
Submodular-Bregman and the Lovász-Bregman
Divergences with Applications

Rishabh Iyer
Department of Electrical Engineering

University of Washington
rkiyer@u.washington.edu

Jeff Bilmes
Department of Electrical Engineering

University of Washington
bilmes@uw.edu

Abstract

We introduce a class of discrete divergences on sets (equivalently binary vectors)
that we call the submodular-Bregman divergences. We consider two kinds, defined
either from tight modular upper or tight modular lower bounds of a submodular
function. We show that the properties of these divergences are analogous to the
(standard continuous) Bregman divergence. We demonstrate how they generalize
many useful divergences, including the weighted Hamming distance, squared
weighted Hamming, weighted precision, recall, conditional mutual information,
and a generalized KL-divergence on sets. We also show that the generalized
Bregman divergence on the Lovász extension of a submodular function, which we
call the Lovász-Bregman divergence, is a continuous extension of a submodular
Bregman divergence. We point out a number of applications, and in particular show
that a proximal algorithm defined through the submodular Bregman divergence pro-
vides a framework for many mirror-descent style algorithms related to submodular
function optimization. We also show that a generalization of the k-means algorithm
using the Lovász Bregman divergence is natural in clustering scenarios where
ordering is important. A unique property of this algorithm is that computing the
mean ordering is extremely efficient unlike other order based distance measures.

1 Introduction

The Bregman divergence first appeared in the context of relaxation techniques in convex programming
([4]), and has found numerous applications as a general framework in clustering ([2]), proximal
minimization ([5]) and online learning ([27]). Many of these applications are due to the nice properties
of the Bregman divergence, and the fact that they are parameterized by a single convex function.
They also generalize a large class of divergences on vectors. Recently Bregman divergences have
also been defined between matrices ([26, 6]) and between functions ([8]).

In this paper we define a class of divergences between sets, where each divergence is parameterized by
a submodular function. This can alternatively and equivalently be seen as a divergence between binary
vectors in the same way that submodular functions are special cases of pseudo-Boolean functions
[3]. We call this the class of submodular Bregman divergences (or just submodular Bregman). We
show an interesting mathematical property of the submodular Bregman, namely that they can be
defined based on either a tight modular (linear) upper bound or alternatively a tight modular lower
bound, unlike the traditional (continuous) Bregman definable only via a tight linear lower bound.

Let V refer to a finite ground set {1, 2, . . . , |V |}. A set function f : 2V → R is submodular if
∀S, T ⊆ V , f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ). Submodular functions have attractive properties
that make their exact or approximate optimization efficient and often practical. Submodularity
can be seen as a discrete counterpart to convexity and concavity ([20]) and often the problems are
closely related ([1]). Indeed, as we shall see in this paper, the connections between submodularity
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and convexity and concavity will help us formulate certain discrete divergences that are analogous
to the Bregman divergence. We in fact show a direct connection between a submodular Bregman
and a generalized Bregman divergence defined through the Lovász extension. Further background
on submodular functions may be found in the text [9].

An outline of the paper follows. We first define the different types of submodular Bregman in
Section 2. We also define the Lovász Bregman divergence, and show its relation to a version of
the submodular Bregman. Then in Section 3, we prove a number of properties of the submodular
Bregman and show how they are related to the Bregman divergence. Finally in Section 4, we show
how the submodular Bregman can be used in applications in machine learning. In particular, we show
how the proximal framework of the submodular Bregman generalizes a number of mirror-descent
style approximate submodular optimization algorithms. We also consider generalizations of the
k-means algorithm using the Lovász Bregman divergence, and show how they can be used in
clustering applications where ordering or ranking is important.

