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Abstract

Shotgun proteomics is a high-throughput tech-
nology used to identify unknown proteins in a
complex mixture. At the heart of this process
is a prediction task, the spectrum identifica-
tion problem, in which each fragmentation
spectrum produced by a shotgun proteomics
experiment must be mapped to the peptide
(protein subsequence) which generated the
spectrum. We propose a new algorithm for
spectrum identification, based on dynamic
Bayesian networks, which significantly out-
performs the de-facto standard tools for this
task: SEQUEST and Mascot.

1 Introduction

Shotgun proteomics is the dominant technology used
to identify which proteins are present in a cell or tis-
sue sample, and is widely used in the biological sci-
ences (Marcotte, 2007; Steen and Mann, 2004). At the
heart of shotgun proteomics is a machine learning prob-
lem. Proteins are broken down into small fragments,
called peptides. Although shotgun proteomics cannot
directly determine the sequence of these peptides, the
technology can rapidly generate indirect information
about peptide sequences, called fragmentation spectra.
The task of identifying the peptide string responsible
for generating an observed fragmentation spectrum is
known as the spectrum identification problem. This
problem is similar in form to speech recognition, in
which a spoken utterance (fragmentation spectrum) is
mapped to its corresponding natural language string
(peptide sequence).

This paper applies dynamic Bayesian networks (DBNs)
to the spectrum identification problem. We draw on
ideas from the graphical models community to build
an algorithm for spectrum identification which is sig-
nificantly more accurate than the most popular tools

in wet-lab use, SEQUEST (Eng et al., 1994) and Mas-
cot (Perkins et al., 1999), as well as other represen-
tative tools which have been proposed for spectrum
identification. We call our algorithm Didea1.

2 Background

Spectrum identification is a machine learning problem,
but like many problems in computational biology, one
which has a high barrier to entry for computer scientists.
Therefore, we present a self-contained introduction to
shotgun proteomics, explaining how peptides generate
fragmentation spectra (Section 2.1). One of the reasons
for using a dynamic Bayesian network is that it allows
us to use qualitative knowledge about the physics of
peptide fragmentation (in the structure of the DBN)
and a small number of trainable parameters to improve
predictive power.

We review the literature on spectrum identification,
which falls into two broad categories: database search
(Section 2.2) and de novo identification (Section 2.3).
Database search uses additional biological information
about the sample being analyzed to constrain the statis-
tical complexity of spectrum identification. Database
search is more accurate than de novo, and is the pre-
ferred technique in practice (Kim et al., 2010). The two
most popular tools in wet-lab practice, SEQUEST and
Mascot, are both database search tools, as is Didea.

2.1 Shotgun Proteomics

A typical shotgun proteomics experiment proceeds in
three steps, as illustrated in Figure 1(a). The input to
the experiment is a collection of proteins, which have
been isolated from a complex mixture. Each protein
can be represented as a string of amino acids, where the
alphabet is size 20 and the proteins range in length from
50--1500 amino acids. A typical complex mixture may

1A portmanteau of the words ’Dynamic’, ’Peptide’, and
’Algorithm’.



(a) The three steps---(1) cleaving proteins into peptides, (2)
separation of the peptides using liquid chromatography, and
(3) tandem mass spectrometry analysis.
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(b) Red ticks indicate where we expect to detect ions from
the fragmentation of peptide EAMCGHN.

Figure 1: The schematic for a typical shotgun proteomics experiment (a), with an example of a real fragmentation
spectrum annotated by the theoretical spectrum, in red, of a candidate peptide EAMCGHN (b).

contain a few thousand proteins, ranging in abundance
from tens to hundreds of thousands of copies.

In the first experimental step, the proteins are digested
into peptides, or protein subsequences, using a molec-
ular agent called trypsin. On average, the length of
the peptides for the model organisms we consider is
14-15, with no peptides being longer than 50 amino
acids. Digestion is necessary because whole proteins are
too massive to be subject to direct mass spectrometry
analysis without using very expensive equipment. In
the second experimental step, peptides are subjected
to a process called liquid chromatography, in which
the peptides pass through a thin glass column that
separates the mixture of peptides based on a particular
chemical property (e.g., hydrophobicity). This sepa-
ration step reduces the complexity of the mixtures of
peptides going into a mass spectrometer. The third
experimental step, which occurs inside the mass spec-
trometer, involves two rounds of mass spectrometry.
Approximately every second, the device analyzes the
population of approximately 20,000 intact peptides
that most recently exited from the liquid chromatog-
raphy column. Then, based on this initial analysis,
the machine selects five distinct peptide species for
fragmentation. Each of these fragmented species is
subjected to a second round of mass spectrometry anal-
ysis. The resulting ‘‘fragmentation spectra’’ are the
primary output of a shotgun proteomics experiment.

A fragmentation spectrum is shown in Figure 1(b). We
explain how such a spectrum is generated using a con-
crete example. Assume that, from the population of
20,000 intact peptides, we isolate a distinct peptide
species: a collection of peptide molecules, each with
sequence EAMCGHN. Each peptide molecule has extra
protons, which allows it to be isolated and accelerated
using magnetic fields. Molecules with extra protons
are called ions; the number of extra protons, its charge.
These isolated peptide molecules are collided into a

neutral gas, which causes each molecule to break, typ-
ically along one of the amino acid bonds at random.
For a peptide of length n, there are n− 1 bonds which
can be broken, each yielding a (prefix, suffix) pair: e.g.,
(E, AMCGHN), (EA, MCGHN), . . ., (EAMCGH, N).
When an amino acid bond is broken, the extra protons
migrate to either the prefix or suffix, at random. The
charged prefix is called a b-ion; the charged suffix is
called a y-ion. Collectively, the ionized products of
fragmentation are called product ions. We assume all
product ions are either b- or y-ions. The sequence of
peptides or product ions cannot be directly measured,
but we can measure how often product ions with a par-
ticular mass-to-charge (m/z) ratio are detected. These
measurements are represented in a plot with m/z (mea-
sured in Daltons) on the horizontal axis and intensity
(unitless, but roughly proportional to ion abundance)
on the vertical axis.

