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Abstract

Bisubmodularity extends the concept of sub-
modularity to set functions with two argu-
ments. We show how bisubmodular maxi-
mization leads to richer value-of-information
problems, using examples in sensor placement
and feature selection. We present the first
constant-factor approximation algorithm for
a wide class of bisubmodular maximizations.

1 Introduction

Central to decision making is the problem of selecting
informative observations, subject to constraints on the
cost of data acquisition. For example:

Sensor Placement: One is given a set of n locations,
V , and a set of k � n sensors, each of which can cover
a fixed area around it. Which subset X ⊂ V should be
instrumented, to maximize the total area covered?

Feature Selection: Given a regression model on n
features, V , and an objective which measures feature
quality, f : 2V → R, select the best k features.

Both examples are selection problems, for which a
near-optimal approximation can be found efficiently
when the objective is submodular (see Definition 1,
below). Many selection problems involve a submodular
objective: e.g., sensor placement [16, 15], document
summarization [20], influence maximization in social
networks [12], and feature selection [13]. All can be
framed as submodular function maximization:

max
S⊆V

f(S) (1)

subject to S ∈ Ii, ∀i ∈ {1 . . . r}.

The constraint sets Ii are independent sets of matroids,
which include knapsack or cardinality constraints. Fully
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polynomial-time approximation algorithms exist when
the matroid constraints consist only of a cardinality con-
straint [22], or under multiple matroid constraints [6].

Our interest lies in enriching the scope of selection
problems which can be efficiently solved. We discuss
a richer class of properties on the objective, known as
bisubmodularity [24, 1] to describe biset optimizations:

max
A,B⊆V

f(A,B) (2)

subject to (A,B) ∈ Ii, ∀i ∈ {1 . . . r}.

Bisubmodular function maximization allows for richer
problem structures than submodular max: i.e., simul-
taneously selecting and partitioning elements into two
groups, where the value of adding an element to a set
can depend on interactions between the two sets.

To illustrate the potential of bisubmodular maximiza-
tion, we consider two distinct problems:

Coupled Sensor Placement (Section 5): One is
given a set of n locations, V . There are two different
kinds of sensors, which differ in cost and area covered.
Given a total sensor budget, k, select sites to instru-
ment with sensors of each type (A, B), to maximize
the total area covered.

Coupled Feature Selection (Section 6): Given a
regression model on n features, V , select a set of k
features and partition them into disjoint sets A and
B, such that a joint measure of feature quality f :
A×B → R is maximized.

This paper is the first to (i) propose bisubmodular
maximization to describe a richer class of value-of-
information problems; (ii) define sufficient conditions
under which bisubmodular max is efficiently solvable;
(iii) provide an algorithm for such instances (algorithms
for bisubmodular min exist [7]); (iv) prove, by con-
struction, the existence of an embedding of a directed
bisubmodular function into a submodular one. Ancil-
lary to our study of bisubmodular maximization is a
new result on the extension of submodular functions
defined over matroids (Theorem 2).

Our key observation is that many bisubmodular
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maximization problems can be reduced to matroid-
constrained submodular maximization, for which ef-
ficient, constant-factor approximation algorithms al-
ready exist. We first introduce the concept of simple
bisubmodularity (Section 3), which describes the biset
analogue of submodularity. Directed bisubmodular-
ity [23] allows for more complex interaction between
the set arguments. The question of whether or not
directed bisubmodular functions can be efficiently max-
imized was has been an open problem for over twenty
years. Our reduction approach proves that a wide range
of directed bisubmodular objectives can be efficiently
maximized (Section 4).

2 Preliminaries

We first introduce basic concepts and notation.

Definition 1 (Submodularity). A set-valued function
over ground set V , f : 2V → R is submodular if for
any A ⊆ A′ ⊆ V \ v,

f(A + v)− f(A) ≥ f(A′ + v)− f(A′). (3)

Equivalently, ∀A,A′ ⊆ V ,

f(A) + f(A′) ≥ f(A ∪A′) + f(A ∩A′). (4)

+ is used to denote adding an element to a set.