2 The Bregman and Submodular Bregman divergences

Notation: We use φ to refer to a convex function, f to refer to a submodular function, and f̂ as
f ’s Lovász extension. Lowercase characters x, y will refer to continuous vectors, while upper case
characters X,Y, S will refer to sets. We will also refer to the characteristic vectors of a set X as
1X ∈ {0, 1}V . Note that the characteristic vector of a set X , 1X is such that 1X(j) = I(j ∈ X),
where I(·) is the standard indicator function. We will refer to the ground set as V , and the cardinality
of the ground set as n = |V |. A divergence on vectors and sets is formally defined as follows:
Given a domain of vectors or sets S (and if sets, S = a lattice of sets L, where L is a lattice if
∀X,Y ∈ L, X ∪ Y,X ∩ Y ∈ L), a function d : S × S → R+ is called a divergence if ∀x, y ∈ S,
d(x, y) ≥ 0 and ∀x ∈ S, d(x, x) = 0. For simplicity, we consider mostly the Boolean lattice L = 2V

but generalizations are possible as well [9].

2.1 Bregman and Generalized Bregman divergences

Recall the definition of the Bregman divergence: dφ : S× S→ R+ as:

dφ(x, y) = φ(x)− φ(y)− 〈∇φ(y), x− y〉. (1)

For non-differentiable convex functions, we can extend equation (1) to define the generalized Bregman
divergence [12, 18]. Define a subgradient map Hφ, which for every vector y, gives a subgradient
Hφ(y) = hy ∈ ∂φ(y) [12], where ∂φ(y) is the subdifferential of φ at y.

d
Hφ
φ (x, y) = φ(x)− φ(y)− 〈Hφ(y), x− y〉,∀x, y ∈ S. (2)

When φ is differentiable, then ∂φ(x) = {∇φ(x)} andHφ(y) = ∇φ(y). More generally, there may
be multiple distinct subgradients in the subdifferential, hence the generalized Bregman divergence is
parameterized both by φ and the subgradient-mapHφ. The generalized Bregman divergences have
also been defined in terms of “extreme” subgradients [25, 18].

d]φ(x, y) = φ(x)− φ(y)− σ∂φ(y)(x− y) and d\φ(x, y) = φ(x)− φ(y) + σ∂φ(y)(y − x), (3)

where, for a convex set C, σC(.) , supx∈C〈., x〉. This then implies that: d]φ(x, y) ≤ d
Hφ
φ (x, y) ≤

d\φ(x, y),∀Hφ which justifies their being called the extreme generalized Bregman divergences [12].

2.2 The Submodular Bregman divergences

In a similar spirit, we define a submodular Bregman divergence parameterized by a submodular
function and defined as the difference between the function and its modular (sometimes called linear)
bounds. Surprisingly, any submodular function has both a tight upper and lower modular bound
([15]), unlike strict convexity where only a tight first-order lower bound exists. Hence, we define
two distinct forms of submodular Bregman parameterized by a submodular function and in terms
of either its tight upper or tight lower bounds.
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2.2.1 Lower bound form of the Submodular Bregman

Given a submodular function f , the submodular polymatroid Pf , the corresponding base polytope
Bf and the subdifferential ∂f (Y ) (at a set Y ) for a submodular function f [9] are respectively:

Pf = {x : x(S) ≤ f(S),∀S ⊆ V }, Bf = Pf ∩ {x : x(V ) = f(V )}, and (4)

∂f (Y ) = {y ∈ RV : ∀X ⊆ V, f(Y )− y(Y ) ≤ f(X)− y(X)}. (5)

Note that here y(S) =
∑
j∈S y(j) is a modular function. In a manner similar to the generalized

Bregman divergence ([12]), we define a discrete subgradient map for a submodular function Hf ,
which for every set Y , picks a subgradient Hf (Y ) = hY ∈ ∂f (Y ). Then, given a submodular
function f and a subgradient-mapHf , the generalized lower bound submodular Bregman – which
we shall henceforth call dHff , is defined as:

d
Hf
f (X,Y ) = f(X)− f(Y )− hY (X) + hY (Y ) = f(X)− f(Y )− 〈Hf (Y ), 1X − 1Y 〉). (6)

This form of submodular Bregman is parameterized both by the submodular function f and the
subgradient mapHf .