Real fragmentation spectra are noisy. The isolation of
peptide species is imperfect, so fragmentation spectra
can contain product ions from peptides with different
sequences (chimeric spectra). Mass analyzers can mea-
sure subatomic mass differences, so even the smallest
unfiltered contaminant adds noise to the fragmenta-
tion spectrum. Product ions without charge cannot
be detected, and we do not always know how many
protons are adopted by a product ion---i.e., variable
charge. There are a host of secondary fragmentations
and degradations of product ions, which are measured.
Finally, intensity measurements are quite noisy.

The input to the spectrum identification problem is
a fragmentation spectrum, along with the observed
(approximate) mass of the intact peptide whose frag-
mentation produced the spectrum. The output is the
sequence of the unknown peptide, the fragmentation of
which generated the spectrum. A peptide paired with
a spectrum is called a peptide-spectrum match (PSM).



2.2 Database Search

A tandem mass spectrometry experiment produces a
set of fragmentation spectra S = {s1, . . . , sr}. Each
spectrum is also associated with a measurement of
the mass of the unknown peptide which generated the
spectrum, m(si). Let U be the universe of all peptides.
We assume as input a database of possible peptides,
P ⊂ U . The key assumptions behind database search
are that (i) we know the organisms from which the
proteins came from, and (ii) we have a set of all known
proteins for the organism, which can be computed
given the organism’s genome. We need only search
over peptides in P , not all peptides in U . Formally,
spectrum identification is the task of assigning a peptide
pi ∈ P to each spectrum si. Let Ψ : S×P → R denote
a scoring function, where a higher score corresponds to
a higher confidence that a peptide-spectrum match is
correct (i.e., the peptide generated the spectrum).

Since we have measuredm(si), we can further constrain
the search space over peptides to those whose mass is
close to m(si), a set of candidate peptides,

C(si, P , δ) = {p : p ∈ P , |m(p)−m(si)| < δ}, (1)

where m(p) is the mass of the peptide t. In our experi-
ments, we use δ = 3.0 Daltons. The database search
itself involves scoring all candidate peptides, return-
ing the highest scoring one for each spectrum. For
i = 1 . . . r,

pi = argmax
p∈C(si,P ,δ)

Ψ(si, p). (2)

The first computer program to use a database search
procedure to identify fragmentation spectra was SE-
QUEST Eng et al. (1994), whose scoring function is
defined in terms of inner products between the quan-
tized observed spectrum and a theoretical spectrum
φ(p) generated from a simple model of peptide fragmen-
tation. Observed and theoretical spectra are vectors
of real numbers, so a peptide can be compared to a
spectrum using inner products,

XCorr(s, φ(p)) = αx − βx, where

αx = 〈s, φ(p)〉, βx =
1

150

75∑
τ=−75

〈s, φτ (p)〉,
(3)

and where φτ (p) is just φ(p) shifted by |τ | units to the
right (τ > 0) or left (τ < 0). Intuitively, a peptide
is a good match if the observed spectrum s is highly
correlated to the theoretical spectrum (αx high), but
not to shifted versions of the theoretical spectrum (βx
low). Didea’s scoring function has an analogous α− β
representation, where the analogues of correlation (α)
and cross-correlation (β) are calculated using graphical
model inference (Section 3.2).

There are a number of different tools for database
search: e.g., SEQUEST (Eng et al., 1994), Mas-
cot (Perkins et al., 1999), OMMSA (Geer et al., 2004),
X!Tandem (Craig and Beavis, 2004), PepHMM (Wan
et al., 2006), Riptide (Klammer et al., 2008), An-
dromeda (Cox et al., 2011), InsPecT (Tanner et al.,
2005) and MS-GFDB (Kim et al., 2010). Separate from
these approaches are post-processors, such as Peptide-
Prophet (Keller et al., 2002) and Percolator (Käll et al.,
2007), which refine the scores of a set of prescored
peptide-spectrum matches, instead of scoring spectra
in a streaming fashion. We note that statistical tools
also exist for identifying proteins from peptide iden-
tifications, which can also refine peptide scores like a
post-processor (e.g., (Li et al., 2010)). Some of the tools
cited do not have implementations available for bench-
marking (e.g., Riptide). Indeed, each of the above
papers supports its predictive power claims by bench-
marking against a representative subset of prior work.
We have opted for a large set of competitors, on a
diverse panel of data sets: SEQUEST, Mascot, MS-
GFDB, OMMSA. SEQUEST and Mascot are the two
most popular tools in wet-lab practice: e.g., each has
been cited over 3000 times in Google Scholar, and both
are commercial products.2 MS-GFDB is a new scoring
tool; the authors have demonstrated superior perfor-
mance on the same kinds of fragmentation spectra that
we study (collision-induced dissociation of tryptic pep-
tides) against many of the tools listed above. OMMSA
is open-source, and readily available. We do not com-
pare against post-processors, as they use information
not available to the other tools.

2.3 De Novo vs. Database Search

Early work on spectrum identification framed the prob-
lem as an exhaustive search over all possible pep-
tides (Sakurai et al., 1984), an approach which came to
be known as de novo spectrum identification, a.k.a. de
novo peptide sequencing (Bafna and Edwards, 2003;
Bandeira et al., 2008; Bartels, 1990; Bern and Goldberg,
2005; Bhatia et al., 2011; Dancik et al., 1999; Danč́ık
et al., 1999; Datta and Bern, 2008; Fischer et al., 2004;
Frank and Pevzner, 2005; Frank et al., 2005; Jeong
et al., 2010). De novo tools select all candidate pep-
tides that are within a mass tolerance of m(si), not just
those peptides that occur in a per-organism peptide
database P .

