Submodular Optimization with Submodular Cover and Submodular Knapsack Constraints (SCSC/ SCSK)

Rishabh Iyer Jeff Bilmes

University of Washington, Seattle

NIPS-2013

Outline

Introduction to Submodular Functions

2 Problem Formulation of SCSC/ SCSK

3 Algorithmic Framework

Set functions $f : 2^V \to \mathbb{R}$

- V is a finite "ground" set of objects.
- A set function f : 2^V → ℝ produces a value for any subset A ⊆ V.

 ramework Empirical Result:

Set functions $f : 2^V \to \mathbb{R}$

• For example, f(A) = 22,

$$f(A \cup v) - f(A) \ge f(B \cup v) - f(B), \text{ if } A \subseteq B$$
 (1)

$$f(A \cup v) - f(A) \ge f(B \cup v) - f(B), \text{ if } A \subseteq B \tag{1}$$

$$f(A \cup v) - f(A) \ge f(B \cup v) - f(B), \text{ if } A \subseteq B \tag{1}$$

$$f(A \cup v) - f(A) \ge f(B \cup v) - f(B), \text{ if } A \subseteq B \tag{1}$$

• Special class of set functions.

$$f(A \cup v) - f(A) \ge f(B \cup v) - f(B), \text{ if } A \subseteq B$$
 (1)

• Monotonicity: $f(A) \leq f(B)$, if $A \subseteq B$.

$$f(A \cup v) - f(A) \ge f(B \cup v) - f(B), \text{ if } A \subseteq B$$
 (1)

- Monotonicity: $f(A) \leq f(B)$, if $A \subseteq B$.
- Modular function $f(X) = \sum_{i \in X} f(i)$ analogous to linear functions.

Problem Formulation

Algorithmic Framework

Two Sides of Submodularity

Algorithmic Framework

Two Sides of Submodularity

Submodular Minimization

- Solve min $\{f(X)|X \subseteq V\}$.
- Polynomial-time.
- Relation to convexity.
- Models cooperation.

$f(\mathbf{W}) - f(\mathbf{W}) \ge f(\mathbf{W}) - f(\mathbf{W})$

Two Sides of Submodularity

Submodular Minimization

- Solve $\min\{f(X)|X \subseteq V\}$.
- Polynomial-time.
- Relation to convexity.
- Models cooperation.

$$f(\mathbf{W}) - f(\mathbf{W}) \geq f(\mathbf{W}) - f(\mathbf{W})$$

Submodular Maximization

- Solve max $\{g(X)|X \subseteq V\}$.
- Constant-factor approximable.
- Relation to concavity.
- Models diversity and coverage.

Two Sides of Submodularity

Submodular Minimization

- Solve min $\{f(X)|X \subseteq V\}$.
- Polynomial-time.
- Relation to convexity.
- Models cooperation.

$f(\mathbf{W} \mid \mathbf{V}) - f(\mathbf{W}) \ge f(\mathbf{W} \mid \mathbf{V}) - f(\mathbf{W})$

Submodular Maximization

- Solve max $\{g(X)|X \subseteq V\}$.
- Constant-factor approximable.
- Relation to concavity.
- Models diversity and coverage.

• Sometimes we want to simultaneously maximize coverage/ diversity (g) while minimizing cooperative costs (f).

Two Sides of Submodularity

Submodular Minimization

- Solve min $\{f(X)|X \subseteq V\}$.
- Polynomial-time.
- Relation to convexity.
- Models cooperation.

$f(\underbrace{\blacksquare}]) - f(\underbrace{\blacksquare}) \ge f(\underbrace{\blacksquare}) - f(\underbrace{\blacksquare})$

Submodular Maximization

- Solve $\max\{g(X)|X \subseteq V\}$.
- Constant-factor approximable.
- Relation to concavity.
- Models diversity and coverage.

- Sometimes we want to simultaneously maximize coverage/ diversity (g) while minimizing cooperative costs (f).
- Often these naturally occur as budget or cover constraints (for example, maximize diversity subject to a budget constraint on the submodular cost).

Problem Formulation	Algorithmic Framework	
LIIII		

• Historically: DS optimization

$$\min_{X\subseteq V}f(X)-\lambda g(X)$$

Problem Formulation	Algorithmic Framework	
IIIII		

• Historically: DS optimization

• Historically: DS optimization

• Unfortunately, NP hard to approximate (lyer-Bilmes'12).