A set function f(A,B) with two arguments A ⊆ V and
B ⊆ V is a biset function. In some cases we assume
the domain of f to be all ordered pairs of subsets of V :

22V , {(A,B) : A ⊆ V, B ⊆ V }.

In other cases we assume the domain of f to be ordered
pairs of disjoint subsets of V :

3V , {(A,B) : A ⊆ V, B ⊆ V, A ∩B = ∅}.

A biset function is normalized if f(∅, ∅) = 0. In some
cases we will also assume f(A,B) is monotone.

Definition 2 (Monotonicity). A biset function f over
22V is monotone (monotone non-decreasing) if for any
s ∈ V , (A,B) ∈ 22V :

f(A + s,B) ≥ f(A,B) and f(A,B + s) ≥ f(A,B).

A biset function f over 3V is monotone (monotone non-
decreasing) if for any s ∈ V \ (A ∪B), (A,B) ∈ 3V :

f(A + s,B) ≥ f(A,B) and f(A,B + s) ≥ f(A,B).

Monotone submodular maximization is nontrivial only
when constrained. We focus on matroid constraints:

Definition 3 (Matroid). A matroid I is a set of sets
with three properties: (i) ∅ ∈ I, (ii) if A ∈ I and
B ⊆ A then B ∈ I (i.e., I is an independence system),
and (iii) if A ∈ I and B ∈ I and |B| > |A| then there
is an s ∈ B such that s /∈ A and (A + s) ∈ I.

3 Simple Bisubmodularity

A natural analogue to submodularity for biset functions
is simple bisubmodularity:

Definition 4 (Simple Bisubmodularity). f : 22V →
R is simple bisubmodular iff for each (A,B) ∈ 22V ,
(A′, B′) ∈ 22V with A ⊆ A′, B ⊆ B′ we have for
s /∈ A′ and s /∈ B′:

f(A + s,B)− f(A,B) ≥ f(A′ + s,B′)− f(A′, B′),

f(A,B + s)− f(A,B) ≥ f(A′, B′ + s)− f(A′, B′).

Equivalently, ∀(A,B), (A′, B′) ∈ 22V ,

f(A,B)+f(A′, B′) ≥ f(A∪A′, B∪B′)+f(A∩A′, B∩B′)

Fixing one of the coordinates of f(A,B) yields a sub-
modular function in the free coordinate.

3.1 Reduction to Submodular Maximization

The reduction uses a duplication of the ground set
(c.f., [10, 2]). Define V̄ to be an extended ground set
formed by taking the disjoint union of 2 copies of the
original ground set V . For an element s ∈ V , we use
si where i ∈ {1, 2} to refer to the ith copy in V̄ . Then
V̄ = V1 ∪ V2 where Vi ,

⋃
i si. For an element s ∈ V̄

we use abs(s) to refer to the corresponding original
element in V (i.e. abs(si) , s). For a set S ⊆ V̄ we
similarly use abs(S) , {abs(s) : s ∈ S}.

Given any simple bisubmodular function f , define a
single-argument set function g for S ⊆ V̄ :

g(S) , f(abs(S ∩ V1), abs(S ∩ V2)).

Note that there is a one-to-one mapping between
f(A,B) for (A,B) ∈ 22V and g(S) for S ⊆ V̄ and
therefore maximizing g(S) is equivalent to maximizing
f(A,B). Furthermore,

Lemma 1. g(S) is submodular if f(A,B) is a simple
bisubmodular function.

Note also that g is monotone when f is monotone.
Based on this connection, maximizing a simple bisub-
modular function f reduces to maximizing a normal
submodular function g. We can then exploit constant-
factor approximation algorithms for submodular func-
tion maximization.