De novo and database search methods cannot be eq-
uitably compared. Database search uses knowledge
about the organism from which the protein sample is
drawn, as well as knowledge of the proteome of that
organism. De novo does not assume that such infor-

2Mascot is a black box, the details of its spectrum identi-
fication engine, as currently implemented, are proprietary.
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Figure 2: Basic Didea model. Dark gray nodes are ob-
served random variables, light gray nodes are variables
whose value is a deterministic function of its parents,
and unshaded nodes are hidden random variables. Bold
circles indicate vectors of random variables.

mation is available. De novo searches over peptides
in C(si, U, δ); database search searches over peptides
in C(si, P , δ), where for any reasonable value of δ,
|C(si, P , δ)| � |C(si, U, δ)|.

3 Generative Model of Peptide
Fragmentation

Didea encodes much of the physical process of peptide
fragmentation by collision-induced dissociation within
a dynamic Bayesian network. To maximize predictive
performance, we take advantage of the idea of spectrum
shifting (Equation 3) within our model, to derive a
scoring function for peptide-spectrum matches based
on inference within the DBN. The resulting inference-
based scoring function can be viewed as an α−β score,
where instead of dot products, we use the DBN to
induce analogues of correlation and cross-correlation.

Figure 2 shows the basic Didea model; Sections 3.1--3.3
describe all the conditional probability distributions.
Many of the conditional probability distributions are
deterministic, which allows the scoring function to be
computed in polynomial time(Appendix A)

An advantage of Didea is that adding more knowledge
to the model (e.g., Sections 3.4-3.5) yields a new scoring
function without any changes to the code. We just
compute the same posterior on a new model.

3.1 Mapping the peptide to theoretical
product ions

A DBN is a structured probability distribution over
variable-length sequences of random variables, and
is a strict generalization of the more familiar hidden
Markov model (HMM). In Didea, a peptide containing

n amino acids is represented by a sequence of random
variables (At : t = 1 . . . n). Each variable At takes on
the value of one of the 20 standard amino acids. In
database search the peptide is given, so the amino acid
variables are observed: p = (At = at : t = 1 . . . n).
To simplify the main text, we equivalently refer to a
peptide as a sequence of amino acids p = a1a2 . . . an.

In collision-induced dissociation, most of the product
ions are either b- or y-ions. If the peptide p is cleaved
between at and at+1, then the resulting (respectively b-
and y-) product ions are referred to as bt = a1 . . . at and
yt = at+1 . . . an. We use the function c(·) to denote
the charge of a peptide, c(p); the charge of the product
ions, c(bt) and c(yt); and the observed charge(s) of
the fragmentation spectrum, c(s) ⊆ {+1,+2,+3}.3
For now, we assume that c(p) = +2 (two adopted
protons) and that the product ions each adopt one
proton from the peptide during fragmentation, i.e.,
∀t, c(bt) = c(yt) = +1. These charge assumptions
simplify exposition, and are relaxed in Section 3.5.

The structure of the Didea model is shown in Figure 2.
Random variables are grouped into frames, indexed by
t = 0 . . . n. The first frame (frame 0) is referred to as
the prologue; the last frame (frame n), the epilogue.
The variables in the prologue and epilogue do not
themselves correspond to b- or y-ions, but do contain
variables needed to define recursions used to compute
the mass of product ions. For a peptide of length n,
the chunk frame is repeated once for a1, . . . , an−1, in
the same way that variables are repeated in an HMM
to accommodate variable length sequences.

A product ion (a.k.a. fragmentation) spectrum s is a
collection of peaks s = {(xj , hj)}j , where xj is a point
on the mass-to-charge, or m/z, axis (x-axis), and hj is
the corresponding intensity. To check whether the bt
or yt ion appears in the observed spectrum, we need
the mass of each product ion. The neutral masses of
the bt and yt ions are represented by random variables
Nt ≡ m(A1 . . . At) and Ct ≡ m(At+1 . . . An), where
m(·) returns the neutral masses of a sequence of amino
acids. In Didea, the mass of each amino acid is rounded
to the nearest whole Dalton, so that Nt and Ct are
multinomial random variables over the neutral mass
of the bt and yt ions---Nt, Ct ∈ {0, . . . , D} ⊂ Z++. By
definition, N0 = 0 and Cn = 0, so that the masses of the
product ions can be computed recursively: Nt = Nt−1+
m(At), Ct = Ct+1 + m(At). Note that C0 = Nn =
m(A1 . . . An). Unlike HMMs, DBNs can have both left-
to-right and right-to-left arcs (as long as there are no
directed cycles), which allows us to implement the two
recursions in the same model. Since {At}t are observed,

3In our experiments, the mass spectrometer operates in
positive-ion mode, and the reported charge of each spectrum
is either c(s) = +1, c(s) = +2, or c(s) ∈ {+2,+3}.



both Nt and Ct become deterministic random variables:
p(Nt = m(a1 . . . at)) = 1 and p(Ct = m(at+1 . . . an)) =
1.

3.2 Mapping theoretical product ions to the
fragmentation spectrum

We now have the mass of each product ion, and we
have assumed that the charge of each product ion is
+1. To finish the basic Didea model, we need to (i)
encode the spectrum as observed random variables, (ii)
introduce random variables which map from mass and
charge to a specific m/z region in the spectrum, and
(iii) define a conditional probability distribution which
measures the value of finding a peak of intensity h in
the m/z region where a product ion is expected to be.

From the settings used to collect our spectra, we know
that xj ∈ [0, 2000] m/z units. For simplicity, we quan-
tize the m/z scanning range into bins that are 1Da
wide. In Figure 2, the bins correspond to a vector of
random variables S = (Si : i = 1 . . . B = 2000). A
spectrum is an instantiation of the random variables
s = (Si = si : i = 1 . . . B), where each si ≥ 0.

Spectra may differ by orders of magnitude in both total
intensity (

∑
j hj) and maximum intensity (max{hj}).