• Historically: DS optimization

- Unfortunately, NP hard to approximate (lyer-Bilmes'12).
- We introduce the following, which is often more natual anyway:

Problem Formulation			
E1111			

• Historically: DS optimization

- Unfortunately, NP hard to approximate (lyer-Bilmes'12).
- We introduce the following, which is often more natual anyway:

SCSC: $\min\{f(X) : g(X) \ge c\}$, SCSK: $\max\{g(X) : f(X) \le b\}$,

• Historically: DS optimization

- Unfortunately, NP hard to approximate (lyer-Bilmes'12).
- We introduce the following, which is often more natual anyway:

• Historically: DS optimization

- Unfortunately, NP hard to approximate (lyer-Bilmes'12).
- We introduce the following, which is often more natual anyway:

 While DS optimization is NP hard to approximate, SCSC and SCSK however, retain approximation guarantees!

• Historically: DS optimization

- Unfortunately, NP hard to approximate (lyer-Bilmes'12).
- We introduce the following, which is often more natual anyway:

- While DS optimization is NP hard to approximate, SCSC and SCSK however, retain approximation guarantees!
- Throughout this talk, assume f and g are monotone.

- Show how SCSC/SCSK subsume a number of important optimization problems.
- Provide a unifying algorithmic framework for these.
- Provide a complete characterization of the hardness of these problems.
- Emphasize the scalability and practicality of some of our algorithms!

	Problem Formulation		
I - Submodular S	et Cover and Sul	omodular Knap	sack

SSC: $\min\{w(X): g(X) \ge c\}$, SK: $\max\{g(X): w(X) \le b\}$,

Additive Costs

Sensor Placement (Krause et al'08)

Data Subset Selection (Wei et al'13)

Document Summarization (Lin-Bilmes'11)

lyer & Bilmes, 2013 (UW, Seattle)

SCSC/SCSK

Problem Formulation	

II - Submodular Cost with Modular Constraints

SML: $\min\{f(X): w(X) \ge c\}$, SS: $\max\{w(X): f(X) \le b\}$,

Limited vocabulary speech corpus selection (Lin-Bilmes'11)

	Problem Formulation		
	1111		
III - Most (ae	neral (ase: 5(5)	and SUSK	

SCSC: $\min\{f(X) : g(X) \ge c\}$, SCSK: $\max\{g(X) : f(X) \le b\}$,

				•											•					•					
		 				 									•		the second se								
														•											

Sensor Placement with Submodular Costs (I-Bilmes'12)

"
the second second

Limited vocabulary and accoustically diverse speech corpus selection (Lin-Bilmes'11, Wei et al'13)

Privacy preserving communication (I-Bilmes'13)

Iyer & Bilmes, 2013 (UW, Seattle)

SCSC/SCSK

	Problem Formulation		
Connections	between SCSC a	nd SCSK	

Iyer & Bilmes, 2013 (UW, Seattle)

• Bi-criterion factors:

Theorem: Given a [σ, ρ] bi-criterion approx. algorithm for SCSC, we can obtain a [(1 + ε)ρ, σ] bi-criterion approx. algorithm for SCSK, by running the algorithm for SCSC, O(log 1/ε) times.
The other direction also holds!

Iyer & Bilmes, 2013 (UW, Seattle)

Curvature of a Submodular Function

• Curvature:

• Curvature is a fundamental "complexity" parameter of a submodular function.

Iyer & Bilmes, 2013 (UW, Seattle)

				Algorithmic Framework		
		4		- ·		

Hardness (Lower bounds) of the problems

	Modular <i>g</i>	Submodular <i>g</i>	
	$(\kappa_g = 0)$	$(0<\kappa_g<1)$	$(\kappa_g=1)$
Modular f			
$(\kappa_f = 0)$			
Submod f			
$0<\kappa_f<1$			
Submod f			
$(\kappa_f=1)$			

Hardness (Lower bounds) of the problems

Knapsack

	Modular g	 Submodular g	
	$(\kappa_g = 0)$	$(0<\kappa_g<1)$	$(\kappa_g=1)$
Modular <i>f</i>	EDTAS		
$(\kappa_f = 0)$	11173		
Submod f			
$0<\kappa_f<1$			
Submod f			
$(\kappa_f=1)$			