Corollary 1. If f(A,B) is non-negative and simple
bisubmodular, then there exists a constant-factor ap-
proximation algorithm for solving Equation 2 when the
constraints are either: (i) non-existent; (ii) |A| ≤ k1,
|B| ≤ k2; (iii) |A| + |B| ≤ k; (iv) A ∩ B = ∅ (v) any
combination of the above.
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Proof. With no constraints, maximizing f(A,B) corre-
sponds to maximizing non-negative, submodular g(S),
solvable using Feige et al. [5]. The only question is
how to represent the other constraints on f as ma-
troid constraints on g. Cases (ii) and (iii) reduce
to uniform matroids. In case (ii), |S ∩ V1| ≤ k1,
|S ∩ V2| ≤ k2; in case (iii) |S ∩ V1| + |S ∩ V2| ≤ k.
For case (iv) the constraint is a partition matroid con-
straint ∀v ∈ V, |S ∩ {v1, v2}| ≤ 1. For any intersection
of a constant number of matroid constraints we can use
the algorithms of Lee et al. [18]. For the special case
of monotone f (and therefore g) we can use the simple
greedy algorithm of Fisher et al. [6] for a constant-factor
approximation. For the special case of a single matroid
constraint and monotone f and g, the algorithm of
Calinescu et al. [2] gives an optimal approximation
ratio of 1− 1/e.

3.2 Coordinate-wise Maximization

Simple bisubmodular functions can also be maximized
using a coordinate-wise procedure. Consider

max
A,B

f(A,B)

subject to (A,B) ∈ 22V , |A| ≤ k1, |B| ≤ k2.

If f is simple then it suffices to solve the following pair
of submodular optimizations:

A∗ = argmax
A⊆V :|A|≤k1

f(A, ∅),

B∗ = argmax
B⊆V :|B|≤k2

f(A∗, B),

which due to Corollary 1, corresponds to the local
greedy algorithm, which is approximately optimal [6].

Budget constraints of the form |A| + |B| ≤ k may
be handled by converting the constraint into |A| ≤
k1, |B| ≤ k2, and then taking the best solution across
all possible (k1, k2) division of the budget k1 + k2 =
k. One possible approach to this would require O(k)
submodular optimizations. Budget constraints of the
form c1|A| + c2|B| ≤ k with integer costs c1, c2 are
handled in a similar fashion. The search-over-budget-
divisions approach is still approximately optimal, since
the domain under one of the budget divisions contains
the optimal solution. However, searching over budget
divisions requires O(k2) runs of the greedy algorithm.

4 Directed Bisubmodularity

Simple bisubmodular functions are related to a different
class of functions called directed bisubmodular func-
tions. Qi [23] posed the question of whether directed
bisubmodular functions can be efficiently maximized.

The previous section answers this question for simple
bisubmodular functions.

In many situations, including those described in Sec-
tions 5 and 6, simple bisubmodularity is sufficient. The
contributions of this section are primarily theoretical:
we (i) connect simple to directed bisubmodularity, (ii)
give a method for embedding a directed bisubmodular
function into a submodular one; (iii) provide sufficient
conditions under which directed bisubmodular maxi-
mization can be reduced to submodular maximization.

Definition 5 (Directed Bisubmodularity [24]). Biset
function f : 3V → R is directed bisubmodular iff

f(A,B) + f(A′, B′) ≥ f(A ∩A′, B ∩B′)+

f((A ∪A′) \ (B ∪B′), (B ∪B′) \ (A ∪A′)).

The set subtraction can be seen as enforcing the con-
straint that the two arguments of f remain disjoint.

To connect simple to directed bisubmodularity, we use
a characterization of such functions by Ando et al. [1].

Definition 6. f : 3V → R is said to be submodular
in every orthant if for every partition of V given by
A,B with A ∪B = V and A ∩B = ∅ the function

f̂(S) , f(A ∩ S,B ∩ S)

is a submodular function.

Theorem 1 (Ando Conditions [1]). A function f is
directed bisubmodular iff

1. f is submodular in every orthant.
2. For any (A,B) ∈ 3V , s ∈ V \ (A ∪ B) we have

f(A + s,B) + f(A,B + s) ≥ 2f(A,B).

The second condition is satisfied if f is monotone. It
is not hard to show the following.

Proposition 1. If f is simple bisubmodular then f
restricted to 3V is submodular in every orthant.

Therefore we have this relationship between simple and
directed bisubmodular functions.

Corollary 2. If f is simple bisubmodular and mono-
tone then f restricted to 3V is directed bisubmodular.