To control for intensity variation, we rank-normalize
each spectrum: peaks are sorted in order of increasing
intensity, and the ith peak is assigned intensity i/|s|,
so max{hj} = 1.0. If bin i contains no peak, then
si = 0. Otherwise, si is the highest rank-normalized
peak, so si ∈ [0, 1]. We represent the vector of random
variables S using a single, bold-edged node in Figure 2.

Each repetition of the chunk frame represents one
pair of b- and y-ions, denoted (bt, yt). The random
variables Bt, Yt ∈ {1, . . . B} represent, respectively,
the bin where the bt and yt ions are to be expected.4

We want to be able to shift the theoretical spectrum,
in much the same fashion as Equation 3. We do so
using the discrete random variables τt ∈ [−M . . .+M ],
for some M ∈ {1 . . . B} (we use M = 37). We expect
to see a peak corresponding to the bt ion in SBt , and
a peak corresponding to the yt ion in SYt . The mass-
to-m/z mappings are Bt = round(Nt + 1) and Yt =
round(Ct + 19), where 1 is the mass of a proton, and
19 the mass of a proton plus a water molecule. τt shifts
all the theoretical product ion peaks. To ensure that
Bt, Yy ∈ [0, . . . B], values less than 1 are changed to
1; values greater than B are changed to B. To ensure
that all the product ion peaks are shifted by the same
amount, we copy the value of τ0 from the prologue
frame into each subsequent one: ∀t = 1 . . . n, τt = τt−1.

4Since there is no ambiguity, we also use bt and yt to
represent assignments to random variables, Bt = bt and
Yt = yt.

As will be seen in Equation 6, to mimic the arithmetic
average over shifts in the background term in XCorr,
we assume that τ0 is uniformly distributed over all
shifts, p(τ0) = (2M + 1)−1.

Most of the conditional probability distributions in
Figure 2 are deterministic, which leads to a concise
form for the joint distribution. For now, we refer to
the contribution of a spectrum peak to the likelihood
as non-negative function g:

p(τ0, s,p) = p(τ0)

n−1∏
t=1

B∏
i=1

g(S, i, bt, yt, τt), (4)

g(· · · ) , P (Si | bt, yt, τt)1(i=bt+τt∨i=yt+τt). (5)

Equation 4 is the likelihood of the model in Figure 2.

The values of Bt and Yt, for each t, are deterministi-
cally determined from the peptide sequence. Assign-
ment {Bt = bt}t forces the model to assign some score,
based on the intensity of the peaks found in {Sbt}t (like-
wise with {Yt = yt}t). The choice of P (Si | bt, yt, τt)
determines how the spectrum influences the score; de-
tails are deferred to Section 3.3.

One way to use the proposed model to score a PSM
would be to set τ0 = 0 and use Equation 4, which
would be analogous to dropping the βx term in XCorr.
Instead, to achieve an analogue to XCorr, we propose a
score that can be interpreted as the difference between
the Didea analogues of spectrum correlation (αd) and
cross-correlation (βd):

θ(s,p) , log p(τ0 = 0 |p, s) = αd − βd,
αd = log p(τ0 = 0,p, s),

βd = log p(τ0)
∑
τ0

p(p, s | τ0).
(6)

Both αx and αd are biased, assigning higher scores to
spectra that tend to be close matches to many peptides
(e.g., spectra with more non-zero peaks will tend to
have higher α, regardless of which peptide is evaluated
against it). The βd term, like the βx term, penalizes
spectra which tend to match many peptides, which is
why α− β scores tend to be more discriminative than
α. Equation 6 is a (posterior) probability; Equation 3
is not probabilistic.

3.3 Modeling spectrum peak intensity

Here, we define Equation 5, which determines the in-
fluence of the spectrum on the likelihood, and thus the
PSM score θ(s,p). The cost of inference is proportional
to the number of times P (Si | bt, yt, τt) is evaluated.
Since the spectrum is fixed across all t = 1 . . . n − 1,
the values of P (Si | bt, yt, τt), for all (Si = si, bt, yt, τt),
can be precomputed and stored in a lookup table:



w : {1 . . . B} → R+, a transformation of the spec-
trum into non-negative weights. When a predicted
product ion matches peak si in the spectrum, w(i) is
the contribution of that peak match to the PSM score.

In a graphical model, any conditional probability dis-
tribution on discrete variables can be reparameterized
into a lookup table using virtual evidence (Pearl, 1998),
allowing us to re-express Equation 4 as

p(τ0,p, s) ∝ p(τ0)

n−1∏
t=1

w(Bt + τt)w(Yt + τt), (7)

where w(i) = f(si), for user-chosen transformation f >
0. Logically, we prefer to match theoretical product
ions to higher intensity peaks in the observed spectrum.
Our experiments with f focused on scaled and shifted
exponential distributions, restricted to [0, 1], since si ∈
[0, 1]. Based on these experiments, a class of f which
performs well on a wide variety of data sets is

fλ(S) = 1− λe−λ + λe−λ(1−S). (8)

The parameter, λ > 0, dictates the value placed on
matching higher intensity peaks in the scoring function.
The larger λ is, the higher the preference for matching
b- and y-ions to high intensity peaks. There is no
simple threshold for determining peak relevance based
only on intensity; a PSM can have a high score even
if most of the peaks identified are of low intensity.
The unusual form of fλ came out of an attempt to
use exponential distributions to model peak intensity.
Since fλ(S) is nearly log-linear on [0, 1], one can instead
use f ′λ2

(S) = exp(λ2S), where λ2 > 0 is chosen to make
f ′(λ2) ≈ fλ. We get slightly better results using fλ.

To optimize λ with respect to θ(s,p), we use a grid
search on a development set of 1000 yeast spectra;
λ = 0.5 yielded the best results. λ acts as a tuning
parameter for soft peak filtering. Both SEQUEST and
MS-GFDB have to decide whether a peak is relevant
before scoring, which can affect which PSM is selected.