Sub 111	modular Functions	Problem Forr	mulation	Algorithmic Framewo	rk	Empirical Result		
Η	Hardness (Lower bounds) of the problems							
		Kna	psac	k	SS	C/SK		
		4						
		Modular g		Submo	odular g			
		$(\kappa_g = 0)$		$(0 < \kappa_g < 1)$	$(\kappa_g=1)$			
	$\begin{array}{l} Modular\ f\\ (\kappa_f=0) \end{array}$	FPTAS		$rac{1}{\kappa_g}(1-e^{-\kappa_g})$	1-1/e			
	Submod f							
	$(0<\kappa_f<1)$							
	Submod f							
	$(\kappa_f = 1)$							

Submodular Functions	Problem Formulat	ion	Algorithmic Framewo I∎IIIIII	rk	Empirical Result		
Hardness (Lower bounds) of the problems							
	Knap	sacl	ĸ	SS	C/SK		
	Modular g		Submo	dular g			
	$(\kappa_g = 0)$		$(0<\kappa_g<1)$	$(\kappa_g = 1)$			
$\begin{array}{c c} Modular \ f \\ (\kappa_f = 0) \end{array}$	FPTAS		$rac{1}{\kappa_g}(1-e^{-\kappa_g})$	1-1/e			
$\begin{array}{c} \text{Submod } f \\ (0 < \kappa_f < 1) \end{array}$	$\Omega(\frac{\sqrt{n}}{1+(\sqrt{n}-1)(1-r)})$	$\frac{1}{(r_f)}$)					
Submod f $(\kappa_f = 1)$	$\Omega(\sqrt{n})$						

Submodular Functions	Problem Formulation	Algorithmic Framewor	rk Empirical Result		
Hardness (Lower bounds) of the problems					
	Knapsac	k	SSC/SK		
	Modular g	Submo	dular g		
	$(\kappa_g = 0)$	$ (0 < \kappa_g < 1)$	$(\kappa_g = 1)$		
$\begin{array}{l} Modular\ f\\ (\kappa_f=0) \end{array}$	FPTAS	$rac{1}{\kappa_g}(1-e^{-\kappa_g})$	1-1/e		
$\begin{array}{c} {\sf Submod} \ f \\ (0 < \kappa_f < 1) \end{array}$	$\Omega(rac{\sqrt{n}}{1+(\sqrt{n}-1)(1-\kappa_f)})$	$\Omega(rac{\sqrt{n}}{1+(\sqrt{n}-1)(1-\kappa_f)})$	$\Omega(rac{\sqrt{n}}{1+(\sqrt{n}-1)(1-\kappa_f)})$		
$\begin{array}{c} Submod \ f \\ (\kappa_f = 1) \end{array}$	$\Omega(\sqrt{n})$	$\Omega(\sqrt{n})$	$\Omega(\sqrt{n})$		

SML/SS

SCSC/SCSK

• Hardness depends (mainly) on κ_f and not (so much) on that of κ_g .

	Algorithmic Framework	

Algorithm 1 General algorithmic framework to address both Problems 1 and 2

	Algorithmic Framework	

Algorithm 1 General algorithmic framework to address both Problems 1 and 2

1: for $t = 1, 2, \cdots, T$ do

4: end for

	Algorithmic Framework	

- 1: for $t = 1, 2, \dots, T$ do
- 2: Choose surrogate functions \hat{f}_t and \hat{g}_t for f and g respectively.

4: end for

	Algorithmic Framework	

Algorithm 1 General algorithmic framework to address both Problems 1 and 2

- 1: for $t = 1, 2, \cdots, T$ do
- 2: Choose surrogate functions \hat{f}_t and \hat{g}_t for f and g respectively.
- 3: Obtain X^t as the optimizer of SCSC/SCSK with \hat{f}_t and \hat{g}_t instead of f and g.
- 4: end for

Algorithm 1 General algorithmic framework to address both Problems 1 and 2

- 1: for $t = 1, 2, \cdots, T$ do
- 2: Choose surrogate functions \hat{f}_t and \hat{g}_t for f and g respectively.
- 3: Obtain X^t as the optimizer of SCSC/SCSK with \hat{f}_t and \hat{g}_t instead of f and g.

4: end for

• Surrogate functions: modular upper/ lower bounds or Ellipsoidal Approximations.

