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Set functions f : 2V → R

{V =
, , ,
, ,
, ,

,}
V is a finite “ground” set of objects.

A set function f : 2V → R produces a value for any
subset A ⊆ V .
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For example, f (A) = 22,
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Submodular Set Functions

Special class of set functions.

f (A ∪ v)− f (A) ≥ f (B ∪ v)− f (B), if A ⊆ B (1)

Gain = 1 Gain = 0

Monotonicity: f (A) ≤ f (B), if A ⊆ B.

Modular function f (X ) =
∑

i∈X f (i) analogous to linear functions.
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Two Sides of Submodularity

Submodular Minimization

Solve min{f (X )|X ⊆ V }.
Polynomial-time.

Relation to convexity.

Models cooperation.

Submodular Maximization

Solve max{g(X )|X ⊆ V }.
Constant-factor approximable.

Relation to concavity.

Models diversity and coverage.

Sometimes we want to simultaneously maximize coverage/ diversity
(g) while minimizing cooperative costs (f ).

Often these naturally occur as budget or cover constraints (for
example, maximize diversity subject to a budget constraint on the
submodular cost).
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Submodular Optimization with Submodular Constraints

Historically: DS optimization

Unfortunately, NP hard to approximate (Iyer-Bilmes’12).

We introduce the following, which is often more natual anyway:

While DS optimization is NP hard to approximate, SCSC and SCSK
however, retain approximation guarantees!

Throughout this talk, assume f and g are monotone.
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Our Main Contributions

Show how SCSC/SCSK subsume a number of important
optimization problems.

Provide a unifying algorithmic framework for these.

Provide a complete characterization of the hardness of these
problems.

Emphasize the scalability and practicality of some of our algorithms!
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I - Submodular Set Cover and Submodular Knapsack

Sensor Placement
(Krause et al’08)

Data Subset Selection
(Wei et al’13)

Document Summarization
(Lin-Bilmes’11)
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II - Submodular Cost with Modular Constraints
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III - Most General Case: SCSC and SCSK

Sensor Placement with
Submodular Costs
(I-Bilmes’12)

Limited vocabulary and
accoustically diverse speech

corpus selection
(Lin-Bilmes’11, Wei et

al’13)

Privacy preserving
communication
(I-Bilmes’13)
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Connections between SCSC and SCSK
Bi-criterion factors:

min{f (X ) : g(X ) ≥ c}:
[σ, ρ] approximation for
SCSC is a set
X : f (X ) ≤ σf (X ∗) and
g(X ) ≥ ρc .

max{g(X ) : f (X ) ≤ b}:
[ρ, σ] approximation for
SCSK is a set
X : g(X ) ≥ ρg(X ∗) and
f (X ) ≤ σb.

[σ > 1, ρ < 1]
Approximate Solution Range

Approximate Feasible Range

Feasible Range

Approximate Solution Range

Feasible Range

Approximate Feasible Range

Theorem: Given a [σ, ρ] bi-criterion approx. algorithm for SCSC,
we can obtain a [(1 + ε)ρ, σ] bi-criterion approx. algorithm for
SCSK, by running the algorithm for SCSC, O(log 1

ε ) times.
The other direction also holds!
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Curvature of a Submodular Function

Curvature:

κf = 1−min
j∈V

f (j |V \j)
f (j)

and κg = 1−min
j∈V

g(j |V \j)
g(j)

(2)



cardinality   |S|

F(S)

Curvature is a fundamental “complexity” parameter of a submodular
function.
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Hardness (Lower bounds) of the problems

Modular g Submodular g
(κg = 0) (0 < κg < 1) (κg = 1)

Modular f
(κf = 0)
Submod f
(0 < κf < 1)
Submod f
(κf = 1)

Hardness depends (mainly) on κf and not (so much) on that of κg .
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Modular g Submodular g
(κg = 0) (0 < κg < 1) (κg = 1)
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Modular f
FPTAS

1
κg

(1− e−κg ) 1− 1/e
(κf = 0)
Submod f
(0 < κf < 1)
Submod f
(κf = 1)

Knapsack SSC/SK
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Hardness (Lower bounds) of the problems

Modular g Submodular g
(κg = 0) (0 < κg < 1) (κg = 1)

Modular f
FPTAS

1
κg

(1− e−κg ) 1− 1/e
(κf = 0)
Submod f

Ω(
√

n
1+(

√
n−1)(1−κf )

)
(0 < κf < 1)
Submod f

Ω(
√
n)

(κf = 1)

Knapsack SSC/SK

SML/SS

Hardness depends (mainly) on κf and not (so much) on that of κg .
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Algorithmic framework

