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Set functions f : 2¥ - R

o V is a finite “ground” set of objects.

o A set function f : 2¥ — R produces a value for any
subset A C V.
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Submodular Functions
L

Set functions f : 2¥ - R

o For example, f(A) = 22,
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Submodular Functions
i

Submodular Set Functions

@ Special class of set functions.

F(AUV) — f(A) > f(BUV) — f(B), if AC B (1)
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Submodular Set Functions

@ Special class of set functions.

F(AUV) — f(A) > f(BUV) — f(B), if AC B
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Submodular Functions
i

Submodular Set Functions

@ Special class of set functions.

F(AUV) — f(A) > f(BUV) — f(B), if AC B (1)
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Gain=1 Gain =0

e Monotonicity: f(A) < f(B), if AC B.
e Modular function f(X) = > ;. f(i) analogous to linear functions.
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Two Sides of Submodularity
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Two Sides of Submodularity

Submodular Minimization
@ Solve min{f(X)|X C V}.
@ Polynomial-time.

@ Relation to convexity.

@ Models cooperation.

M) — () > ) —f(ig)
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Two Sides of Submodularity

Submodular Minimization Submodular Maximization
Solve min{f(X)|X C V}. Solve max{g(X)|X C V}.
Polynomial-time. Constant-factor approximable.

Relation to convexity. Relation to concavity.

e 6 ¢ o
® 6 o o

Models cooperation. Models diversity and coverage.

- =g | B > Wl
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@ Relation to convexity. @ Relation to concavity.
@ Models cooperation. o Models diversity and coverage.
ICHEHCIENC SN R -8

@ Sometimes we want to simultaneously maximize coverage/ diversity
(g) while minimizing cooperative costs (f).
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Two Sides of Submodularity

Submodular Minimization Submodular Maximization
@ Solve min{f(X)|X C V}. @ Solve max{g(X)|X C V}.
@ Polynomial-time. o Constant-factor approximable.
@ Relation to convexity. @ Relation to concavity.
@ Models cooperation. o Models diversity and coverage.
ICHEHCIENC SN R -8

@ Sometimes we want to simultaneously maximize coverage/ diversity
(g) while minimizing cooperative costs (f).

@ Often these naturally occur as budget or cover constraints (for
example, maximize diversity subject to a budget constraint on the
submodular cost).
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Submodular Optimization with Submodular Constraints

@ Historically: DS optimization

fin £(X) — Ag(X)
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Submodular Optimization with Submodular Constraints

@ Historically: DS optimization

Co-operative Costs  Coverage/ Diversity
N\ «
in f(X) — Ag(X
fmin #(X) — Ag(X)

@ Unfortunately, NP hard to approximate (lyer-Bilmes'12).

@ We introduce the following, which is often more natual anyway:
Coverage/ Diversity

/\

SCSC: min{f(X): g(X) > c}, SCSK: max{g(X) : f(X) < b},

— T

Co-operative Costs
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Submodular Optimization with Submodular Constraints

@ Historically: DS optimization

Co-operative Costs  Coverage/ Diversity
N\ «
in f(X) — Ag(X
fmin #(X) — Ag(X)

@ Unfortunately, NP hard to approximate (lyer-Bilmes'12).

@ We introduce the following, which is often more natual anyway:
Coverage/ Diversity

/\

SCSC: min{f(X): g(X) > c}, SCSK: max{g(X) : f(X) < b},

— T

Co-operative Costs
@ While DS optimization is NP hard to approximate, SCSC and SCSK
however, retain approximation guarantees!

@ Throughout this talk, assume f and g are monotone.
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Problem Formulation
LN

Our Main Contributions

Coverage/ Diversity

/\

SCSC: min{f(X) : g(X) > c}, SCSK: max{g(X): f(X) < b},

— T

Co-operative Costs

@ Show how SCSC/SCSK subsume a number of important
optimization problems.

@ Provide a unifying algorithmic framework for these.

@ Provide a complete characterization of the hardness of these
problems.