3.4 Modeling fragmentation of charge +3
peptide ions

Thus far, we have assumed that the precursor ion has
two protons, which are divided equally between prod-
uct ions. However, electrospray ionization frequently
produces peptide precursor ions with more than two
protons (Trauger et al., 2002). That is, the charge of
the spectrum is higher than +2. In this section, we
extend Didea to model the fragmentation of charge +3
peptides.5

5It is possible for electrospray ionization of tryptic pep-
tides to produce peptide ions with a higher charge than +3,

Here, we have that c(p) = +3, with c(bt) and c(yt)
denoting the charges of the product ions. Since charge
is conserved in fragmentation we have ∀t, c(p) = c(bt)+
c(yt). The charge of bt is modeled as a multinomial
ξt ∈ {0,+1,+2,+3}. It is unusual for a product ion to
consume all the protons, and uncharged products are
not detectable. In the absence of prior knowledge, we
assume that the remaining choices are equally probable,
p(ξt = +1) = p(ξt = +2) = 0.5. Figure 3(a) is the
model for charge +3 peptide ions.

The definition of the scoring function, Equation 6,
remains unchanged. The inference still uses
log p(τn = 0 |p, s) as the score of a PSM. However,
the values of αd and βd change, because the joint dis-
tribution over PSMs has changed:

pch3(τ0,p, s) ∝ p(τ0)

n−1∏
t=1

∑
ξt

p(ξt)Ω(t), (9)

Ω(t) = [w(Bt(Nt, ξt) + τt)w(Yt(Ct, ξt) + τt)] ,

Bt(Nt, ξt) = round ((Nt + ξt)/ξt) , (10)

Yt(Ct, ξt) = round ((Ct + 18 + ξt)/ξt) . (11)

Equations 10--11 are the mass to quantized m/z map-
pings for b- and y-ions. For each pair of ions (bt, yt),
inference integrates over all divisions of the charge.

SEQUEST has a very different treatment of charge-
variants of product ions. The theoretical spectrum
in SEQUEST consists of the union of peaks where
c(bt) = +1 and c(bt) = +2. As a thought experiment,
consider what peaks need to be in the observed spec-
trum to maximize the SEQUEST score. The αx term
is maximized when all the theoretical peaks appear
in the spectrum; the βx term is minimized when no
shifted version of the spectrum matches the theoretical
peaks. To maximize the SEQUEST score, the observed
spectrum would have to contain all peaks correspond-
ing to all charge variants of the product ions, except
those that would contribute significantly to the βx
term. There can be an exponentially large gap between
the number of peaks in the SEQUEST theoretical spec-
trum, and the observed spectrum. In contrast, our
approach averages the score over all 2n−1 assignments
to ξ = (ξ1 . . . ξn−1).6 Each assignment to ξ corresponds
to a particular combination of product ion peaks. Max-
imizing the score with respect to a peptide does not
make the assumption that all charge-variants of the

though doing so depends both on the mass spectrometer,
and properties of the peptide (Kinter and Sherman, 2000,
p. 69). Our data does not include such spectra, but it
is straightforward to extend the model described here to
charge > +3 spectra.

6Because of conditional independencies in Figure 3(a),
p(ξ) factors such that integrating over ξ is done in O(n)
time.
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charged spectra (Section 3.5)

Figure 3: Didea models which are used to handle
multiply-charged spectra (a) ξn is the charge of the
b-ion. (b) κ0 is a Bernoulli random variable over spec-
trum charge {+2,+3}, and is copied in each frame,
∀t, κt = κ0.

product ions exist in the spectrum. In our approach,
if many possible peaks are missing from the spectrum,
then p(ξ) will get smaller as the disagreement between
ξ and the spectrum increases. It is possible for p(ξ) to
be infinitesimally small for all but a few values of ξ.
That is, a high score can be achieved even if only a few
ξ have significant probability.

3.5 Multiply-charged spectra

Electrospray ionization routinely produces peptide pre-
cursor ions where charge c(s) ∈ {+1,+2,+3}. When
c(s) = +1, the spectrum is referred to as singly-charged;
when c(s) = +2, the spectrum is referred to as doubly-
charged; when c(s) has more than one possible value, we
are unable to distinguish which charge with certainty,
and the spectrum is referred to as multiply-charged.7

Existing database search algorithms analyze multiply-
charged spectra by doubling the amount of computa-
tion Eng et al. (1994). Each peptide-spectrum match
is searched at c(s) = +2 and again at c(s) = +3, and
the higher scoring match is used. If Ψc is the search
algorithm specialized to charge c, replace Equation 2
with

p∗ = argmax
p∈C(m,P,δ)

max
c∈{+2,+3}

Ψc(s, p). (12)

We could do the same search over charges with Didea.
Evaluating θ(·, ·) using Figure 2 corresponds to Ψ+2;
using Figure 3(a) corresponds to Ψ+3. However, a
concern with Equation 12 is that it assumes that the
per-charge scoring functions are calibrated,

Es∼S,p∼P [Ψ+2(s, p)] = Es∼S,p∼P [Ψ+3(s, p)] . (13)

7The only multiply-charged spectra in our data have
c(s) ∈ {+2,+3}. Extending the material of this section to
other forms of multiply-charged spectra is straightforward.

A multiply-charged spectrum is an expression of uncer-
tainty as to the charge state of the precursor. The mass
window in the MS1 step is such that selecting the same
peptide, at different charges, in the same MS2 scan,
is almost impossible. It is not plausible that a single
spectrum represents a mixture of the same peptide at
different charges. So while taking the max of a set of
charge-specific scoring function {Ψc}c allows one to
make identification decisions, it provides no measure
of uncertainty as to a spectrum’s true charge---either
charge +2 or charge +3 is selected, but no distribution
over spectrum charge state can be produced.