The subdifferential corresponding to a submodular function is an unbounded polyhedron [9], with a
large number of possible subgradients. Its extreme points, however, are easy to find and characterize
using the greedy algorithm [7]. Thus, we define a subclass of dHff withHf chosen so that it picks
an extreme points of ∂f (Y ), which we will call the permutation based lower bound submodular
Bregman, henceforth referred to with dΣf . The extreme points of ∂f (Y ) can be obtained via a greedy
algorithm ([7, 9]) as follows: Let σ be a permutation of V and define Si = {σ(1), σ(2), . . . , σ(i)}
as its corresponding chain. We define ΣY as the set of permutations σY such that their corresponding
chains contain Y , meaning S|Y | = Y . Then we can define a subgradient hY,σY (which is an extreme
point of ∂f (Y )) where:

∀σY ∈ ΣY , hY,σY (σY (i)) =

{
f(S1) if i = 1

f(Si)− f(Si−1) otherwise
. (7)

In the above, hY,σY (Y ) = f(Y ). Hence defineHΣ
f as a subgradient map which picks a subgradient

hY,σY , for some Σ(Y ) = σY ∈ ΣY . Here we treat Σ as a permutation operator which, for a given
set Y , produces a permutation σY ∈ ΣY . Hence the above, directly provides us with a subclass,
which we call the permutation based lower bound submodular Bregman and we can rewrite Eqn. (6),
with the above subgradient as

dΣf (X,Y ) = f(X)− hY,σY (X) = f(X)− 〈HΣ
f (Y ), 1X〉. (8)

As can readily be seen, the dΣf are special cases of the dHff .

Similar to the extreme generalized Bregman divergence above, we can define forms of the
“extreme” lower bound submodular Bregman divergences d]f (X,Y ) and d\f (X,Y ), which
provide bounds on the forms of the lower bound submodular Bregman. . Since in the case of a
submodular function ∂f (Y ) is an unbounded polyhedron, we restrict C = ∂f (Y ) ∩ Bf , and define:
d]f (X,Y ) = f(X)− f(Y )− σC(1X − 1Y ) and d\f (X,Y ) = f(X)− f(Y ) + σC(1Y − 1X) Then
d\f (X,Y ) also has a nice representation, as we show below:

Theorem 2.1. For a submodular function f , d\f (X,Y ) = f(X) − f(Y ) + f(Y \X) − f ](X\Y ),
where f ](A) = f(V )− f(V \A)

The proof of this theorem is in Appendix ??

Finally we relate the different forms of lower bound submodular Bregmans in the Lemma below:

Corollary 2.1.1. For every hY ∈ ∂f (Y ) ∩ Bf , d]f (X,Y ) ≤ dHff (X,Y ) ≤ d\f (X,Y ). Similarly for

every permutation map Σ, d]f (X,Y ) ≤ dΣf (X,Y ) ≤ d\f (X,Y ).

3



The above corollary shows that the extreme submodular Bregman divergences give bounds for dHff
and dΣf . Further we see that d]f is exactly the divergence which defines the submodularity of f . Also
notice that this is unlike the generalized Bregman divergences, where the “extreme” forms may not
be easy to obtain in general [12].

2.2.2 The upper bound submodular Bregman

For submodular f , [23] established properties of submodular function using which we can define the
following divergences (which we call here the Nemhauser divergences):

df] (X,Y ) , f(X)−
∑

j∈X\Y

f(j|X − {j}) +
∑

j∈Y \X

f(j|X ∩ Y )− f(Y ) (9)

df\ (X,Y ) , f(X)−
∑

j∈X\Y

f(j|X ∪ Y − {j}) +
∑

j∈Y \X

f(j|X)− f(Y ), (10)

where f(j|X) , f(X∪j)−f(X). Notice that df] (X,Y ) and df\ (X,Y ) are valid divergences if and
only if f is submodular. Similar to the approach in ([15]), we can relax the Nemhauser divergences
to obtain three modular upper bound submodular Bregmans as:

df1 (X,Y ) , f(X)−
∑

j∈X\Y

f(j|X − {j}) +
∑

j∈Y \X

f(j|∅)− f(Y ), (11)

df2 (X,Y ) , f(X)−
∑

j∈X\Y

f(j|V − {j}) +
∑

j∈Y \X

f(j|X)− f(Y ). (12)

df3 (X,Y ) , f(X)−
∑

j∈X\Y

f(j|V − {j}) +
∑

j∈Y \X

f(j|∅)− f(Y ). (13)

