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Abstract

We propose a new set of features based on the temporal statistics
of the spectral entropy of speech. We show why these features
make good inputs for a speech detector. Moreover, we propose
a back-end that uses the evidence from the above features in a
‘focused’ manner. Subsequently, by means of recognition ex-
periments we show that using the above back-end leads to sig-
nificant performance improvements, but merely appending the
features to the standard feature vector does not improve perfor-
mance. We also report a10% average improvement in word
error rate over our baseline for the highly mis-matched case in
the Aurora3.0 corpus.

1. Introduction
As speech recognizers move from pristine laboratory conditions
into challenging real-world environments, noise robustness in
speech recognition has become one of the prominent bottle-
necks. [1, 2] provide a discussion of the potential problems
associated with mis-match between training and testing condi-
tions. One of the issues involved in such a mis-match is accurate
segmentation of the given utterance into speech and non-speech
regions, i.e., word segmentation. Further the presence of back-
ground noise compounds the above problem.

One of the ways to mitigate the above problems is to rely on
a speech/voice activity detector to provide the ASR engine with
accurate segmentations (usually at the word level). Speech end-
point detection in general has been a widely researched area,
and a number of algorithms have been proposed towards solving
the problem. A survey of some of the existing algorithms can
be found in [3, 4, 5, 6]. Speech detectors find application in
almost all areas of speech technology research. In particular,
for speech recognition it is important to remove ‘non-speech’
regions of an utterance as early in the recognition process as
possible. Inspite of its far-reaching implications, the current
state of the art in speech detectors is far from perfect. One of the
problems associated with building robust speech detectors is the
large variability of human speech, which is further complicated
by the similar spectral characteristics of speech and noise.

In this paper we propose two new ideas: A) We propose
a new set of features based on spectral entropy of speech that
can be used to obtain word segmentations; B) we propose a
dynamic bayesian network (DBN) that uses the above features
to achieve ‘focused word segmentation’. In this framework the
evidence from the features is applied at ‘places’ where it can be
best put into effect, resulting in the greatest performance gains.
We show by our experiments that useful acoustic information

This work was funded by NSF under Award ISS/ITR-0326382

might not always be best included in with the standard feature
vector.

2. Mean & Variance of Spectral Entropy
Features

The entropy of a discrete random variableY is defined as

H(Y ) ,

|Y |
∑

i=1

−pi log pi (1)

wherepi , Pr(Y = yi), i = 1, . . . , |Y |. Entropy quantifies
disorder i.e., the less uniform the distribution ofY , the lower
the entropy H(Y). As speech is an information bearing signal,
entropy has been used in the past for end-point detection [4, 5],
though with limited success owing to the variability of entropy
of both speech and noise. In this paper we propose a set of
features that exploit these characteristics.

We first describe how to compute spectral entropy. Given
an utterances(n), we first compute its spectrumSt(k) (kth

spectral component of thetth frame, 0 ≤ k ≤ N
2

) using a
25ms Hamming window at 100Hz.1 The power spectrum of the
frame is then converted into a probability density function

pt(k) =
1

C
log

(

1 + |St(k)|2
)

, 0 ≤ k ≤
N

2
(2)

whereC =
∑N/2

i=0
log

(

1 + |St(i)|
2
)

. The entropy of the re-
sulting density is computed using equation 1 and normalized
by the factorlog(1 + N

2
) so that entropy for thetth frame,Ht

is bounded, i.e,0 ≤ Ht ≤ 1. As explained previously, using
only the spectral entropy as features does not necessarily lead to
robust end-point detection. Therefore, we propose to use tem-
poral statistics of the spectral entropy i.e. the mean and variance
of spectral entropy that produce features more amenable to the
discrimination between speech and noise. Specifically, we com-
pute the mean and variance of the spectral entropy over a win-
dow of speech. We expect the mean of the entropy of speech
to be relatively low, since speech consists of longer steady-state
vowels (low entropy) then spectrally changing consonants (high
entropy). On the other hand, we expect the variance of the en-
tropy for speech to be high, since speech in general is defined
by dynamically changing articulator configurations. For many
types of noise (such as stationary additive colored noise), we
expect that the mean of the entropy to be high (since frames
are likely to have a flat spectrum relative to speech), but we