4.1 Embedding into a Submodular Function

At first glance, the techniques of Section 3.1 might ap-
pear to yield an approximation algorithm for directed
bisubmodular maximization, but unfortunately they
do not: f is only defined over 3V while Section 3.1
made use of the fact that simple bisubmodular func-
tions are defined over the larger set 22V . We prove,
by construction, that any bisubmodular function can
be embedded into a submodular one. However, for



On Bisubmodular Maximization

directed bisubmodular functions the resulting submod-
ular function is not guaranteed to be monotone and
non-negative, which precludes direct use of a submod-
ular maximization oracle for directed bisubmodular
maximization.

As before, define V̄ to be an extended ground set formed
by taking the disjoint union of 2 copies of the original
ground set V . Let g : 2V̄ → R, where for S ⊆ V̄

g(S) , f(abs(S ∩ V1), abs(S ∩ V2)).

Since f is directed bisubmodular, it is only defined over
disjoint pairs of subsets, and therefore g is not defined
for each S ⊆ V̄ . For example, if both s1 ∈ V and
s2 ∈ V for some s ∈ V , then abs(S∩V1) and abs(S∩V2)
are not disjoint. When f is directed bisubmodular,
there is no guarantee of a one-to-one mapping between
the domains of f and g.

While g is not submodular over set system 2V̄ , it is
submodular over the values in 2V̄ where it is defined,
which are the independent sets of a matroid.

Definition 7. g(S) is submodular over independence
system I if for every A ⊆ A′ ⊂ (A′ ∪ s) ∈ I we have

g(A ∪ s)− g(A) ≥ g(A′ ∪ s)− g(A′).

Equivalently, g is submodular over I if for any A,A′

with (A ∪A′) ∈ I we have

g(A) + g(A′) ≥ g(A ∪A′) + g(A ∩A′).

A directed bisubmodular f is defined over 3V , so the
values where g is defined form a partition matroid. A
directed bisubmodular function is submodular in each
orthant, so g is submodular over its partition matroid:

Corollary 3. If f(A,B) is directed bisubmodular then
g(S) , f(abs(S ∩ V1), abs(S ∩ V2)) is both defined and
submodular over the partition matroid

I = {S : ∀s∈V |{s1, s2} ∩ S| ≤ 1}.

Seemingly, maximizing f(A,B) is equivalent to maxi-
mizing g over a partition matroid, which ensures that
the solution found is in 3V . Fisher et al. [6] provides
an algorithm for maximizing g subject to a matroid
constraint, which requires only evaluating g for values
in the matroid. The subtle flaw in this argument is that
the proof of the approximation guarantee in Fisher et al.
[6] involves evaluating g outside of the constraints.

4.1.1 Extending Submodular Functions

A function g defined on a subset of S ⊂ 2V̄ is known
as a partial function. The embedding of a non-negative
directed bisubmodular function leads to a non-negative

partial function g which is submodular over the inde-
pendent sets of a matroid I ∈ I. Is it possible to define
an extension of g, g′: a submodular function defined
on 2V̄ , where ∀I ∈ I, g′(I) = g(I) ?

A recent result by Seshadri and Vondrák [25, Theo-
rem 1.7] shows that, for functions g defined on arbitrary
S ⊂ 2V̄ , an extension is not guaranteed to exist. But,
every submodular partial function that comes up in
this paper is one defined over a matroid; not an arbi-
trary set system. We refine the non-extendability result
of Seshadri and Vondrák [25], by proving that a partial
function over a matroid can always be extended:

Theorem 2 (Submodular Extension). For any func-
tion g(S) which is submodular over independence sys-
tem I, there exists an extension g′(S) which is submod-
ular, and has g′(S) = g(S) for S ∈ I.

While Theorem 2 is presented in the context of bisub-
modularity, the result is of independent interest, espe-
cially in the context of testing whether a function is
submodular.

However, the extension g′ is not guaranteed to be non-
negative and monotone. While a directed bisubmodular
function can always be reduced a submodular one,
efficient greedy algorithms cannot be directly used to
maximize the resulting submodular function.