We call these the Nemhauser based upper-bound submodular Bregmans of, respectively, type-I, II and
III. Henceforth, we shall refer to them as df1 , df2 and df3 and when referring to them collectively, we
will use df1:3. The Nemhauser divergences are analogous to the extreme divergences of the generalized
Bregman divergences since they bound the Nemhauser based submodular Bregmans. Its not hard to
observe th following fact:

Lemma 2.1. Given a submodular function f , df3 (X,Y ) ≥ df1 (X,Y ) ≥ df] (X,Y ). Similarly

df3 (X,Y ) ≥ df2 (X,Y ) ≥ df\ (X,Y )

Similar to the generalized lower bound submodular Bregman dHff , we define a generalized upper
bound submodular Bregman divergence dfGf in terms of any supergradient of f . Interestingly for
a submodular function, we can define a superdifferential ∂f (X) at X as follows:

∂f (X) = {x ∈ RV : ∀Y ⊆ V, f(X)− x(X) ≥ f(Y )− x(Y )}. (14)

Similar to the subgradient map, we can define Gf as the supergradient map, which picks a
supergradient from Gf (X) = gX ∈ ∂f (X). Given a supergradient at X , Gf (X) = gX ∈ ∂f (X),
we can define a divergence dfGf , as:

dfGf (X,Y ) = f(X)− f(Y )− gX(X)− gX(Y ) = f(X)− f(Y )− 〈Gf (X), 1X − 1Y 〉 (15)

In fact, it can be shown that all three forms of df1:3 are actually special cases of dfGf , in that they form
specific supergradient maps. Define three supergradients g1

X , g
2
X and g3

X (with the corresponding
maps Gf1 ,G

f
2 and Gf3 ) such that: g1

X(j) = f(j|X − {j}) and g2
X(j) = g3

X(j) = f(j|V − {j}) for
j ∈ X . Similarly let g1

X(j) = g3
X(j) = f(j|∅) and g2

X(j) = f(j|X) for j /∈ X . Then it can be
shown [11] that g1

X , g
2
X , g

3
X ∈ ∂f (X), and correspondingly df1 , df2 and df3 are special cases of dfGf .

dfGf also subsumes an interesting class of divergences for any submodular function representable as
concave over modular. Consider any decomposable submodular function [24] f , representable as:
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Table 1: Instances of weighted distances measures as special cases of dHff and dfGf for w ∈ Rn+

Name Type d f(X) Hf (Y )/Gf (X)

Hamming d
Hf
f w(X\Y ) + w(Y \X) w(X) 2 · w � 1Y

Hamming dfGf w(X\Y ) + w(Y \X) −w(X) −2 · w � 1X

Recall d
Hf
f 1− w(X∩Y )

w(Y )
1 w�1Y

w(Y )

Precision dfGf 1− w(X∩Y )
w(X)

-1 −w�1X
|X|

AER(Y,X;Y ) d
Hf
f 1− |Y |+|Y ∩X|

2|Y |
1
2

1Y
2|Y |

Cond. MI d]f I(XX\Y ;XY \X |XX∩Y ) H(XX) -
Itakura-Saito dfGf

w(Y )
w(X)

− log w(Y )
w(X)

− 1 logw(X) w
w(X)

Gen. KL dfGf w(Y ) log w(Y )
w(X)

− w(Y ) + w(X) −w(X) logw(X) −w(1 + logw(X))

f(X) =
∑
i λihi(mi(X)), where the his are (not necessarily smooth) concave functions and themis

are vectors in Rn. Let h′i be any supergradient of hi. Then we define gcmX =
∑
i λih

′
i(mi(X))mi.

Further we can define a divergence defined for a concave over modular function as:

dfcm(X,Y ) =
∑
i

λi(hi(mi(X))− hi(mi(Y ))− hi(mi(X))(mi(X)−mi(Y )) (16)

Then it can be shown [11] that dfcm is also a special case of dfGf with gX = gcmX when f is a
decomposable submodular function.