Thus, rather than taking a maximum over scores for
different charge states, we alter Didea to model un-
certainty as to the value of c(s). In Figure 3(b) we
introduce a Bernoulli random variable κ0 ∈ {+2,+3},
which is copied into each chunk frame. Moreover,

p(ξt |κt) =

{
p(ξt = +1) = 1.0 κt = +2,

p(ξt = +1) = 0.5 κt = +3,
(14)

We assume no prior knowledge about the distribution
of c(s), p(κ0 = +2) = 0.5. The rest of the parameters
remain unchanged from Section 3.4. When κ0 = +2,
the model is identical to Figure 2. When κ0 = +3, the
model is identical to Figure 3(a). Since κ0 is uncertain,
when θ(·, ·) is computed the score will be an average of
both models. Note, however, that the resulting score
is not the same as averaging the scores output by the
+2 and +3 model. In each frame t > 0, the scoring
inference is using an estimate of the spectrum charge
based on the product ions considered---i.e., p(κt) differs
at each t. We conjecture that p(κn | a1, . . . , an) can be
used as an estimate of the uncertainty in the charge of
the peptide-spectrum match chosen by Didea.

4 Experiments

Evaluating spectrum identification algorithms is com-
plicated by the lack of test data. One cannot collect
realistic spectra from known peptides. Section 4.1 de-
scribes how to estimate absolute ranking curves, which
are the standard approach for comparing spectrum iden-
tification algorithms. We benchmark Didea against a
panel of spectra from three different organisms (Sec-
tion 4.2), presenting results in Section 4.3.

4.1 Evaluation Without Ground Truth

A correct peptide-spectrum match (PSM) (pi, si) is one
where si is the result of the fragmentation of peptide
pi, and an incorrect PSM is any match that is not
correct. Clearly, database search scores vastly more in-
correct PSMs than correct ones. Moreover, evaluation
is greatly complicated by the lack of ground truth. Con-



ceptually, ground truth for a spectrum identification
could be generated by feeding a purified peptide p∗ into
the tandem mass spectrometer. Unfortunately, there is
no way of purifying p∗ to the point where contaminants
are undetectable. Moreover, even if one could run a
pure peptide sample through the mass spectrometer,
the resulting spectrum s∗ would exhibit an unrealisti-
cally low level of noise; the test data would not reflect
a real shotgun proteomics experiment. The standard
solution in shotgun proteomics is to perform an eval-
uation without ground truth: measure the number of
matches at a bound on the false discovery rate (Elias
and Gygi, 2007; Käll et al., 2008).

For any peptide-spectrum match (pi, si) with score
vi, there are two possibilities: either the peptide pi
generated spectrum si, or it did not. We refer to
these events as hypotheses H1 and H0, respectively. If
the scoring function is any good, then we expect the
likelihood of vi to be low under H0, if (pi, si) is the
correct match. We can quantify what ‘‘low’’ means
here using a hypothesis test,

H0 : vi ≤ c, H1 : vi > c, (15)

where the choice of c ∈ R determines the stringency of
the test. Informally, the null hypothesis (H0) is that
the match is incorrect; the alternate (H1) is that the
match is correct.

Characterizing the accuracy at different values of c is
greatly simplified by converting the scores to p-values,
the probability of obtaining a score at least as large as c
under the null hypothesis. Denote the cumulative distri-
bution of scores under the null G0(c) , P(T ≤ c |H0),
where T is a random variable representing the PSM
score. Given PSM scores {vi}i the corresponding p-
values are pi = 1−G0(vi). Computing p-values for a
wide range of scores vi is tantamount to estimating the
null distribution. Estimated p-values {p̂i}i are gener-
ated by replacing the exact (unknown) null distribution
with an estimate Ĝ0(c).

For spectrum identification, a widespread approach
for estimating the null distribution is target-decoy
search (Balgley et al., 2007; Elias and Gygi, 2007; Käll
et al., 2008), in which a second search is performed
against each spectrum using a set of decoy peptides
d ∈ D, each of which could not have generated the
spectrum. The original peptides t ∈ P are referred
to as targets. Under the constraint that P ∩ D = ∅,
decoys are used to generate a sample from the null
distribution

v̄i = max
d∈D

Ψ(si, d), ∀i = 1 . . . r. (16)

The samples {v̄i}i are then used in a Monte Carlo
estimate of the p-values: p̂i is just the fraction of sam-
pled decoy scores that exceed vi. In our experiments,

decoy peptides are generated by randomly permuting
the reference proteome, which induces a set of random
peptides under a trypsin digest.

Since there are r hypothesis tests (spectra), we can
measure the tradeoff between the number of PSMs
that are accepted and the stringency of the threshold
on the score using false discovery rates(Appendix B)
Visually, the tradeoff is represented using an absolute
ranking plot (Figure 4), where each point on the x-
axis is a q value q̃ ∈ [0, 1], a measure of the false
discovery rate Storey (2002), and the corresponding
value on the y-axis is the number of PSMs accepted
at that q-value. At q = 1, all r identifications are
accepted. Because peptide-spectrum matches are often
used as input to another estimation task (e.g., protein
identification or quantification) our concern is with
maximizing performance at small q-values, so we only
plot q ∈ [0, 0.1]. One method dominates another if its
absolute ranking curve is strictly above the absolute
ranking curve for the other method.

From an end-user’s perspective, absolute ranking mea-
sures what they care about: maximizing the number of
spectra identified at their chosen false discovery rate
tolerance.

4.2 Data sets

The spectra we study are generated from complex
proteins samples drawn from three organisms: tryp-
tic digests of a whole-cell lysate of Saccharomyces
cerevisiae (yeast), whole-cell lysate of Caenorhab-
ditis elegans (worm), and liver tissue from Mus
musculus (mouse). The yeast and worm data
are freely available at http://noble.gs.washington.
edu/proj/percolator, with a description of the sam-
ple preparation procedure, liquid chromatography pro-
tocol, and mass spectrometer settings in Käll et al.
(2007).