@ Emphasize the scalability and practicality of some of our algorithms!
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Problem Formulation

| - Submodular Set Cover and Submodular Knapsack

SSC: min{w(X) : g(X) > c}, SK: max{g(X) : w(X) < b},
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Problem Formulation
LN

| - Submodular Set Cover and Submodular Knapsack

Coverage/ Diversity

/\

SSC: min{w(X) : g(X) > c}, SK: max{g(X) : w(X) < b},

—_

Additive Costs

all_right hioW/arelyou doing

how are_you with yours

hi nadine my name is lorraine hiow are you
good how are you

hello hi how are you

good thanks how are_you

uh hiow are_you

i'm good how are.you

fine how are_you

Data Subset Selection
Sensor Placement (Wei et al'13)

(Krause et al'08) Document Summarization
(Lin-Bilmes'11)
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[l - Submodular Cost with Modular Constraints

SML: min{f(X): w(X) > ¢}, SS: max{w(X) : f(X) < b},
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Problem Formulation

[l - Submodular Cost with Modular Constraints

Additive functions

T
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Problem Formulation
LN

[l - Submodular Cost with Modular Constraints

Additive functions

T

SML: min{f(X): w(X) > ¢}, SS: max{w(X) : f(X) < b},

—_—

Co-operative Costs

“oh, yes!” oh

“yes .Y
yes
“True.”
true
“yes, that’s true”

“that's ...1?" that's
Limited vocabulary speech corpus selection (Lin-Bilmes'11)
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Problem Formulation

[l - Most General Case: SCSC and SCSK

SCSC: min{f(X) : g(X) > c}, SCSK: max{g(X): f(X) < b},
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[l - Most General Case: SCSC and SCSK

Coverage/ Diversity

T

SCSC: min{f(X) : g(X) > ¢}, SCSK: max{g(X): f(X) < b},

— T

Co-operative Costs

Limited vocabulary and
Sensor Placement with  accoustically diverse speech  Privacy preserving

Submodular Costs corpus selection communication
(I-Bilmes'12) (Lin-Bilmes'11, Wei et (I-Bilmes'13)
al'13)
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Connections between SCSC and SCSK

@ Bi-criterion factors:
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Problem Formulation
(NNARL

Connections between SCSC and SCSK

o Bi-criterion factors: [o>1,p<1]

o mln{f(X) : g(X) > C}: : Appro;.matesmunonkange *,l
[0, p] approximation for FX*)  F(X) of(X*)
SCSC is a set _ ,

X - f(X) S O'f(X*) and =<— Appro;umateFeaslbleRang{e ;
g(X) = pe. pe gX) c g(x)

& Feasible Range
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Connections between SCSC and SCSK

@ Bi-criterion factors: [c>1,p<]]
° mln{f.(X) : g(X) Z C}: ; Appro;(imateSolutionRange *yl
[0, p] approximation for F(X*) f(X) of(X*)
SCSC |S a set € Approximate Feasible Range
X : f(X) < of(X*) and , " H .

g(X) > pc. pc g(lx) c g(>'<*)

& Feasible Range

€~ Approximate Solution Range

o max{g(X): f(X) < b}: —t } }

[p, o] approximation for pg(X*)  g(X) g(X")
SCSK is a set Aoproximate Feasble
X g(X) > pg(X*) and :7 pproxumate= easible ang=e :

Feasible Range =i
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Connections between SCSC and SCSK

@ Bi-criterion factors: [c>1,p<]]
° mln{f.(X) : g(X) Z C}: i Appro;(imateSolutionRange Hl
[0, p] approximation for F(X*) f(X) of(X*)
SCSC is a set N
X : f(X) < of(X*) and ; " H .

g(X) > pc. pc g(lx) c g(>l<*)

& Feasible Range

R max{g(X) : f(X) S b} ‘—;‘ Appro;imateSqutionRange l
[p, o] approximation for pg(X*)  g(X) g(X)

SCSK iS a Set Approximate Feasible Range
X g(X) > pg(X*) and ; . .

f(X) < ob. 3 b f(X) ob

Feasible Range =i

e Theorem: Given a [o, p] bi-criterion approx. algorithm for SCSC,
we can obtain a [(1 + €)p, o] bi-criterion approx. algorithm for
SCSK, by running the algorithm for SCSC, O(Iog%) times.