1Note thatSt(k) is in the complex spectral domain and not the mel-
cepstral domain.



also expect the variance to be low (the spectral entropies from
frame-to-frame are not likely to change nearly as rapidly as that
for speech). Of course, one can design ”adversary noise” to
have spectral properties that exactly match that of speech, but in
real-world settings, it is likely that even such low-order spectral
properties of speech and noise can be used to easily distinguish
the two, given the right feature transformation. We compute
mean and variance of spectral entropy as follows:

µHt
=

1

2M + 1

M
∑

t=−M

HtWt (3)

σ
2

Ht
=

1

2M

M
∑

t=−M

(Ht − µHt
)2Wt (4)

where Wt is an appropriate context window function. To
make the mean and variance more appropriate for modeling us-
ing Gaussians we apply a monotonic transformation,µ̄Ht

=

− log(1−µHt
), σ̄2

Ht
= log σ2

Ht
. We refer toO

′

t =
[

µ̄Ht
σ̄2

Ht

]

asmean and variance of spectral entropy (MVSE) features.
Figure 1 shows two plots depicting the clustering of MVSE

features, generated using the German, well-matched case in Au-
rora3.0, using a1000 ms context window. In the first plot, the
upper left cloud corresponds to the samples from clean speech
while the lower-right cloud corresponds to noisy speech sam-
ples. The second plot presents a summary of cluster points for
all four languages in the Aurora 3.0 corpus. Each point in the
plot was generated by computing the MVSE features for each
language and then computing the center of the cluster in feature
space. It can be seen that the separation is language indepen-
dent.
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Figure 1: Cluster Plots of MVSE features.

2.1. Speech Detection using MVSE features

One way to design a speech detector is to first compute
E(µHt

|σ2

Ht
) using linear regression, and then project the

MVSE feature values for each frame onto this line. The ori-
gin is fixed at the center of the line joining the point with highest
mean, lowest variance and the point with lowest mean and high-
est variance of spectral entropy. The distance (dt) of the projec-
tions from this new origin is computed along the line. The result
of the above procedure for the utterancev12350c4_c1 from
the Aurora 3.0 corpus is shown in figure 2. The MVSE features
were computed using a300 ms context Hamming window. Fig-
ure 2 shows the spectrogram of the utterance, the probability
of speech obtained manually by listening to the same utterance
recorded using a close-talk microphone (i.e,̇ v12350c4_c0)
and a plot ofdt as a function of time. It can be seen thatdt

tends to be positive for speech frames and negative for non-
speech frames. It should however be noted that the threshold

for dt needs to be learned from a training set. In Section 4 we
propose one the ways of doings so.
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Figure 2: Illustration of A) spectrogram of an utterance; B)
ground truth probability of speech; and C) output of a simple
classifier using MVSE features.

One approach of evaluating the performance of the above
speech detector is to score its output against ground truth. How-
ever in this paper, we propose to use the MVSE features in an
ASR system. In the remaining part of this paper we describe
our ASR experiments.

3. MVSE Features for ASR
3.1. Baseline System

We use the Aurora 3.0 corpus for all experiments in this paper.
We first extract MFCC features using a25ms Hamming win-
dow at100 Hz with a bank of mel-filters between64 Hz and
4000 Hz. Delta and acceleration coefficients are appended re-
sulting in a39 dimensional feature vector which was then mean-
variance normalized and filtered using a2nd order ARMA filter
yielding MVA feature vectors. In the past, the MVA features
have been shown to have promising performance [7]. The back-
end is shown in figure 3 and consists of whole word models with
16 states per word, 3 states for silence, 1 state for short pause
and 16 components per state. The model was implemented us-
ing the Graphical Models Toolkit (GMTK) [8, 10]. We refer to
this model as theB-Model. A detailed description of the vari-
ables in the B-Model and their dependencies may be obtained
in [8]. It is however important for our discussion in this paper to
note that the random variable word (W) is set to the word that
is currently being decoded. The results of the baseline system
are shown in the row corresponding top(MVA |Qt) in Table 1.
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Figure 3: Baseline Model



3.2. MVSE Features for ASR

Recall from Section 1 that one of the problems encountered by
a recognizer in noisy environments is accurate word segmen-
tation. Thus if the MVSE features are available to the recog-
nizer, it can potentially lead to a more accurate segmentation
and hence improved performance. As a first attempt to incorpo-
rate MVSE features into an ASR system, they were appended
to the MVA features resulting in a41 dimensional feature vec-
tor. The model is similar to the one used for the baseline system
(figure 3), except for the increased dimensionality of feature
stream. We refer to this model asMVSE-Model.