Lemma 2. There exists g(S) that is non-negative and
submodular over a matroid for which no extension g′(S)
is non-negative and submodular.

Lemma 3. There exists g(S) that is non-negative,
monotone, and submodular over a matroid for which
no extension g′(S) is non-negative, monotone, and
submodular.

Even in light of Lemmas 2 and 3, we provide suffi-
cient conditions under which directed bisubmodular
maximization can be efficiently solved.

Corollary 4. Let f(A,B) be a monotone, non-
negative, directed bisubmodular function. If there ex-
ists an extension f ′(A,B) on 22V which is monotone,
non-negative, and simple bisubmodular with f ′(A,B) =
f(A,B) for (A,B) ∈ 3V , then there is a constant-factor
approximation algorithm for maximizing f .

Proof. Maximizing f(A,B) reduces to maximizing g(S)
over a partition matroid. g(S) is monotone, non-
negative, and submodular over the partition matroid,
but undefined elsewhere. The existence of f ′ implies
there exists a non-negative, monotone, and submodular
extension of g(S), g′(S), which is defined for all S ⊆ V .
The existence of g′ suffices to ensure Fisher et al. [6]
yield a near-optimal solution.
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Note that while f ′ must exist for the corollary to hold,
we do not need to be able to construct or evaluate f ′.

Testing whether g(S) has a monotone, non-negative
extension is a linear programming problem. However,
it is an open question as to whether the resulting (ex-
ponentially large) linear program is one which can be
efficiently solved.

Theorem 3. Given a matroid I and a submodular
function g defined ∀I ∈ I, testing whether g has an
extension g′ which is submodular, monotone, and non-
negative is a linear programming feasibility problem.

Proof. The proof is constructive. For g′(S) to be sub-
modular it is both necessary and sufficient to have for
every S, i ∈ (V \ (S + j))

g′(S + i)− g′(S) ≥ g′(S + i + j)− g′(S + j)

This is an alternate definition of submodularity [22].
Then a non-negative, submodular extension exists iff
the following linear feasibility constraints are satisfied
(gS = g(S), g′S = g′(S)):

g′S = gS ∀S ∈ I,
g′S ≥ 0 ∀S /∈ I,

g′S+i − g′S ≥ g′S+i+j − g′S+j ∀S ⊂ V, i ∈ (V \ (S + j)).

If monotonicity is also required this can be encoded as
additional constraints g′A ≤ g′B ∀A ⊆ B.

4.2 Coordinate-wise Maximization

If f is directed bisubmodular and we wish to maximize
under the cardinality constraint |A| ≤ k1, |B| ≤ k2 for
k1, k2 ∈ Z+, then an alternate approach, which makes
no use of the theoretical results is Section 4.1, is to
solve the following set of submodular optimizations:

A∗ = argmax
A⊆V :|A|≤k1

f(A, ∅),

B∗ = argmax
B⊆V :|B|≤k2

f(A∗, B \A∗),

B∗∗ = argmax
B⊆V :|B|≤k2

f(∅, B),

A∗∗ = argmax
A⊆V :|A|≤k1

f(A \B∗∗, B∗∗),

taking the better of (A∗, B∗) and (A∗∗, B∗∗). Budget
constraints of the form |A|+ |B| ≤ k can be handled us-
ing a search over budget divisions (Section 3.2). Unlike
coordinate-wise maximization on a simple bisubmodu-
lar function, no near-optimality guarantee is provided.

5 Coupled Sensor Placement

In this section, we generalize the sensor placement
problem to allow for two different kinds of sensors. The

goal is to cover a floor plan using sensors with a fixed
sensing, or coverage, radius. Figure 1 depicts two of
the layouts tested. The potential sensing locations V
consist of points on an 50 by 50 grid of a floor plan.

Selected locations can be instrumented with sensors
of type A or type B. Sensors cover a circular area,
but walls in the environment block coverage. Type
A sensors have a sensing radius of rA units; type B
sensors have a radius of rB units. The costs to deploy
a sensor of each type are cA, cB ∈ Z+. Each location
can be instrumented with at most one sensor. The
goal is to maximize the overall coverage f(A,B) given
a budget k ∈ Z+. In our experiments, rA = 20 and
rB = 10, with deployment costs cA = 3, cB = 1. In
terms of cost-per-area covered, large sensors are better,
but less flexible—i.e., using larger sensors to cover
narrow hallways would be wasteful.