	Algorithmic Framework	

• Modular Lower Bounds: Induced via orderings of elements:

	Algorithmic Framework	
	111011	

• Modular Lower Bounds: Induced via orderings of elements:

$$f(X) \leq h_Y^{\sigma}(X)$$
, where $h_Y^{\sigma}(\sigma(i)) = f(\Sigma_i) - f(\Sigma_{i-1})$

	Algorithmic Framework	
	1118111	

• Modular Lower Bounds: Induced via orderings of elements:

$$f(X) \leq h_Y^{\sigma}(X)$$
, where $h_Y^{\sigma}(\sigma(i)) = f(\Sigma_i) - f(\Sigma_{i-1})$

Modular upper bounds:

		Algorithmic Framework	
111	THEFT.	1111111	

• Modular Lower Bounds: Induced via orderings of elements:

$$f(X) \leq h_Y^{\sigma}(X)$$
, where $h_Y^{\sigma}(\sigma(i)) = f(\Sigma_i) - f(\Sigma_{i-1})$

• Modular upper bounds: Upper bound-l

$$f(X) \leq m_{Y,1}(X) = f(Y) - \sum_{j \in Y \setminus X} f(j|Y \setminus j) + \sum_{j \in X \setminus Y} f(j|\emptyset)$$

 $\sigma(5)$ $\sigma(6)$ $\sigma(7)$ $\sigma(8)$

 $\dot{\Sigma}_3$

		Algorithmic Framework	
111	11111	1111111	

• Modular Lower Bounds: Induced via orderings of elements:

$$f(X) \leq h_Y^{\sigma}(X)$$
, where $h_Y^{\sigma}(\sigma(i)) = f(\Sigma_i) - f(\Sigma_{i-1})$

• Modular upper bounds: Upper bound-II

$$f(X) \leq m_{Y,2}(X) = f(Y) - \sum_{j \in Y \setminus X} f(j|V \setminus j) + \sum_{j \in X \setminus Y} f(j|Y)$$

 $\sigma(5)$ $\sigma(6)$ $\sigma(7)$ $\sigma(8)$

 $\dot{\Sigma}_3$

		Algorithmic Framework	
111	THEFT	1111111	111

• Modular Lower Bounds: Induced via orderings of elements:

$$f(X) \leq h_Y^{\sigma}(X)$$
, where $h_Y^{\sigma}(\sigma(i)) = f(\Sigma_i) - f(\Sigma_{i-1})$

• Modular upper bounds: Upper bound-II

$$f(X) \le m_{Y,2}(X) = f(Y) - \sum_{j \in Y \setminus X} f(j|V \setminus j) + \sum_{j \in X \setminus Y} f(j|Y)$$

(5) (6) (7) (8)

 $\dot{\Sigma}_3$

		Algorithmic Framework	
111	11111	1111111	111

- Modular Lower Bounds: Induced via orderings of elements:
- $f(X) \leq h_Y^{\sigma}(X)$, where $h_Y^{\sigma}(\sigma(i)) = f(\Sigma_i) f(\Sigma_{i-1})$
- Modular upper bounds: Upper bound-II

$$f(X) \leq m_{Y,2}(X) = f(Y) - \sum_{j \in Y \setminus X} f(j|V \setminus j) + \sum_{j \in X \setminus Y} f(j|Y)$$

 $\sigma(5)$ $\sigma(6)$ $\sigma(7)$ $\sigma(8)$

 Σ_1

 Approximations: Ellipsoidal Approximation gives the *tightest* approximation to a submodular function.

• Lemma: The greedy algorithm for SSC (Wolsey, 82) and SK (Nemhauser, 78) is special case of Algorithm 1 with g replaced by its modular lower bound.

- Lemma: The greedy algorithm for SSC (Wolsey, 82) and SK (Nemhauser, 78) is special case of Algorithm 1 with g replaced by its modular lower bound.
- Approximation guarantees are constant factor -1 1/e respectively.

		Algorithmic Framework	
Iterative Submod	ular Set Cover (I	SSC)/Submodular	

• Choose surrogate functions \hat{f}_t as modular upper bounds.

		Algorithmic Framework	
Iterative Submod	ular Set Co	ver (ISSC)/Submodula	r

- Choose surrogate functions \hat{f}_t as modular upper bounds.
- Fast iterative algorithms for SCSC and SCSK Iteratively solve SSC or SK.