4.3 Results

Our primary claim is that Didea outperforms compet-
ing systems under absolute ranking, the metric that
end-users actually care about. To support our empirical
claim, we benchmark Didea against competitors. All
algorithms have access to the same peptide database,
created by a fully-tryptic in silico digest of reference
yeast, worm, and mouse proteomes. Candidate pep-
tides are chosen using a mass tolerance of δ = 3.0
Daltons. A static modification is applied to account for
cysteine carbidomethylation in all the algorithms. No
variable modifications to amino acids are permitted. All
spectra are either singly-charged or multiply-charged.
All Didea-type scoring functions preprocess the spectra
using Equation 8 and use exact inference to compute

http://noble.gs.washington.edu/proj/percolator
http://noble.gs.washington.edu/proj/percolator
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Figure 4: Absolute ranking curves on eight different data sets. Didea significantly outperforms all competitors
in (a-f). Didea significantly outperforms all competitors, save MS-GFDB (g-h). If q = 0.05, then the expected
fraction of false discoveries (incorrect PSMs) in the matches accepted is 0.05. The goal is to maximize the number
of spectra identified for q ∈ [0, 0.1].

the PSM score. The details of how all the algorithms
are run is in Appendix C. or Didea, we use the version
of the model which integrates over uncertainty in the
precursor charge (Section 3.5).

The absolute ranking plots for the benchmark are in
Figure 4. At an estimated 1% false discovery rate,
Didea outperforms MS-GFDB. While we often outper-
form MS-GFDB, there are cases where it beats Didea
(Figure 4(g)-4(h)). Surprisingly, Didea is able to beat
MS-GFDB even though it models less of the complex-
ity of peptide fragmentation physics: we use no a-ions,
nor neutral losses, nor do we account for errors in
the m/z measurements in a fragmentation spectrum,
like MS-GFDB does. Even more surprising is that
Didea achieves high predictive power with only one
trained parameter, λ. Even using a coarse grid search,
the chosen value of λ works well across a variety of
data sets. Training λ on a per-organism basis does
not significantly increase the absolute ranking curve
for Didea. Furthermore, we filter no peaks from the
spectrum, even though real spectra are extremely noisy.
In contrast, both SEQUEST and MS-GFDB require
extensive preprocessing of the spectrum to work well.

All spectrum identification tools make an empirical
claim, that their system identifies more spectra at
a given q-value, or range of q-values. We compare
favorably on such evaluations, against a wide range
of competitors, using a relatively simple model and

probabilistic inference.

5 Summary and Future Work

We have formulated a scoring function for spectrum
identification based on a polynomial-time inference in
a dynamic Bayesian network. Didea is significantly
more accurate than both SEQUEST and Mascot, the
primary tools used for this task in real-world use. More-
over, we outperform even recently developed competi-
tors, like MS-GFDB, on many spectra. We anticipate
that adding additional information, e.g., a-ions, neutral
losses, relationships between ion yield and ion compo-
sition, will further improve the accuracy of Didea.

We believe that Didea is suggestive of the promise
of applying techniques popular in speech recognition,
such as dynamic Bayesian networks, to spectrum iden-
tification. For example, natural language processing
often uses a compressed representation of a natural
language corpora, which can be seen as analogous to
compressed representations of a peptide database. Es-
pecially exciting would be a variant of Didea which
replaces database search with direct Viterbi decoding
of the peptide sequence.

Acknowledgements: This work was funded by NIH
awards R01 GM096306 and P41 GM103533.
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Appendices

A Didea Scoring Function

Expressing Equation 6 as the difference between a
foreground term αd and a background term βd is easy:

θ(s,p) , log p(τn = 0 |p, s)
= log p(τ0 = 0 |p, s) (17)

= log
p(τ0 = 0,p, s)∑
τ0
p(τ0,p, s)

= log p(τ0 = 0,p, s)︸ ︷︷ ︸
αd

− log
∑
τ0

p(τ0,p, s).

Equation 17 follows from the fact that τt = τ0 for each
t > 0. Now, consider the background term

βd = log
∑
τ0

p(τ0,p, s) = log
∑
τ0

p(p, s | τ0)p(τ0)

= log(2M + 1)−1
∑
τ0

p(p, s | τ0),

since the prior over shifts p(τ0) = (2M + 1)−1.

In this paper, we use a general-purpose inference engine
for dynamic Bayesian networks (Bilmes, 2011). Doing
so allowed us to (i) rapidly prototype Didea, (ii) show
exact inference is feasible for real-world use on this
model. There are a number of constant-factor opti-
mizations that we have yet to exploit, which could be
exploited by building special-purpose code for scoring.
All that is required is to compute the vector of values
p(τ0,p, s) for each value of τ0, using Equation 7. Nor-
malize the vector to get αd, and divide the sum of the
vector by

∏
t w(t) to get βd. The virtual evidence w(·)

is just a vector of B = 2000 entries, and is computed
as a linear sweep over the quantized spectrum. The
cost of computing w(·) is insignificant, and done only
once per-spectrum.

The above approach yields an polynomial-time al-
gorithm for computing θ(s,p). If there are C =
|C(m,P , δ)| candidate peptides, of average length L,
then the cost of Didea on that spectrum isO(CLM+B).
In general, a full trypsin digest yields short peptides,
so L is not very large. For the worm peptide database,
the average length of a peptide is 14.4 residues; for
yeast, 14.0 residues. The size of C depends on δ, the
mass filtering tolerance. We used a wide tolerance,
δ = 3, to match SEQUEST default settings.

Didea is a graphical model, and we use exact inference.
Exact inference on this model is polynomial-time, and
can be reduced to an algorithm that is very amenable
to code optimization. On a modern processor, the refer-
ence implementation of SEQUEST analyzes 1.89 spec-
tra/sec on the yeast search we studied (Diament and

Noble, 2011); Didea scores 0.79 spectra/sec.8. Highly
optimized variants of SEQUEST can analyze thousands
of spectra per second.

The advantage of using graphical models as a prototyp-
ing language is that we can rapidly explore variations of
Didea which account for additional aspects of peptide
fragmentation, such as multiply charged ions, immo-
nium ions, a-ionization, and other neutral loss events.