@ The other direction also holds!
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Algorithmic Framework
LERNAN

Curvature of a Submodular Function

@ Curvature:

fFUIV\) gUlv\)

/-cle—jr’gl‘r) 0 and ﬁgzl—jr’gl‘r/\gi(j) (2)
F(S) 4
"% R
/
/
cardinality 1Sl

@ Curvature is a fundamental “complexity” parameter of a submodular
function.
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Algorithmic Framework
LI

Hardness (Lower bounds) of the problems

Modular g Submodular g
(kg =0) (0 < kg <1) (kg =1)

Modular f
(kr =0)
Submod f
(0 < Kf<1)
Submod f
(rr=1)
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Algorithmic Framework
LI

Hardness (Lower bounds) of the problems

Knapsack SSC/SK
Modular g Submodular g
(kg =0) (0 < kg <1) (kg =1)
Modular 1 — kg
(ks = 0) FPTAS H—g(l—e ) 1-1/e
Submod f
(0 < Kf<1)
Submod f
(rr=1)
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Algorithmic Framework
LI

Hardness (Lower bounds) of the problems

Knapsack SSC/5K
Modular g Submodular g
(kg = 0) (0< kg <1) (kg =1)
?fl;;d:ulzr) f FPTAS H_lg(l — e "g) 1-1/e
o L1y | Unrra=)
s [

SML/SS
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Algorithmic Framework
LI

Hardness (Lower bounds) of the problems

Knapsack SSC/SK

Modular g Submodular g

(kg =0) (0 < kg <1) (kg =1)
Modular 1 — kg
(e = 0) FPTAS (1 —e) 1-1/e
Submod f NG NG Vn
©0<r <1) | Aawmnasn) | Uowmoa=n) | Uawmna—=n)
) ) (/)

SML/SS SCSC/SCSK
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Algorithmic Framework

orr d
L LN

Hardness (Lower bounds) of the problems

Knapsack SSC/SK

Modular g Submodular g

(kg =0) (0 < kg <1) (kg =1)
Modular f 1 (1 _ a—tg _
(57 = 0) FPTAS 7 (L—e7"s) 1—-1/e
Submod f NG NG Vn
©0<r <1) | Aawmnasn) | Uowmoa=n) | Uawmna—=n)
) ) (/)

SML/SS SCSC/SCSK

@ Hardness depends (mainly) on k¢ and not (so much) on that of x,.
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Algorithmic Framework
LI

Algorithmic framework

Algorithm 1 General algorithmic framework to address both Problems 1
and 2
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Algorithmic framework

Algorithm 1 General algorithmic framework to address both Problems 1
and 2

1: fort=1,2,---, T do

2. Choose surrogate functions f and g: for f and g respectively.
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Algorithm 1 General algorithmic framework to address both Problems 1
and 2
1: fort=1,2,---, T do
2. Choose surrogate functions f and g: for f and g respectively.
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of f and g.
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Algorithmic Framework
LI

Algorithmic framework

Algorithm 1 General algorithmic framework to address both Problems 1
and 2
1: fort=1,2,---, T do
2. Choose surrogate functions f and g: for f and g respectively.
3:  Obtain X' as the optimizer of SCSC/SCSK with ft and g; instead
of f and g.
4: end for

@ Surrogate functions: modular upper/ lower bounds or Ellipsoidal
Approximations.
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Algorithmic Framework
L

Surrogate functions

@ Modular Lower Bounds: Induced via orderings of elements:
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Algorithmic Framework
L

Surrogate functions

@ Modular Lower Bounds: Induced via orderings of eIements:

L1
22
[

X3

!—Lﬁ
F(X) < b3(X), where h§(a(i)) = F(5;) — f(Ei-1) 2@ G@000@
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Algorithmic Framework
L

Surrogate functions

@ Modular Lower Bounds: Induced via orderings of elements:
»