The objective f(A,B), the surface area covered, is
monotone and simple bisubmodular over 22V . Since
each location can hold at most one sensor, f is restricted
to 3V , and is therefore also directed bisubmodular. The
optimization is

max
A,B

f(A,B)

subject to (A,B) ∈ 3V , cA|A|+ cB |B| ≤ k.

We compare three approaches: (i) only use small sen-
sors, B = ∅; (ii) only use large sensors, A = ∅; (iii)
allow a mix of both types of sensors. Approaches (i)
and (ii) are instances of submodular maximization un-
der a cardinality constraint; approach (iii) is solved
using the reduction technique (Section 3.1).

The reduction yields a submodular optimization subject
to a matroid and a knapsack constraint, which could be
solved using Chekuri et al. [4]. However, this method is
more complicated than the standard greedy algorithm.
Instead, we convert the knapsack constraint into a
partition matroid constraint by searching over divisions
of the budget (e.g., if k = 11, the budget divisions
include one large sensor and 10 small ones; or 2 large
sensors, and 9 small ones; etc.). Within a budget
division, we simultaneously maximize A and B, without
resorting to coordinate maximization.

5.1 Results

Table 5.1 shows our results for the two example layouts
and budgets of 15 and 30 (the first row shows results
for layout 1 and a budget of 15). We report results
in terms of percentage of coverage relative to the best
method for that layout / budget combination (i.e., the
rows of the table are normalized). Not surprisingly,
the method using both kinds of sensors performs the
best. This method in fact runs the other two methods
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Figure 1: Layouts For Sensor Placement Experiments

Table 1: Percent Coverage (Relative to Best Method)

Problem Small Sensors Large Sensors Both
1 / 15 89.27 82.52 100.00
1 / 30 97.35 96.29 100.00
2 / 15 91.20 86.92 100.00
2 / 30 95.91 88.07 100.00

as subroutines (using only large sensors is one possible
allocation of the budget) and is therefore always at
least as good as the other two methods. Figure 2 shows
the results for layout 1 and a budget of 15. Sensor
locations are shown in red, and covered area is shown
in blue. Here the best placement of sensors uses small
sensors to cover the small rooms and narrow hallways
of the environment and large sensors for the larger
rooms. The two type sensor method seems to perform
significantly better in situations like this.

The differences in performance between the three ap-
proaches is necessarily dependent on the floor layout,
the budget, and the relative cost/coverage of the sensor
types. There are layouts where the value of using both
sensors is less dramatic, or non-existent.

6 Coupled Feature Selection

We are given a Gaussian graphical model, depicted in
Figure 3, with two variables to predict: C1, C2. Given
a set of features V , the goal is to select and partition
the features into two sets, A and B, such that C1 is
predicted using only features in A; and C2 is predicted
using only features in B. Communication constraints
preclude transmitting features between nodes C1 and
C2. However, local predictions (the value of C1 and
C2) can be transmitted between nodes.

If we ignore the correlation between C1 and C2, then
one criterion for feature selection is mutual informa-
tion, which is submodular under the Näıve Bayes model:
I(A;C1) = H(A)−

∑
i H(Ai |C1). To exploit the cor-

relation between tasks, we use the mutual information

C1 C2

A1

Ak1

B1

. . .

. . .

Bk2

Figure 3: Coupled Feature Selection model.

of the underlying Gaussian graphical model:

f(A,B) = I(A,B;C) = H(A,B)−H(A,B|C)

= H(A,B)−
∑
i

H(Ai|C1)−
∑
j

H(Bj |C2),

which we refer to as biset mutual information. Max-
imizing f is equivalent to choosing features for the
two tasks that are maximally informative about both
tasks. Using f as the coupled feature selection criterion
yields a bisubmodular function maximization under the
budget constraint |A|+ |B| ≤ k.