Finally both dHff and dfGf generalize a number of interesting distance measures like Hamming, recall,
precision, conditional mutual information, and weighted hamming. We show this in detail in [11],
and owing to lack of space briefly summarize them in Table 1. The distance measures are shown in
weighted form, but cardinality based distances are special cases with w =1

2.3 The Lovász Bregman divergence

The Lovász extension ([20]) offers a natural connection between submodularity and convexity. The
Lovász extension is a non-smooth convex function, and hence we can define a generalized Bregman
divergence ([12, 18]) which has a number of properties and applications analogous to the Bregman
divergence. Recall that the generalized Bregman divergence corresponding to a convex function
φ is parameterized by the choice of the subgradient mapHφ. The Lovász extension of a submodular
function has a very interesting set of subgradients, which have a particularly nice structure in that
there is a very simple way of obtaining them [7].

For simplicity, we define the Lovász Bregman divergence on vectors x, y ∈ [0, 1]n. Then
given a vector y, define a permutation σy such that y[σy(1)] ≥ y[σy(2)] ≥ · · · ≥ y[σy(n)]

and define Yk = {σy(1), · · · , σy(k)}. The Lovász extension ([7, 20]) is defined as: f̂(y) =∑n
k=1 y[σy(k)]f(σy(k)|Yk−1). For each point y, we can define a subdifferential ∂f̂(y), which has

a particularly nice form [9]: for any point y ∈ [0, 1]n, ∂f̂(y) = ∩{∂f (Yi)|i = 1, 2 · · · , n}. This

naturally defines a generalized Bregman divergence d
Hf̂
f̂

of the Lovász extension, parameterized by a
subgradient mapHf̂ , which we can define as:

d
Hf̂
f̂

(x, y) = f̂(x)− f̂(y)− 〈hy, x− y〉, for some hy = Hf̂ (y) ∈ ∂f̂(y). (17)

We can also define specific subgradients of f̂ at y as hy,σy , with hy,σy (σy(k)) = f(Yk) −
f(Yk−1),∀k [20]. These subgradients are really the extreme points of the submodular polyhe-
dron. Then define the Lovász Bregman divergence df̂ as the Bregman divergence of f̂ and the

subgradient hy,σy . Similar to dΣf , it can be shown [11], that df̂ (x, y) = f̂(x)−〈hy,σy , x〉. Note that

if the vector y is totally ordered (no two elements are equal to each other), the subgradient of f̂ and
the corresponding permutation σy at y will actually be unique. When the vector is not totally ordered,
we can consider σy as a permutation operator which defines a valid and consistent total ordering for
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every vector y, and we can then define the Bregman divergence in terms of it. Note also that the
points with no total ordering in the interior of the hypercube is of measure zero. Hence for simplicity
we just refer to the Lovász Bregman divergence as df̂ . The Lovász Bregman divergence is closely
related to the lower bound submodular Bregman, as we show below.
Lemma 2.2. The Lovász Bregman divergences are an extension of the lower bound submodular
Bregman, over the interior of the hypercube. Further the Lovász Bregman divergence can be expressed
as df̂ (x, y) = 〈x, hx,σx−hy,σy 〉, and hence depends only x, the permutation σx and the permutation
of y(σy), but is independent of the values of y.

3 Properties of the submodular Bregman and Lovász Bregman divergences

In this section, we investigate some of the properties of the submodular Bregman and Lovász
Bregman divergences which make these divergences interesting for Machine Learning applications.
We only state them here — for an elaborate discussion refer to [11]. All forms of the submodular
Bregman divergences are non-negative, and hence they are valid divergences. The lower bound
submodular Bregman is submodular in X for a given Y , while the upper bound submodular Bregman
is supermodular in Y for a given X . A direct consequence of this is that problems involving
optimization in X or Y (for example in finding the discrete representatives in a discrete k-means
like application which we consider in [11]), can be performed either exactly or approximately in
polynomial time. In addition to these the forms of the submodular Bregman divergence also satisfy
interesting properties like a characterization of equivalence classes, a form of set separation, a
generalized triangle inequality over sets and a form of both Fenchel and submodular duality. Finally
the generalized submodular Bregman divergence has an interesting alternate characterization, which
shows that they can potentially subsume a large number of discrete divergences. In particular, a
divergence d is of the form d

Hf
f iff for any sets A,B ⊆ V , the set function fA(X) = d(X,A) is

submodular in X and the set function d(X,A)− d(X,B) is modular in X . Similarly a divergence d
is of the form dfGf iff, for any set A,B ⊆ V , the set function fA(Y ) = d(A, Y ) is supermodular in
Y and the set function d(A, Y )− d(B, Y ) is modular in Y . These facts show that the generalized
Bregman divergences are potentially a very large class of divergences while Table 1 provides just a
few of them.