P
22
[

X3

— N N
F(X) < W(X), where W (o(i)) = F(Z) ~ F(5,)  $ 000

@ Modular upper bounds:
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Algorithmic Framework
L

Surrogate functions
@ Modular Lower Bounds: Induced via orderings of elements:
Y

P D 6D 6D 6B
F(X) < B(X), where h(a(i)) = F(5,) — F(E,) SO @0000
p% i
3
@ Modular upper bounds:

Upper bound-I

FX) < mya(X)=£(Y) = > fUIY\)+ Y f(iI)

JEY\X JjexX\Y
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Surrogate functions
@ Modular Lower Bounds: Induced via orderings of elements:
Y

P D 6D 6D 6B
F(X) < B(X), where h(a(i)) = F(5,) — F(E,) SO @0000
p% i
3
@ Modular upper bounds:

Upper bound-II

F(X) < mya(X)=£(Y) = D fGIVA) + Y f(IY)
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Algorithmic Framework
L

Surrogate functions
@ Modular Lower Bounds: Induced via orderings of elements:

V—lﬁ
F(X) < h3(X), where h%(o(i)) = F(:) — F(Ti-1) geeevoo:
21 I
X3
@ Modular upper bounds:

Upper bound-II

FX) < myo(X)=F(Y)= D> UV + D F(lY)

JjeY\X jeX\Y
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Algorithmic Framework
L

Surrogate functions
@ Modular Lower Bounds: Induced via orderings of eIements:

!—Lﬁ
F(X) < b3(X), where h§(a(i)) = F(5;) — f(Ei-1) 2@ G@000@

L1
p% i
33
@ Modular upper bounds:

Upper bound-II

F(X) < mya(X)=£(Y) = D fGIVA) + Y f(IY)

JEYAX JEX\Y

o Approximations: Ellipsoidal Approximation gives the tightest
approximation to a submodular function.

e N

4
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Submodular Set Cover (SSC) and Submodular Knapsack
(SK)

Coverage/ Diversity

/\

SSC: min{w(X) : g(X) > c}, SK: max{g(X): w(X) < b},

—

Additive Costs
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SSC: min{w(X) : g(X) > c}, SK: max{g(X): w(X) < b},

—_

Additive Costs

@ Lemma: The greedy algorithm for SSC (Wolsey, 82) and SK
(Nemhauser, 78) is special case of Algorithm 1 with g replaced by
its modular lower bound.
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Submodular Set Cover (SSC) and Submodular Knapsack
(SK)

Coverage/ Diversity

/\

SSC: min{w(X) : g(X) > c}, SK: max{g(X): w(X) < b},

—_

Additive Costs

@ Lemma: The greedy algorithm for SSC (Wolsey, 82) and SK
(Nemhauser, 78) is special case of Algorithm 1 with g replaced by
its modular lower bound.

@ Approximation guarantees are constant factor — 1 — 1/e respectively.
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lterative Submodular Set Cover (ISSC)/Submodular
Knapsack (ISK)

Coverage/ Diversity

/

SCSC: min{f(X): g(X) > c}, SCSK: max{g(X): f(X) < b},

— T

Co-operative Costs

@ Choose surrogate functions % as modular upper bounds.
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Co-operative Costs

@ Choose surrogate functions % as modular upper bounds.

o Fast iterative algorithms for SCSC and SCSK — Iteratively solve SSC
or SK.
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SCSC: min{f(X): g(X) > c}, SCSK: max{g(X): f(X) < b},
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Co-operative Costs

@ Choose surrogate functions % as modular upper bounds.

o Fast iterative algorithms for SCSC and SCSK — Iteratively solve SSC
or SK.

@ Theorem: ISSC and ISK obtain (bi-criterion) approximation factors

7 = Ol Tyan):
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lterative Submodular Set Cover (ISSC)/Submodular
Knapsack (ISK)

Coverage/ Diversity

/\

SCSC: min{f(X): g(X) > c}, SCSK: max{g(X): f(X) < b},

— T

Co-operative Costs

@ Choose surrogate functions % as modular upper bounds.

o Fast iterative algorithms for SCSC and SCSK — Iteratively solve SSC
or SK.

