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Overview

I Introduce two new problems:
(SCSC): min{f (X ) |g(X ) ≥ c} (1) (SCSK): max{g(X ) | f (X ) ≤ b} (2)

I Formally show how they are closely related.
I Provide an algorithmic framework subsuming many common algorithms.
I Scalable approximation algorithms and hardness results.

Motivation

Sensor Placement with
Submodular Costs
(I-Bilmes’12)

Limited vocabulary and
accoustically diverse speech

corpus selection (Lin-Bilmes’11,
Wei et al’13)

Privacy preserving
communication (I-Bilmes’13)

Algorithmic Framework

Algorithm 1 General algorithmic framework for Problems 1 and 2
1: for t = 1,2, · · · ,T do
2: Choose surrogate functions f̂t and ĝt for f and g respectively, tight at X t−1.
3: Obtain X t as the optimizer of Problem 1 or 2 with f̂t and ĝt instead of f and g.
4: end for

I The Algorithm monotonically improves objective at every iteration.
I Surrogate functions are modular upper bounds (super-gradients), modular

lower bounds (sub-gradients) or approximations.
Subgradients:

I Akin to convexity.
I Denote a permutation σY :

Y

σ(1) σ(2) σ(3) σ(4) σ(5) σ(6) σ(7) σ(8)

Σ1

Σ2

Σ3

I hY (σY (i)) = f (Σi)− f (Σi−1)
I Modular Lower bound:

mhY (X ) = f (Y ) + hY (X )− hY (Y ) ≤ f (X )

Supergradients:

I Akin to concavity.
I Three specific supergradients:

ĝY (j) = f (j |V\{j}) ĝY (j) = f (j |Y )

ǧY (j) = f (j |Y\{j}) ǧY (j) = f (j |∅)
ḡY (j) = f (j |V\{j})︸ ︷︷ ︸ ḡY (j) = f (j |∅)︸ ︷︷ ︸

for j ∈ Y for j /∈ Y .

I Modular Upper bound:
mgY (X ) = f (Y ) + gY (X )− gY (Y ) ≥ f (X ).

I The Ellipsoidal approximation (Goemans et al, 2009; Iyer et al, 2013) provides
the tightest bounds for these problems (though not practical).

I Define the curvature of a monotone submodular function κf as:

κf = 1−min
j∈V

f (j |V\j)
f (j)

(1)

Relation between SCSC and SCSK

I Bi-criterion guarantees: [σ, ρ] approx. for (1) =⇒ a set X : f (X ) ≤ σf (X ∗)
and g(X ) ≥ ρc. Similarly a [ρ, σ] approx. for (2) =⇒ a set X : g(X ) ≥ ρg(X ∗)
and f (X ) ≤ σb.

Algorithm 2 Approx. algo. for SCSK us-
ing an approx. alg. for SCSC

1: Input: An SCSK instance with bud-
get b, [σ, ρ] approx. SCSC, ε ∈ [0,1).

2: Output: [(1 − ε)ρ, σ] approx. for
SCSK.

3: c ← g(V ), X̂c ← V .
4: while f (X̂c) > σb do
5: c ← (1− ε)c
6: X̂c ← [σ, ρ] approx. for SCSC using

c.
7: end while
8: Return X̂c

Algorithm 3 Approx. algo for SCSC us-
ing an approx. alg. for SCSK.

1: Input: An SCSC instance with
cover c, [ρ, σ] approx. SCSK, ε > 0.

2: Output: [(1 + ε)σ, ρ] approx. for
SCSC.

3: b ← argminj f (j), X̂b ← ∅.
4: while g(X̂b) < ρc do
5: b ← (1 + ε)b
6: X̂b ← [ρ, σ] approx. for SCSK us-

ing b.
7: end while
8: Return X̂b.

Approx. Algorithms for SCSC

I Submodular Set Cover (SSC):
I Special case of SCSC with f modular and g submodular.
I Lemma: The greedy algorithm for SSC is special case of Algorithm 1 with g
replaced by its modular lower bound (Approx. factor ≈ 1 + log g(V )).

I Dual SSC: Obtain a bicriterion approximate solution for SSC using Algorithm 3
and Submodular Knapsack.

I Lemma: Dual SSC obtains a [1 + ε,1− 1/e] Bi-criterion Approximation.

I Iterative Submodular Set Cover (ISSC):
I Choose surrogate functions f̂t as modular upper bounds (supergradients).
I Iteratively solve SSC.
I Theorem: ISSC obtains an approximation factor of KgHg

1+(Kg−1)(1−κf )
where

Kg = 1 + max{|X | : g(X ) < c} and Hg is the approx. factor of SSC using g.

I Ellipsoidal Approx. based Submodular Set Cover (EASSC):
I Choose surrogate functions f̂t as Ellipsoidal Approximation.
I Iteratively solve SSC.
I Theorem: EASSC obtains an approximation factor of O(

√
n log nHg

1+(
√

n log n−1)(1−κf )
)

where Hg is the approximation factor of SSC using g.
I A much simpler non-iterative algorithm acheives a factor of O(

√
n log n

√
Hg).

Approx. Algorithms for SCSK

I Submodular Knapsack (SK):
I Special case of SCSK with f modular and g submodular.
I Lemma: The greedy algorithm for SK is special case of Algorithm 1 with g
replaced by its modular lower bound (Approx. factor 1− 1/e).

I Greedy (Gr):
I A simple greedy algorithm (can be seen as special case of Algorithm 1).
I Lemma: Gr obtains a worst case guarantee of 1

κg
(1− (

Kf−κg
Kf

)kf ) ≥ 1
Kf

, where
Kf = max{|X | : f (X ) ≤ b} and kf = min{|X | : f (X ) ≤ b & ∀j ∈ X , f (X ∪ j) > b}.

I Iterative Submodular Knapsack (ISSC):
I Choose surrogate functions f̂t as modular upper bounds (supergradients).
I Iteratively solve SK.
I Theorem: ISK obtains a bicriterion approximation factor of

[1− e−1, Kf
1+(Kf−1)(1−κf )

] where Kf = max{|X | : f (X ) ≤ b}.

I Ellipsoidal Approx. based Submodular Knapsack (EASK):
I Choose surrogate functions f̂t as Ellipsoidal Approximation.
I This is based on looking at its dual problem.
I Approximation guarantee similar to EASSC.

Hardness

I We can show matching lower bounds:

Theorem: For any κ > 0, there exists submodular functions with curvature
κ such that no polynomial time algorithm for Problems 1 and 2 achieves a
bi-criterion factor better than σ

ρ = n1/2−ε

1+(n1/2−ε−1)(1−κ)
for any ε > 0.

Experiments

I Compare our algorithms on data subset selection on TIMIT corpus.
I f as a bipartite neighborhood, and g as facility location and saturated graph cut

respectively.
I ISSC, ISK and Gr compare in performance to EASSC/ EASK, though they are

much faster!
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