Algorithm 1 General algorithmic framework to address both Problems 1
and 2

1: for t = 1, 2, · · · ,T do
2: Choose surrogate functions f̂t and ĝt for f and g respectively.
3: Obtain X t as the optimizer of SCSC/SCSK with f̂t and ĝt instead

of f and g .
4: end for

Surrogate functions: modular upper/ lower bounds or Ellipsoidal
Approximations.
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3: Obtain X t as the optimizer of SCSC/SCSK with f̂t and ĝt instead
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Approximations: Ellipsoidal Approximation gives the tightest
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Submodular Set Cover (SSC) and Submodular Knapsack
(SK)

Lemma: The greedy algorithm for SSC (Wolsey, 82) and SK
(Nemhauser, 78) is special case of Algorithm 1 with g replaced by
its modular lower bound.

Approximation guarantees are constant factor – 1− 1/e respectively.
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Iterative Submodular Set Cover (ISSC)/Submodular
Knapsack (ISK)

Choose surrogate functions f̂t as modular upper bounds.

Fast iterative algorithms for SCSC and SCSK – Iteratively solve SSC
or SK.

Theorem: ISSC and ISK obtain (bi-criterion) approximation factors
σ
ρ = O( n

1+(n−1)(1−κf ) ).

These algorithms also extend to SML/SS.
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Ellipsoidal Approximation Submodular Set Cover
(EASSC)/ Submodular Knapsack (EASK)

Choose surrogate functions f̂t as Ellipsoidal Approximation, in both
SCSC and SCSK.

Theorem: EASSC and EASK obtain (bi-criterion) approximation

factors of σ
ρ = O(

√
n log n

1+(
√
n log n−1)(1−κf )

).

These algorithms also extend to SML/SS.

This algorithm matches the hardness of this problem upto log
factors.
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Limited Vocabulary data subset selection with Accoustic
diversity

Accoustic Diversity:

Similarity matrix sij between utterances i
and j (string kernel)
Submodular functions:

1 Facility Location function:
g(X ) =

∑
i∈V maxj∈X sij

2 Saturated coverage function
g(X ) =

∑
i∈V min{

∑
j∈X sij , β

∑
j∈V sij}.

Limited Vocabulary:

Bipartite Neighborhood function: |γ(X )|.

the
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don’t 
know
you
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so
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what
but
and
wow
they
did
do
true
we
is
good
oh
have

great
yep
think
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that’s
I
it
sure
mean
well
right
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was
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are
all
to
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then
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sounds
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interesting
anyway
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Results

Compare our different algorithms on the TIMIT speech corpus.

Baseline is choosing random subsets.

Observations:

1 All the algorithms perform much better than random subset selection.
2 The iterative and much faster algorithms, perform comparably to the

slower and tight Ellipsoidal Approximation based algorithms.
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Conclusions/ Future Work

We proposed some very efficient (scalable) algorithms and two tight
algorithms for submodular optimization under submodular
constraints.

In the paper: Extensions to handle multiple constraints, and
non-monotone submodular functions.

Future Work: Investigate our new algorithms on different real world
applications.

Thank You!
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Extra Slides

Connections between SCSC and SCSK

SCSC and SCSK are closely related, and can be transformed into
one another!

Bi-criterion factor: [σ, ρ] approximation for (1) =⇒ a set
X : f (X ) ≤ σf (X ∗) and g(X ) ≥ ρc . A [ρ, σ] approximation for (2)
=⇒ a set X : g(X ) ≥ ρg(X ∗) and f (X ) ≤ σb [σ > 1, ρ < 1].

Algorithm 2 Algorithm for SCSC using an algorithm for SCSK

1: Input: An SCSC instance, c , [ρ, σ] algorithm for SCSK, ε > 0.
2: Output: [(1 + ε)σ, ρ] approx. for SCSC.
3: b ← argminj f (j), X̂b ← ∅.
4: while g(X̂b) < ρc do
5: b ← (1 + ε)b
6: X̂b ← [ρ, σ] approx. for SCSK using b.
7: end while
8: Return X̂b.
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Hardness Theorem

Theorem: For any κ > 0, there exists submodular function f with
curvature κf = κ such that no polynomial time algorithm for SCSC

and SCSK σ
ρ = n1/2−ε

1+(n1/2−ε−1)(1−κ)
for any ε > 0.

Hardness depends on the curvature of the submodular function f
and not on that of g .

Modular g Submodular g
(κg = 0) (0 < κg < 1) (κg = 1)

Modular f
FPTAS

1
κg

(1− e−κg ) 1− 1/e
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√
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) Ω(
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n
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n−1)(1−κf )
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(0 < κf < 1)
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√
n) Ω(

√
n) Ω(

√
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Table : Summary of Hardness results for SCSC/ SCSK
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