B Marginal False Discovery Rates

Since there are r p-values (one per spectrum), we set
the threshold on the number of PSMs to accept using
the marginal false discovery rate (FDR) Storey (2003).
Let FP (τ) be the fraction of incorrect PSMs whose p-
value is at most τ ∈ (0, 1]. Let TP (τ) be the fraction of
correct PSMs whose p-value is at most τ . The marginal
FDR is

mFDR(τ) =
E[FP (τ)]

E[FP (τ) + TP (τ)]
, (18)

where the numerator is approximated by the fraction of
decoys with p-value at most τ , and the denominator is
approximated by the fraction of targets with p-values
at most τ . That is, we assume that E[FP (τ)] ≈ FP (τ)
and E[FP (τ) + TP (τ)] ≈ FP (τ) + TP (τ). Because
mFDR is evaluated only at the p-values corresponding
to {vi}i, the denominator is always non-zero. Note that
mFDR is equal to 1.0 − precision. However, because
mFDR is not necessarily monotonic in τ , we instead
use q-values:

q(τ) = min
t≥τ

mFDR(t). (19)

The trade-off between the number of PSMs that are
accepted and the stringency of the threshold is rep-
resented as a two-dimensional plot, which we call an
absolute ranking plot, in which each point on the x-axis
is a q-value q̃ ∈ [0, 1], and the corresponding value on
the y-axis is the number of PSMs accepted at that q-
value, |{p̂i : q(p̂i) ≤ q̃}|. At q = 1 all m identifications
are accepted. Because peptide-spectrum matches are
often used as input to another estimation task (e.g.,
protein identification or quantification) our concern is
with maximizing performance at small q-values, so we
only plot q ∈ [0, 0.1]. One method dominates another if
its absolute ranking curve is strictly above the absolute
ranking curve for the other method.

8In Didea we count only the cost of inference, which
makes SEQUEST slightly faster than 1.89 spectra/sec in
practice.



C Details of how competitors are run

All algorithms were run with the same intersecting
settings, that is δ = 3.0, the digesting agent consid-
ered was trypsin with 0 missed cleavages allowed, a
fixed modification of Carbamidomethyl, no variable
modifications were allowed, and all algorithms were
allowed to search over charge states +2 and +3. For
all methods aside from Didea, any other settings not
explicitly stated were left to their default values.

• SEQUEST: A freely available implementation of
the SEQUEST v28 algorithm is used, as implemented
in the Crux toolkit (Park et al., 2008). Candidate
peptides are Sp filtered, and the Xcorr score is used.
Spectra are searched using a database search over
charges (Equation 12). Post-hoc score calibration
(Section 3.4) is not part of SEQUEST.

• Didea: All spectra are assumed to be multiply-
charged. The model in Figure 3(b) is used.

• Mascot: Mascot searches are performed using Mas-
cot v2.3. While Mascot is widely used, it is also pro-
prietary: the only implementation is the commercial
toolkit from Matrix Science. Mascot has the ability
to account for errors in the position of peaks on the
m/z axis. We use the default value for MS/MS tol.,
±0.6Da. The Mascot score used to determine ab-
solute ranking performance was the Mascot Expect
value, which Mascot describes as the probability that
the observed match between MS/MS spectra and
peptide sequence would be found by chance. The Ex-
pect value performed better than the default Mascot
score, the Ion Score, for all datasets considered.

• OMSSA: OMSSA searches are performed using
OMSSA v2.1.9, freely available at http://pubchem.
ncbi.nlm.nih.gov/omssa/download.html.
OMSSA has a similar error accounting abil-
ity, and as such was chosen to match default Mascot
value for MS/MS tol., ±0.6Da. OMSSA’s E-value
was used as the score to determine its absolute
ranking performance.

• MS-GFDB: MS-GFDB searches were performed
using MSGFDB v7102, freely available at http://

proteomics.ucsd.edu/Software/MSGFDB.html.

D Quantizing the m/z axis

Like SEQUEST and MS-GFDB, we opt to quantize
the continuous m/z axis into bins. For Didea, the bin
width is fixed to 1.0 Daltons (m/z units).

One of the attractive side-effects of encoding the spec-
trum as virtual evidence (Section 3.3) is that the asymp-
totic cost of scoring a PSM is invariant to the binning
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Figure 5: The effect of m/z bin width on Didea. Higher
resolution does not lead to better absolute ranking
performance on Yeast-01 (Appendix D).
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Figure 6: Grid search over λ (Appendix E)

resolution of the m/z axis. If we set the bin width to
a lower value, the virtual evidence table w(·) becomes
bigger, but indexing into an array is still O(1). At
1.0 Daltons, there are 2000 floating point numbers in
the virtual evidence table. Reducing the bin width
by a factor of k increases the size of the table by a
factor of k. Even if we reduce the bin width to 0.25
Da, the virtual evidence table requires less than 32Kb
of memory per spectrum (using 32-bit floats).

In comparison, consider what happens if the bin width
is decreased by a factor k in SEQUEST and MS-GFDB.
The core cost of SEQUEST is evaluating dot products.
Using the FastSEQUEST algorithm (Eng et al., 2008),
increasing the resolution by a factor of k increases the
cost of scoring by a factor of k. For MS-GFDB, we note
that Kim et al. (2010) reports a 40x slowdown when in-
creasing the m/z bin width from 1.0Da to 0.01Da, with
only a 6% increase in the number of spectra identified
at q = 0.01.

In Figure 5 we analyze the same data set under three
different bin widths. While there is no benefit today,
Didea is designed to benefit from future improvements
in the resolution of mass analyzers.

E Tuning the virtual evidence
function

The virtual evidence function (Equation 8) has a free
parameter λ. Since the virtual evidence function is
precomputed before inference, it is difficult to train λ
using EM. Instead, we chose λ by a coarse grid search
over [0, 1], measuring the number of spectra identified
at q = 0.01 for each λ (Figure 6).

http://pubchem.ncbi.nlm.nih.gov/omssa/download.html
http://pubchem.ncbi.nlm.nih.gov/omssa/download.html
http://proteomics.ucsd.edu/Software/MSGFDB.html
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