The results of MVSE-Model are shown in the row corre-
sponding top(MVA,MVSE|Qt) in Table 1. It can be seen
that for all languages and testing conditions, appending the
MVSE features to MVA features leads to a drop in perfor-
mance, which seems counter-intuitive. A number of differ-
ent hypothesis might explain these results: A) word segmen-
tation is not a problem in noisy conditions; or B) the segmenta-
tions resulting from MVSE features are not accurate; or C) the
model is unable to accurately capture the dependency between
the MVSE features and variable in the model that most effects
speech/non-speech decision, namelyW. Ideally we would ex-
pect the MVSE features to influenceW in such a way that it is
more likely to be in one of the silence or speech states depend-
ing on their value. In the following section we show that indeed
reason (C) is the cause for the drop in performance and present
further analysis of these results in Section 4.3.
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Figure 4: Focused Word Segmentation

4. Focused Word Segmentation
The MVSE features encode information on the state of a given
frame i.e., speech or non-speech. Figure 4 shows three ab-
stracted dependence graphs within a single temporal frame in
an ASR system. The top graph indicates that the MVSE fea-
tures are likely to be quite related to a window of MVA fea-
tures. In fact, it is likely that since MVA features retain spectral
information, several frames of MVA features could be used to
exact accurate estimates of MVSE features. Because of this,
a system represented by middle figure might be less likely to
help since information about speech/non-speech events in the
MVSE features is likely to be treated essentially as either re-
dundant or noise when related jointly with the MVA features to
the phone variable. Therefore, it will be difficult to capture the
dependency betweenW and the MVSE features. We propose a
model similar to the third graph, where the MVSE features are
directly focused on the word variable making it easier to cap-
ture the appropriate relationship. We provide further analysis to
support the above claim in Section 4.3.

Figure 5 shows the model that implements the above idea.
We refer to this as theF-Model. In this model the evidence from
the MVSE features is ‘focused’ onW having direct effect on the
segmentation and thus the name “focused word segmentation”.

In this setting the MVSE features can also be thought as virtual
evidence onW [9]. It is not difficult to show that above F-
model can be implemented using the classical HMM with twice
the number of states (as without the MVSE features) and semi-
tied products of Gaussian mixtures. This not only leads to in-
creased computational complexity but also complications due
to increased number of parameters. However in case of our pro-
posed model no such complications arise.

      :Word-

Transition

   :Acoustic

  Features

:Phone

       :Word-

Position

:Word

    : :Phone-

 Transition

=1

:MVSE

:Speech-
Indicator

Figure 5: Proposed Model: “Focused Word Segmentation”

In the F-Model, if the MVSE features cause a particular
frame to be classified as speech, this would make the assign-
ments ofW corresponding to the speech states more likely than
silence states. The dependency betweenW and the variable
speech-indicator (SI) is a deterministic one mapped using

p(SI |W) =

{

1 if W ∈ speech-states
0 if W ∈ non-speech-states

(5)

The dependency betweenSI and the MVSE observations is a
random one and is modeled usingp(O

′

t|S
I) ∼ N(µs′ , Σs′),

whereµs′ is a2 × 1 vector,Σs′ is a full-covariance matrix of
size2 × 2 ands′ ∈ {Speech,Silence}. The advantage of the
above model is that the speech detector (MVSE output distri-
bution) and the MVA output distribution can be jointly trained
within the same framework.