@ Theorem: ISSC and ISK obtain (bi-criterion) approximation factors

7 = Ol Tyan):
@ These algorithms also extend to SML/SS.
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Ellipsoidal Approximation Submodular Set Cover
(EASSC)/ Submodular Knapsack (EASK)

Coverage/ Diversity

/

SCSC: min{f(X) : g(X) > c}, SCSK: max{g(X): f(X) < b},

— T

Co-operative Costs

@ Choose surrogate functions f as Ellipsoidal Approximation, in both
SCSC and SCSK.

@ Theorem: EASSC and EASK obtain (bi-criterion) approximation
factors of 7 = O(H(ﬁl‘gg‘f{;(l_m)).

@ These algorithms also extend to SML/SS.

@ This algorithm matches the hardness of this problem upto log
factors.
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Empirical Results
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Limited Vocabulary data subset selection with Accoustic
diversity

@ Accoustic Diversity:

all_right How @relysi doing
How dre_you with yours

hi nadine my name is lorraine how are_you
good how are_you

hello hi how arelyou

good thanks how are_you

uh how are_you

i'm good how are_you

fine how are_you
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Limited Vocabulary data subset selection with Accoustic
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@ Accoustic Diversity:
o Similarity matrix s;; between utterances i

all_right fiow aresyeu doing

. . ot_rign s
and j (string kernel) s
o Submodular functions: good fiow areZyou

hello hi how arelyol
good thanks how are_you

@ Facility Location function: ub FEAIEEENYY
i'm good how arelyou
g(X) = ZIEV maXjex Sjj fine Howlare_you

@ Saturated coverage function
g(X)= Zigv min{Zjex sijvﬁz_,'gv Sij}-

o Limited Vocabulary:

(a) Bipartite graph

Bipartite Neighborhood function: |y(X)|.
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@ Compare our different algorithms on the TIMIT speech corpus.
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Empirical Results
1

Results

@ Compare our different algorithms on the TIMIT speech corpus.

@ Baseline is choosing random subsets.

@ Observations:
@ All the algorithms perform much better than random subset selection.
@ The iterative and much faster algorithms, perform comparably to the
slower and tight Ellipsoidal Approximation based algorithms.

Fac. Location/ Bipartite Neighbor. Saturated Sum/ Bipartite Neighbor

300
—1ssc 4
—EASSCe & 200 —issC
=3

ISK —EASSCe
Gr 1Sk

101 ---EASKc
===EASKc
— Random — Random

0 100 200 250 20 4060 80 100
f(X) )

Gr
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Empirical Results
L

Conclusions/ Future Work

e We proposed some very efficient (scalable) algorithms and two tight
algorithms for submodular optimization under submodular
constraints.

@ In the paper: Extensions to handle multiple constraints, and
non-monotone submodular functions.

o Future Work: Investigate our new algorithms on different real world
applications.

Thank Youl
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one another!

e Bi-criterion factor: [0, p] approximation for (1) = a set
X f(X) <of(X*) and g(X) > pc. A [p, o] approximation for (2)
= aset X:g(X)>pg(X*)and f(X)<ob[oc>1p<l1]

Algorithm 2 Algorithm for SCSC using an algorithm for SCSK

1. Input: An SCSC instance, ¢, [p, o] algorithm for SCSK, € > 0.
: Output: [(1+ €)o, p] approx. for SCSC.
. b < argmin; F(j), Xp < 0.
while g(X;) < pc do

b+ (1+¢€)b

Xp [p, o] approx. for SCSK using b.
end while
: Return )A(b.

O N a R wn
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Extra Slides

Hardness Theorem

@ Theorem: For any k > 0, there exists submodular function f with
curvature kf = k such that no polynomial time algorithm for SCSC

a nl/2—¢
and SCSK ¢ = rr v for any € > 0.
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Table : Summary of Hardness results for SCSC/ SCSK
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