		Algorithmic Framework	
Iterative Submod	ular Set Cover ((ISSC)/Submodular	

- Choose surrogate functions \hat{f}_t as modular upper bounds.
- Fast iterative algorithms for SCSC and SCSK Iteratively solve SSC or SK.
- Theorem: ISSC and ISK obtain (bi-criterion) approximation factors $\frac{\sigma}{\rho} = O(\frac{n}{1+(n-1)(1-\kappa_f)}).$

		Algorithmic Framework	
Iterative Submod	ular Set	Cover (ISSC)/Submodular	

- Choose surrogate functions \hat{f}_t as modular upper bounds.
- Fast iterative algorithms for SCSC and SCSK Iteratively solve SSC or SK.
- Theorem: ISSC and ISK obtain (bi-criterion) approximation factors $\frac{\sigma}{\rho} = O(\frac{n}{1+(n-1)(1-\kappa_f)}).$
- These algorithms also extend to SML/SS.

(EASSC)/ Submodular Knapsack (EASK)

• Choose surrogate functions \hat{f}_t as Ellipsoidal Approximation, in both SCSC and SCSK.

Ellipsoidal Approximation Submodular Set Cover (EASSC)/ Submodular Knapsack (EASK)

- Choose surrogate functions \hat{f}_t as Ellipsoidal Approximation, in both SCSC and SCSK.
- Theorem: EASSC and EASK obtain (bi-criterion) approximation factors of $\frac{\sigma}{\rho} = O(\frac{\sqrt{n}\log n}{1+(\sqrt{n}\log n-1)(1-\kappa_f)}).$

Ellipsoidal Approximation Submodular Set Cover (EASSC)/ Submodular Knapsack (EASK)

- Choose surrogate functions \hat{f}_t as Ellipsoidal Approximation, in both SCSC and SCSK.
- Theorem: EASSC and EASK obtain (bi-criterion) approximation factors of $\frac{\sigma}{\rho} = O(\frac{\sqrt{n}\log n}{1+(\sqrt{n}\log n-1)(1-\kappa_f)}).$
- These algorithms also extend to SML/SS.

Ellipsoidal Approximation Submodular Set Cover (EASSC)/ Submodular Knapsack (EASK)

- Choose surrogate functions \hat{f}_t as Ellipsoidal Approximation, in both SCSC and SCSK.
- Theorem: EASSC and EASK obtain (bi-criterion) approximation factors of $\frac{\sigma}{\rho} = O(\frac{\sqrt{n}\log n}{1+(\sqrt{n}\log n-1)(1-\kappa_f)}).$
- These algorithms also extend to SML/SS.
- This algorithm matches the hardness of this problem upto log factors.

lyer & Bilmes, 2013 (UW, Seattle)

• Accoustic Diversity:

1 all_right how are_you doing 2 how are_you with yours 3 hin andine my name is lorraine how are_you 4 good how are_you 5 hello hi how are_you 6 good thanks how are_you 7 uh how are_you 8 i'm good how are_you 9 fine how are you

lyer & Bilmes, 2013 (UW, Seattle)

- Accoustic Diversity:
 - Similarity matrix s_{ij} between utterances i and j (string kernel)
- 1 all_right how ane_you doing 2 how ane_you with yours 3 hin and hew name is lorraine how ane_you 4 good how are_you 5 hello hi how are_you 6 good thanks how are_you 7 uh how are_you 8 i'm good how are_you 9 fine how are you

Iyer & Bilmes, 2013 (UW, Seattle)

- Accoustic Diversity:
 - Similarity matrix s_{ij} between utterances i and j (string kernel)
 - Submodular functions:

1 all_right how are_you doing 2 how are_you with yours 3 hin adihe my name is lorraine how are_you 4 good how are_you 5 hello hi how are_you 6 good thanks how are_you 7 uh how are_you 8 i'm good how are_you 9 fine how are you

Iyer & Bilmes, 2013 (UW, Seattle)

• Accoustic Diversity:

- Similarity matrix s_{ij} between utterances i and j (string kernel)
- Submodular functions:

• Facility Location function: $g(X) = \sum_{i \in V} \max_{j \in X} s_{ij}$ 1 all_right have are you doing 2 how are you with yours 3 hin and new name is lorraine how are you 4 good how are you 5 hello hi how are you 6 good thanks how are you 7 uh how are you 8 i'm good how are you 9 fine how are you

