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Approx. Algorithms for SCSC

» Introduce two new problems: . Submodular Set Cover (SSC):

(SCSC): min{f(X)|g(X)>c} (1) (SCSK): max{g(X)|f(X) < b} (2) . Special case of SCSC with f modular and g submodular.
» Formally show how they are closely related. » Lemma: The greedy algorithm for SSC is special case of Algorithm 1 with g
» Provide an algorithmic framework subsuming many common algorithms. replaced by its modular lower bound (Approx. factor ~ 1 +log g(V)).

» Dual SSC: Obtain a bicriterion approximate solution for SSC using Algorithm 3
and Submodular Knapsack.

—— » Lemma: Dual SSC obtains a [1 + ¢,1 — 1/¢] Bi-criterion Approximation.
Motivation
» [terative Submodular Set Cover (ISSC):

» Choose surrogate functions f. as modular upper bounds (supergradients).
- Iteratively solve SSC.
- Theorem: ISSC obtains an approximation factor of - +(Kg’fg1h)'§(’1_m) where

Ky =14+ max{|X]: g(X) < ¢} and Hj, is the approx. factor of SSC using g.

» Ellipsoidal Approx. based Submodular Set Cover (EASSC):

» Choose surrogate functions f, as Ellipsoidal Approximation.
» Iteratively solve SSC.

» Scalable approximation algorithms and hardness results.
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Sensor Placement with Limited vocabulary and Prlvaoy preserving where H, is the approximation factor of SSC using g.
Submodular Costs accoustically diverse speech communication (I-Bilmes'13) - A much simpler non-iterative algorithm acheives a factor of O(1/nlog n\mg).
(I-Bilmes’'12) corpus selection (Lin-Bilmes'11,
Wel et al'13)

Approx. Algorithms for SCSK
Algorithmic Framework
» Submodular Knapsack (SK):

Algorithm 1 General algorithmic framework for Problems 1 and 2 - Special case of SCSK with f modular and g submodular.
. fort=1,2,--- , T do » Lemma: The greedy algorithm for SK is special case of Algorithm 1 with g
2: Choose surrogate functions f; and g for f and g respeotlvely, tight at X1, replaced by its modular lower bound (Approx. factor 1 — 1/e).
3: Obtain X! as the optimizer of Problem 1 or 2 with ft and g; instead of f and g. . Greedy (Gr):
4: end for » A simple greedy algorithm (can be seen as special case of Algorithm 1).
» The Algorithm monotonically improves objective at every iteration. - Lemma: Gr obtains a worst case guarantee of /(1 (Kfog)kf) > &, where
» Surrogate functions are modular upper bounds (super-gradients), modular K = max{|X|: f(X) < b} and kr = min{|X| : f(X) < b&Vje X, {(XUjJ)> b}.
lower bounds (sub-gradients) or approximations.

» Iterative Submodular Knapsack (ISSC):

Subgradients: Supergradients: - Choose surrogate functions f; as modular upper bounds (supergradients).
i - lteratively solve SK.
» Akin to convexity. . Akin to concavity. » Theorem: |ISK obtains a bicriterion approximation factor of
- Denote a permutation oy: » Three specific supergradients: [1-e ' 7% ’ff) ] where Ky = max{|X| : {(X) < b}.
o @ ®0 @@ @ @ ay()) = fGIV\YY)  av(j) = f(j]Y) » Ellipsoidal Approx. based Submodular Knapsack (EASK):
B av(y) = fUIM\{})  gvl) = (]0) . Choose surrogate functions £ as Ellipsoidal Approximation.
o gr) = UMY gvl) = fU10) - This is based on looking at its dual problem.
> hy(oy(i)) = f(X)) — f(Z;_4) forjeY forj ¢ Y. ~ Approximation guarantee similar to EASSC.

» Modular Lower bound: » Modular Upper bound:
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» We can show matching lower bounds:

» The Ellipsoidal approximation (Goemans et al, 2009; lyer et al, 2013) provides

the tightest bounds for these problems (though not practical). Theorem: For any « > 0, there exists submodular functions with curvature
» Define the curvature of a monotone submool_ular_funotion K¢ as: ’I;i-Sol:ic’zgritgr?tf;cf’)[oeot?elﬂce)rrntﬁ;r:lrge— a'QOFIISDZmE for Pf?rb;enmi 1> gnd 2 achieves a
ke =1 —min (j‘ V\j) (1) p 1+(n'/2—c—1)(1—k) y -
jev f(j)

Relation between SCSC and SCSK _Experiments

» Compare our algorithms on data subset selection on TIMIT corpus.

» f as a bipartite neighborhood, and g as facility location and saturated graph cut
respectively.

» ISSC, ISK and Gr compare in performance to EASSC/ EASK, though they are
much faster!

» Bi-criterion guarantees: [0, p| approx. for (1) = aset X : f(X) < of(X*)
and g(X) > pc. Similarly a [p, o] approx. for (2) — aset X : g(X) > pg(X*)
and f(X) < ob.
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