Additionally, the Lovász Bregman divergence also has a number of very interesting properties.
Notable amongst these is the fact that it has an interesting property related to permutations.
Theorem 3.1. [11] Given a submodular function whose polyhedron contains all possible extreme
points (e.g., f(X) =

√
|X|), df̂ (x, y) = 0 if and only if σx = σy .

Hence the Lovász Bregman divergence can be seen as a divergence between the permutations. While
a number of distance measures capture the notion of a distance amongst orderings [17], the Lovász
Bregman divergences has a unique feature not present in these distance measures. The Lovász
Bregman divergences not only capture the distance between σx and σy, but also weighs it with the
value of x, thus giving preference to the values and not just the orderings. Hence it can be seen
as a divergence between a score x and a permutation σy, and hence we shall also represent it as
df̂ (x, y) = df̂ (x||σy) = 〈x, hx,σx − hx,σy 〉. Correspondingly, given a collection of scores, it also
measures how confident the scores are about the ordering. For example given two scores x and y
with the same orderings such that the values of x are nearly equal (low confidence), while the values
of y have large differences, the distance to any other permutation will be more for y than x. This
property intuitively desirable in a permutation based divergence. Finally, as we shall see the Lovász
Bregman divergences are easily amenable to k-means style alternating minimization algorithms for
clustering ranked data, a process that is typically difficult using other permutation-based distances.

4 Applications

In this section, we show the utility of the submodular Bregman and Lovász Bregman divergences by
considering some practical applications in machine learning and optimization. The first application
is that of proximal algorithms which generalize several mirror descent algorithms. As a second
application, we motivate the use of the Lovász Bregman divergence as a natural choice in clustering
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where the order is important. Due to lack of space, we only concisely describe these applications,
and for a more elaborate discussion please see [11] where we also consider a third discrete clustering
application, and provide a clustering framework for the submodular Bregman with fast algorithms
for clustering sets of binary vectors

4.1 A proximal framework for the submodular Bregman divergence

The Bregman divergence has some nice properties related to a proximal method. In particular ([5]), let
ψ be a convex function that is hard to optimize, but suppose the function ψ(x) + λdφ(x, y) is easy to
optimize for a given fixed y. Then a proximal algorithm, which starts with a particular x0 and updates
at every iteration xt+1 = argmaxxψ(x) + λdφ(x, xt), is bound to converge to the global minima.

Algorithm 1: Proximal Minimization Algorithm

X0 = ∅
while until convergence do

Xt+1 := argminX∈S F (X) + λd(X,Xt)
t← t+ 1

We define a similar framework for the sub-
modular Bregmans. Consider a set function F ,
and an underlying combinatorial constraint S.
Optimizing this set function may not be easy —
e.g., if S is the constraint that X be a graph-cut,
then this optimization problem is NP hard even
if F is submodular ([15]). Consider now a
divergence d(X,Y ) that can be either an upper or lower bound submodular Bregman. Note, the com-
binatorial constraints S are the discrete analogs of the convex set projection in the proximal method.
We offer a proximal minimization algorithm (Algorithm 1) in a spirit similar to [5]. Furthermore,
Algorithm 1 is guaranteed to monotonically decrease the function value over the iterations [11].