• Accoustic Diversity:

- Similarity matrix s_{ij} between utterances i and j (string kernel)
- Submodular functions:

 Pacility Location function: g(X) = ∑_{i∈V} max_{j∈X} s_{ij}
 Pacility Location function g(X) = ∑_{i∈V} min{∑_{i∈X} s_{ij}, β∑_{i∈V} s_{ij}}. 1 all_right <u>how are you</u> 2 how are you with yours 3 hi nadine my name is lorraine <u>how are you</u> 4 good <u>how are you</u> 5 hello hi <u>how are you</u> 6 dood thanks <u>how are you</u> 7 uh <u>how are you</u> 8 tim good how are you

9 fine how are_you
Limited Vocabulary data subset selection with Accoustic diversity

- Accoustic Diversity:
 - Similarity matrix s_{ij} between utterances i and j (string kernel)
 - Submodular functions:

 I Facility Location function: g(X) = ∑_{i∈V} max_{j∈X} s_{ij}

 I Saturated coverage function g(X) = ∑_{i∈V} min{∑_{j∈X} s_{ij}, β∑_{j∈V} s_{ij}}.

• Limited Vocabulary:

Limited Vocabulary data subset selection with Accoustic diversity

• Accoustic Diversity:

- Similarity matrix s_{ij} between utterances i and j (string kernel)
- Submodular functions:

 Pacility Location function: g(X) = ∑_{i∈V} max_{j∈X} s_{ij}
 Pacility Location function g(X) = ∑_{i∈V} min{∑_{i∈X} s_{ij}, β∑_{i∈V} s_{ij}}.

• Limited Vocabulary:

all_right how are_you doing

hi nadine my name is lorraine how are_yo

how are_you with yours

good how are_you hello hi how are_you aood thanks how are_you

7 uh <mark>how are_you</mark> 8 i'm aood how are you

9 fine how are you

Limited Vocabulary data subset selection with Accoustic diversity

• Accoustic Diversity:

- Similarity matrix s_{ij} between utterances i and j (string kernel)
- Submodular functions:

 Pacility Location function: g(X) = ∑_{i∈V} max_{j∈X} s_{ij}
 Paturated coverage function g(X) = ∑_{i∈V} min{∑_{i∈X} s_{ij}, β∑_{i∈V} s_{ij}}. 1 all_right how are you doing 2 how are you with yours 3 hi nadtne my name is lorraine how are you 4 good how are you 5 hello hi how are you 6 good thanks how are you 7 uh how are you 8 tim good how are you

9 fine how are_you

• Limited Vocabulary:

Bipartite Neighborhood function: $|\gamma(X)|$.

		Empirical Results
Results		

• Compare our different algorithms on the TIMIT speech corpus.

		Empirical Results
Results		

- Compare our different algorithms on the TIMIT speech corpus.
- Baseline is choosing random subsets.

		Empirical Results I∎I
Results		

- Compare our different algorithms on the TIMIT speech corpus.
- Baseline is choosing random subsets.
- Observations:

		Empirical Results I∎I
Results		

- Compare our different algorithms on the TIMIT speech corpus.
- Baseline is choosing random subsets.
- Observations:

() All the algorithms perform much better than random subset selection.

		Empirical Results
Results		

- Compare our different algorithms on the TIMIT speech corpus.
- Baseline is choosing random subsets.
- Observations:
 - Ill the algorithms perform much better than random subset selection.
 - The iterative and much faster algorithms, perform comparably to the slower and tight Ellipsoidal Approximation based algorithms.

Conclusions/ Future Work

- We proposed some very efficient (scalable) algorithms and two tight algorithms for submodular optimization under submodular constraints.
- In the paper: Extensions to handle multiple constraints, and non-monotone submodular functions.
- Future Work: Investigate our new algorithms on different real world applications.

Thank You!

• SCSC and SCSK are closely related, and can be transformed into one another!

- SCSC and SCSK are closely related, and can be transformed into one another!
- **Bi-criterion factor:** $[\sigma, \rho]$ approximation for $(1) \implies$ a set $X : f(X) \le \sigma f(X^*)$ and $g(X) \ge \rho c \ [\sigma > 1, \rho < 1]$.