Without assumptions on the form of f , the problem
is an instance of subset selection in a polytree di-
rected graphical model, which is known to be NPPP-
complete [14]. However, we can show that when f is
restricted to 3V it is directed bisubmodular, under a
relatively broad class of models.

Theorem 4. Assume A ∪ B are mutually condition-
ally independent given C for any A ⊆ V and B ⊆ V .
f(A,B) = H(A,B)−H(A,B |C) is directed bisubmod-
ular, normalized, and monotone non-decreasing.

Proof. Evaluate f(∅, ∅) to establish normalization.
Monotonicity follows from the chain rule for mutual
information. Let R = A ∪ B and R′ = A′ ∪ B′

for (A,B), (A′, B′) ∈ 22V . I(R,R′;C) − I(R;C) =
I(R′;C |R) ≥ 0. Consider f(A,B) = H(A,B) −
H(A,B |C). By the conditional independence assump-
tion, H(A,B |C) is modular in its arguments. H(S)
where S = A ∪ B is submodular, so H(S) is simple
bisubmodular. The difference of a simple bisubmodular
function and a modular one is simple bisubmodular.
Restricting f(A,B) to 3V yields a directed bisubmod-
ular function, by Corollary 1.

Restricting A and B to be disjoint may make sense for
some feature selection problems. For example, if C1

and C2 predict the weather for two different geographic
regions and the features V correspond to different phys-
ical sensors, selecting a feature for both tasks would
correspond to placing the same sensor in two different
geographic regions, which is clearly impossible. A simi-
lar proof shows that when f is defined over 22V it is
also simple bisubmodular.
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Figure 2: Left: Only Small Sensors, Middle: Only Large Sensors Right: Both

6.1 Results

We have proposed two algorithms for maximizing a
simple or directed bisubmodular function: a slow,
coordinate-wise maximization, and a fast reduction
to submodular maximization. The reduction to sub-
modular maximization is always faster, and it can also
yield a result closer to the optimum in practice. In
Section 5 the comparison was between the same algo-
rithm on different ground sets (only small sensors, only
large sensors, both type of sensors). In this section,
the comparison is between two different algorithms on
the same instance of bisubmodular max.

To illustrate, we generate random instances of Gaus-
sian graphical models by randomly generating inverse
covariance matrices which respect the structure in Fig-
ure 3. There are twenty features, half connected to C1;
half connected to C2. A positive correlation is fixed
in the potential on (C1, C2). All other parameters are
drawn from U [−0.5, 0.5], with a rejection test to ensure
that the resulting matrix is positive semi-definite.

Figure 4 compares the quality of the approximation
produced by the two algorithms. The y-axis is scaled
so that performance is measured as a percent of the
unconstrained maximum of f(A,B). The standard
error bars reflect variation due to averaging results
across randomly generated Gaussian graphical models.
The faster reduction based algorithm achieves a result
closer to the optimum,

Note that the fast algorithm is approximately optimal
while the slower coordinate-wise algorithm is likely not.
This is because the coordinate-wise algorithm has only
been shown approximately optimal when maximizing
over 22V while here we maximize over 3V

7 Related Work

Other related work has considered sensor placement
problems involving more than one type of sensor
[11, 8, 3, 19, 21]. However, the majority of this work
doesn’t make a connection to submodular function max-
imization. Note that Fusco and Gupta [8] even derive

Figure 4: Coupled Feature Selection, comparison of the
approximation quality of the fast reduction algorithm
(red) vs. the slow coordinate-wise optimization (blue)
across all budgets k. Error bars cover 2-std errors.

approximation guarantees for a greedy algorithm with-
out connecting the problem to submodularity. Leskovec
et al. [19] and Mutlu et al. [21] do make this connection;
these authors pose the problem as a submodular max-
imization problem with a knapsack constraint. The
knapsack constraint allows for different sensors to have
different costs. Our work is distinct from this previ-
ous work, however, in that we pose our problems as
optimization problems over two argument set functions
(specifically bisubmodular set functions).

