jointly recognize a persons activities, environment andhis
location. We also intend to investigate other approaches to
feature extraction such as Neural Networks (with appropriate
regularization).
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