- SCSC and SCSK are closely related, and can be transformed into one another!
- **Bi-criterion factor:** $[\sigma, \rho]$ approximation for $(1) \implies$ a set $X : f(X) \le \sigma f(X^*)$ and $g(X) \ge \rho c$. A $[\rho, \sigma]$ approximation for (2) \implies a set $X : g(X) \ge \rho g(X^*)$ and $f(X) \le \sigma b \ [\sigma > 1, \rho < 1]$.

- SCSC and SCSK are closely related, and can be transformed into one another!
- **Bi-criterion factor:** $[\sigma, \rho]$ approximation for $(1) \implies$ a set $X : f(X) \le \sigma f(X^*)$ and $g(X) \ge \rho c$. A $[\rho, \sigma]$ approximation for (2) \implies a set $X : g(X) \ge \rho g(X^*)$ and $f(X) \le \sigma b \ [\sigma > 1, \rho < 1]$.

- SCSC and SCSK are closely related, and can be transformed into one another!
- **Bi-criterion factor:** $[\sigma, \rho]$ approximation for $(1) \implies$ a set $X : f(X) \le \sigma f(X^*)$ and $g(X) \ge \rho c$. A $[\rho, \sigma]$ approximation for (2) \implies a set $X : g(X) \ge \rho g(X^*)$ and $f(X) \le \sigma b \ [\sigma > 1, \rho < 1]$.

Algorithm 2 Algorithm for SCSC using an algorithm for SCSK

1: Input: An SCSC instance, c, $[\rho, \sigma]$ algorithm for SCSK, $\epsilon > 0$.

- SCSC and SCSK are closely related, and can be transformed into one another!
- **Bi-criterion factor:** $[\sigma, \rho]$ approximation for $(1) \implies$ a set $X : f(X) \le \sigma f(X^*)$ and $g(X) \ge \rho c$. A $[\rho, \sigma]$ approximation for (2) \implies a set $X : g(X) \ge \rho g(X^*)$ and $f(X) \le \sigma b \ [\sigma > 1, \rho < 1]$.

- 1: **Input:** An SCSC instance, c, $[\rho, \sigma]$ algorithm for SCSK, $\epsilon > 0$.
- 2: **Output:** $[(1 + \epsilon)\sigma, \rho]$ approx. for SCSC.

- SCSC and SCSK are closely related, and can be transformed into one another!
- **Bi-criterion factor:** $[\sigma, \rho]$ approximation for $(1) \implies$ a set $X : f(X) \le \sigma f(X^*)$ and $g(X) \ge \rho c$. A $[\rho, \sigma]$ approximation for (2) \implies a set $X : g(X) \ge \rho g(X^*)$ and $f(X) \le \sigma b \ [\sigma > 1, \rho < 1]$.

- 1: **Input:** An SCSC instance, c, $[\rho, \sigma]$ algorithm for SCSK, $\epsilon > 0$.
- 2: **Output:** $[(1 + \epsilon)\sigma, \rho]$ approx. for SCSC.
- 3: $b \leftarrow \operatorname{argmin}_j f(j), \hat{X}_b \leftarrow \emptyset$.

- SCSC and SCSK are closely related, and can be transformed into one another!
- **Bi-criterion factor:** $[\sigma, \rho]$ approximation for $(1) \implies$ a set $X : f(X) \le \sigma f(X^*)$ and $g(X) \ge \rho c$. A $[\rho, \sigma]$ approximation for (2) \implies a set $X : g(X) \ge \rho g(X^*)$ and $f(X) \le \sigma b \ [\sigma > 1, \rho < 1]$.

Algorithm 2 Algorithm for SCSC using an algorithm for SCSK

- 1: **Input:** An SCSC instance, c, $[\rho, \sigma]$ algorithm for SCSK, $\epsilon > 0$.
- 2: **Output:** $[(1 + \epsilon)\sigma, \rho]$ approx. for SCSC.
- 3: $b \leftarrow \operatorname{argmin}_j f(j), \hat{X}_b \leftarrow \emptyset$.
- 4: while $g(\hat{X}_b) < \rho c$ do

7: end while

- SCSC and SCSK are closely related, and can be transformed into one another!
- **Bi-criterion factor:** $[\sigma, \rho]$ approximation for $(1) \implies$ a set $X : f(X) \le \sigma f(X^*)$ and $g(X) \ge \rho c$. A $[\rho, \sigma]$ approximation for (2) \implies a set $X : g(X) \ge \rho g(X^*)$ and $f(X) \le \sigma b \ [\sigma > 1, \rho < 1]$.