Interestingly, a number of approximate optimization problems considered in the past turn out to be
special cases of the proximal framework. We analyze this in detail in [13], and hence provide only a
summary of the results below:

Minimizing the difference between submodular (DS) functions: Consider the case where
F (X) = f(X) − g(X) is a difference between two submodular functions f and g. This problem
is known to be NP hard and even NP hard to approximate [22, 10]. However there are a number
of heuristic algorithms which have been shown to perform well in practice [22, 10]. Consider first:
d(X,Xt) = dΣt

g (X,Xt) (for some appropriate schedule Σt of permutations), with λ = 1 and
S = 2V . Then it can be shown trivially [11] that we obtain the submodular-supermodular (sub-sup)
procedure ([22]). Moreover, we can define d(X,Xt) = df1:3(Xt, X), again with λ = 1 and S = 2V .
Then again we can show [11] that we obtain the supermodular-submodular (sup-sub) procedure [10].
Finally defining d(X,Xt) = df1:3(Xt, X) + dΣt

g (X,Xt), we get the modular-modular (mod-mod)
procedure [10]. Further, the sup-sub and mod-mod procedures can be used with more complicated
constraints like cardinality, matroid and knapsack constraints while the mod-mod algorithm can be
extended with even combinatorial constraints like the family of cuts, spanning trees, shortest paths,
covers, matchings, etc. [10]

Submodular function minimization: Algorithm 1 also generalizes a number of approximate
submodular minimization algorithms. If F is a submodular function and the underlying constraints
S represent the family of cuts, then we obtain the cooperative cut problem ([15], [14]) and one of
the algorithms developed in ([15]) is a special case of Algorithm 1. If S = 2V above, we get a
form of the approximate submodular minimization algorithm suggested for arbitrary (non-graph
representable) submodular functions ([16]). The proximal minimization algorithm also generalizes
three submodular function minimization algorithms IMA-I, II and III, described in detail in [13]
again with λ = 1,S = 2V and d(X,Xt) = df1 (Xt, X), df2 (Xt, X) and d(X,Xt) = df3 (Xt, X)
respectively. These algorithms are similar to the greedy algorithm for submodular maximization [23].
Interestingly these algorithms provide bounds to the lattice of minimizers of the submodular functions.
It is known [1] that the sets A = {j : f(j|∅) < 0}, B = {j : f(j|V − {j}) > 0 are such that, for
every minimizer X∗, A ⊆ X∗ ⊆ B. Thus the lattice formed with A and B defined as the join and
meet respectively, gives a bound on the minimizers, and we can restrict the submodular minimization
algorithms to this lattice. However using d = df3 as a regularizer (which is IMA-III) and starting with
X0 = ∅ and X0 = V , we get the sets A and B [?] respectively from Algorithm 1. With versions of
algorithm 1 with d = df1 and d = df2 , and starting respectively fromX0 = ∅ andX0 = V , we get sets
that provide a tighter bound on the lattice of minimizers than the one obtained with A and B. Further
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Figure 1: Results of k-means clustering using the Lovász Bregman divergence (two plots on the left)
and the Euclidean distance (two plots on the right). URLs above link to videos.

these algorithms also provide improved bounds in the context of monotone submodular minimization
subject to combinatorial constraints. In particular, these algorithms provide bounds which are better
than 1

ν , where ν is a parameter related to the curvature of the submodular function. Hence when
the parameter ν is a constant, these bounds are constant factor guarantees, which contrasts the
O(n) bounds for most of these problems. As an example, for monotone submodular minimization
subject to a spanning tree, perfect matching or edge cover constraints, we obtain an improved bound
of O( n

1+(n−1)ν ), which matches the lower bound for these problems for the class of submodular
functions with curvature ν. For a more elaborate and detailed discussion related to this, refer to [13].

Submodular function maximization: If f is a submodular function, then using d(X,Xv) =

dΣv
f (X,Xv) forms an iterative algorithm for maximizing the modular lower bound of a submod-

ular function. This algorithm then generalizes a algorithms number of unconstrained submodular
maximization and constrained submodular maximization, in that by an appropriate schedule of Σv
we can obtain these algorithms. Notable amongst them is a 1

2 approximate algorithm and a 1− 1
e

approximation algorithm for unconstrained and cardinality constrained submodular maximization
respectively. Further, similar to the minimization case, we get improved curvature related bounds for
monotone submodular maximization subject to cardinality and matroid constraints. For a complete
list of algorithms (and results) generalized by this and a much detailed description, refer to [13].