Other work has also considered applications of sub-
modular maximization subject to partition matroid
constraints [9, 17]. We note that Golovin et al. [9] in
particular considers maximization algorithms which
only evaulate f(S) within the constraint set. However,
this algorithm still requires that f is submodular ev-
erywhere (i.e. that you can reason about the value of
f(S) outside of the constraint set).

8 Conclusions

We believe that bisubmodularity is theoretically inter-
esting, and potentially, a broadly useful approach to
generalizing value-of-information problems. We have
derived the first efficient algorithms for a wide range
of bisubmodular maximizations—a requisite step in
promulgating this class of problems in the machine
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learning community.

However, there are still theoretical and applied con-
tributions to be made: (i) we have provided sufficient
conditions under which directed bisubmodular func-
tions can be efficiently maximized, but the necessary
conditions remain unknown; (ii) building a catalogue
of directed bisubmodular functions of interest to the
machine learning community, especially ones that have
no simple bisubmodular analogue. A topic of particular
interest is developing an analogue of directed bisub-
modularity for multiset functions, where the objective
is a function of r > 2 set arguments.

Appendix

Proof of Lemma 1. We show that for any A ⊆ B ⊆ V̄
and s /∈ B,

g(A + s)− g(A) ≥ g(B + s)− g(B)

The result follows directly from the definition of simple
bisubmodularity. In particular, define

(A1, A2) , (abs(A ∩ V1), abs(A ∩ V2)),

(B1, B2) , (abs(B ∩ V1), abs(B ∩ V2)).

Then either

g(A + s)− g(A)

= f(A1 + abs(s), A2)− f(A1, A2)

≥ f(B1 + abs(s), B2)− f(B1, B2)

= g(B + s)− g(B)

or

g(A + s)− g(A)

= f(A1, A2 + abs(s))− f(A1, A2)

≥ f(B1, B2 + abs(s))− f(B1, B2)

= g(B + s)− g(B)

Proof of Theorem 2. For subsets of size |S| ≤ 1 define
g′(S) = g(S) (we assume I contains all singletons 1).
For |S| > 1 we define g′(S) recursively over subsets
of increasing size. For any size k > 2 define g′(S) for
|S| = k as follows: if S ∈ I then

g′(S) , g(S)

else

g′(S) , min
X⊂S,Y⊂S:S=X∪Y

g′(X) + g′(Y )− g′(X ∩ Y )

1If I doesn’t contain all singletons, we can simply shrink
the ground set by removing all singletons not in I

We show that g′(S) is submodular. Consider any A, B
with A 6= B and therefore A ⊂ A ∪B and B ⊂ A ∪B.
If (A ∪B) ∈ I then we have that

g′(A) + g′(B) = g(A) + g(B)

≥ g(A ∪B) + g(A ∩B)

= g′(A ∪B) + g′(A ∩B)

using the submodularity of g over I. If (A ∪ B) /∈ I
then we have that

g′(A ∪B) ≤ g′(A) + g′(B)− g′(A ∩B)

which implies the desired inequality. For any A, B
with A = B we have trivially

g′(A) + g′(B) = g′(A ∪B) + g′(A ∩B)

We show that it is not always possible to extend a
function g(S) that is submodular over a matroid such
that non-negativity is preserved. We also show a similar
result for monotonicity.

Proof of Lemma 2. Define g(S) = k − |S|. This is a
submodular function (in fact modular), and for all S
with |S| ≤ k (i.e. all S in a uniform matroid), g(S)
is non-negative. However, to extend g(S) to S with
|S| > k we must necessarily use negative values.

Proof of Lemma 3. Consider the following submodular
g(S) defined for all |S| ≤ 2 with S ⊆ {1, 2, 3}.

g(∅) = 0
g({1}) = 1 g({2}) = 1 g({3}) = 1
g({1, 2}) = 1 g({2, 3}) = 2 g({1, 3}) = 1

An extension g′(S) must assign a value to g′({1, 2, 3})
We must have

g′({1, 2, 3}) ≥ g′({2, 3}) = 2

in order to maintain monotonicity. But we must also
have

g′({1, 2, 3}) ≤ g′({1, 2}) + g′({1, 3})− g′({1}) = 1

in order to maintain submodularity. Clearly we can’t
have both.
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