- 1: **Input:** An SCSC instance, c, $[\rho, \sigma]$ algorithm for SCSK, $\epsilon > 0$.
- 2: **Output:** $[(1 + \epsilon)\sigma, \rho]$ approx. for SCSC.
- 3: $b \leftarrow \operatorname{argmin}_j f(j), \hat{X}_b \leftarrow \emptyset$.
- 4: while $g(\hat{X}_b) < \rho c$ do
- 5: $b \leftarrow (1 + \epsilon)b$
- 6: $\hat{X}_b \leftarrow [\rho, \sigma]$ approx. for SCSK using b.
- 7: end while

- SCSC and SCSK are closely related, and can be transformed into one another!
- **Bi-criterion factor:** $[\sigma, \rho]$ approximation for $(1) \implies$ a set $X : f(X) \le \sigma f(X^*)$ and $g(X) \ge \rho c$. A $[\rho, \sigma]$ approximation for (2) \implies a set $X : g(X) \ge \rho g(X^*)$ and $f(X) \le \sigma b \ [\sigma > 1, \rho < 1]$.

- 1: **Input:** An SCSC instance, c, $[\rho, \sigma]$ algorithm for SCSK, $\epsilon > 0$.
- 2: **Output:** $[(1 + \epsilon)\sigma, \rho]$ approx. for SCSC.
- 3: $b \leftarrow \operatorname{argmin}_j f(j), \hat{X}_b \leftarrow \emptyset$.
- 4: while $g(\hat{X}_b) < \rho c$ do
- 5: $b \leftarrow (1 + \epsilon)b$
- 6: $\hat{X}_b \leftarrow [\rho, \sigma]$ approx. for SCSK using b.
- 7: end while
- 8: Return \hat{X}_b .

Hardness Theorem

• Theorem: For any $\kappa > 0$, there exists submodular function f with curvature $\kappa_f = \kappa$ such that no polynomial time algorithm for SCSC and SCSK $\frac{\sigma}{\rho} = \frac{n^{1/2-\epsilon}}{1+(n^{1/2-\epsilon}-1)(1-\kappa)}$ for any $\epsilon > 0$.

Hardness Theorem

- Theorem: For any $\kappa > 0$, there exists submodular function f with curvature $\kappa_f = \kappa$ such that no polynomial time algorithm for SCSC and SCSK $\frac{\sigma}{\rho} = \frac{n^{1/2-\epsilon}}{1+(n^{1/2-\epsilon}-1)(1-\kappa)}$ for any $\epsilon > 0$.
- Hardness depends on the curvature of the submodular function *f* and not on that of *g*.

Hardness Theorem

- Theorem: For any $\kappa > 0$, there exists submodular function f with curvature $\kappa_f = \kappa$ such that no polynomial time algorithm for SCSC and SCSK $\frac{\sigma}{\rho} = \frac{n^{1/2-\epsilon}}{1+(n^{1/2-\epsilon}-1)(1-\kappa)}$ for any $\epsilon > 0$.
- Hardness depends on the curvature of the submodular function *f* and not on that of *g*.

	Modular g	Submodular g	
	$(\kappa_g = 0)$	$(0<\kappa_g<1)$	$(\kappa_g = 1)$
Modular <i>f</i>	EDTAS	$\frac{1}{(1-e^{-\kappa_g})}$	1 1/0
$(\kappa_f = 0)$	TTTAS	κ_g (1 C °)	1 – 1/e
Submod f	$O(\sqrt{n})$	$O(\sqrt{n})$	$O(\sqrt{n})$
$(0<\kappa_f<1)$	$M(\frac{1}{1+(\sqrt{n}-1)(1-\kappa_f)})$	$M(\frac{1}{1+(\sqrt{n}-1)(1-\kappa_f)})$	$M(\frac{1}{1+(\sqrt{n}-1)(1-\kappa_f)})$
Submod f	$O(\sqrt{n})$	$O(\sqrt{n})$	$O(\sqrt{n})$
$(\kappa_f=1)$	52(VII)	32(VII)	52(VII)

Table : Summary of Hardness results for SCSC/ SCSK