4.1. Experiment Details

Having accurate word segmentations will aid the training of the
MVA output observation distributions. However, as a first step
in this paper, we only apply evidence from the MVSE features at
the time of decoding. For all ASR experiments the MVSE fea-
tures were generated using a300 ms Hamming window. Train-
ing the F-Model involves a two step process. We first train
whole word models (B-Model) using only the MVA features as
detailed in Section 3.1. In the second step, we train the MVSE
observation distribution in the F-Model. The MVA observation
distribution and the transition probabilities obtained in the first
stage are used in the F-Model but are held fixed during the sec-
ond stage of training. Also the scale (exponent on the likelihood
of the output distribution) of the two output distributions is set
to 1. The second stage of training usually converged within 6
iterations.

To test the MVSE-Model, we use two setups. In the
first set of experiments we set the scale on both the MVA
and MVSE output distributions to1 and is referred to as
p(MVA |Qt), p(MVSE|Wt). In the second set of experiments,
we set the scale of the MVA output distribution to1, but vary



German Spanish Danish Finnish
HM MM WM HM MM WM HM MM WM HM MM WM

p(MVA |Qt) 88.85 90.04 96.11 91.04 94.96 97.47 80.53 84.89 94.51 88.48 88.17 93.57
p(MVA,MVSE|Qt) 88.71 89.75 95.95 88.72 92.91 96.04 79.55 84.60 94.09 86.22 85.13 92.60

p(MVA |Qt), p(MVSE|Wt) 91.03 90.41 96.15 91.48 95.03 97.42 81.56 85.59 94.38 89.51 88.47 93.67
p(MVA |Qt), (p(MVSE|Wt))

S 91.52 90.79 96.32 91.72 95.05 97.50 81.59 85.59 94.57 89.81 88.57 93.80

Table 1: Results on Aurora 3.0 corpus: HM - Highly Mis-Matched, MM - Medium Mis-Matched, WM - Well Matched.

the scale of the MVSE output distribution from0.1 to 1.0 in
steps of0.1 and from1.0 to 10.0 in steps of1.0 and is referred
to asp(MVA |Qt),

(

p(MVSE|Wt)
)S

.

4.2. Results

The results of thep(MVA |Qt), p(MVSE|Wt) experiment are
shown in Table 1. As it can be seen, simply applying the MVSE
features as evidence on the word variable during decoding re-
sults in improvement in word accuracy(WA). In the German
HM case a20% relative improvement in WER, in the spanish
HM case a5.5% relative improvement in WER over our MVA
baselines were obtained. There was however a decrease in WA
in danish and spanish WM cases.

The best results obtained in the
p(MVA |Qt),

(

p(MVSE|Wt)
)S

experiment are shown in
Table 1. The optimum scale factors for the HM, MM and WM
cases were5, 0.3 and0.5 respectively. It can be seen that here
all languages and cases show an increase in WA over the MVA
baseline.
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Figure 6: Degradation in WA with reduced training set.

4.3. Analysis

It was claimed in Section 4 that the F-Model is in a better posi-
tion to capture the dependency between the MVSE features and
W in comparison to the MVSE-Model. In the MVSE-Model,
the MVSE features are related toW only indirectly through
the phone variable. This is in essence a statistical estimation
problem, i.e., if we had an infinite amount of training data and
more hidden states the MVSE-Model could capture the depen-
dency. To lend evidence to this hypothesis we did an experiment
where the B-Model, MVSE-Model and F-Model were trained
on reduced training sets. Figure 6 shows the results of this ex-
periment; with a reduced training set the performance of the
MVSE-Model degrades more rapidly in comparison to the B-
Model and the F-Model.

5. Conclusions
In this paper, we have proposed a set of features that can be used
to build a speech/non-speech classifier. We also proposed a new
model based on the general paradigm of focused addition of ev-
idence. The results show that lumping together a number of dif-
ferent feature vectors with promising individual performances,
does not always lead to increase in WA. We have shown that one
of the reasons for this is the inability of the model to capture the
dependency between the observations and the ‘correct’ hidden
variables given finite amount of training data. The results also
suggest that independent improvements in either the front-end
or back-end of an ASR engine do not always lead to improved
performance. An improved front-end needs to be coupled with a
improved back-end that can put the improved front-end to good
effect.
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