We point out that the proximal framework provided above, is very broad and can be used for
a vast class of optimization problems. In this section however, we have only considered a few
special cases of this framework. Notice that akin to the proximal framework of [5], this framework
will be useful only if the function F (X) + λd(X,Xt) for an appropriate choice of a submodular
Bregman, is easier than minimizing F directly. In the above, we considered special cases, which
make F (X) + λd(X,Xt) either modular, submodular or supermodular, thus making every step of
the algorithm optimal (or approximately optimal). On the other hand, there could be other cases as
well. For example, the performance of most approximate algorithms for constrained submodular
minimization or maximization, depend on the curvature ν of a submodular function [13]. In particular,
if F is monotone but too highly curved (for example a matroid rank function), it might be the case
that adding the regularizer, preserves the monotonicity (and submodularity, which is possible if f
is chosen to be an appropriate monotone submodular function), improves the curvature at every
iteration, thus improving the guarantees of every inner iteration. These are some interesting open
questions, which could be investigated in future work.

4.2 Clustering framework with the Lovász Bregman divergence

In this section we investigate a clustering framework similar to [2], using the Lovász Bregman
divergence and show how this is natural for a number of applications. Recall also that the Lovász
Bregman divergence in some sense measures the distance between the ordering of the vectors and can
be seen as a form of the “sorting” distance. We define the clustering problem as given a set of vectors,
find a clustering into subsets of vectors with similar orderings. For example, given a set of voters and
their corresponding ranked preferences, we might want to find subsets of voters who mostly agree.
Let X = {x1, x2, · · · , xm} represent a set of m vectors, such that ∀i, xi ∈ [0, 1]n. We first consider
the problem of finding the representative of these vectors. Given a set of vectors X and a Lovász
Bregman divergence df̂ , a natural choice of a representative (in this case a permutation) is the point
with minimum average distance, or in other words: σ = argminσ′

∑n
i=1 df̂ (xi||σ′). Interestingly
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for the Lovász Bregman divergence this problem is easy and the representative permutation is exactly
the permutation of the arithmetic mean of X
Theorem 4.1. [11] Given a submodular function f , the Lovász Bregman representative
argminσ′

∑n
i=1 df̂ (xi||σ′) is exactly σ = σµ, µ = 1

n

∑n
i=1 xi

The proof of the above theorem is in Appendix ?? It may not suffice to encode X using a single
representative, and hence we partition X into disjoint blocks C = {C1, · · · , Ck} with each
block having its own Lovász Bregman representative, with the set of representatives given by
M = {σ1, σ2, · · · , σk}. Then we define an objective, which captures this idea of clustering vectors
into subsets of similar orderings: minM,C

∑k
j=1

∑
xi∈Cj df̂ (xi, µj). Consider then a k-means like

alternating algorithm [19, 21]. It has two stages, often called the assignment and the re-estimation
step. In the assignment stage, for every point xi we choose its cluster membership Cj such that
j = argminl df̂ (xi||σl). The re-estimation step involves finding the representatives for every cluster
Cj , which is exactly the permutation of the mean of the vectors in Cj . We skip the algorithm here
due to space constraints, and refer the reader to [11] for a complete discussion.

We remark here that a number of distance measures capture the notion of orderings, like the
bubble-sort distance [17], etc. However for these distance measures, finding the representative may
not be easy. The Lovász Bregman divergence naturally captures the notion of distance between
orderings of vectors and yet, the problem of finding the representative in this case is very easy.
Finally similar to the analysis in [2, 11], we can show that the k-means algorithm using the Lovász
Bregman divergence will monotonically decrease the objective at every iteration, and the algorithm
converges to a local minima. [11] To demonstrate the utility of our clustering framework, we
show some results in 2 and 3 dimensions (Fig. 1), where we compare our framework to a k-means
algorithm using the euclidean distance. We use the submodular function f(X) =

√
w(X), for an

arbitrary vector w ensuring unique base extreme points. The results clearly show that the Lovász
Bregman divergence clusters the data based on the orderings of the vectors.
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