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Abstract

We introduce a class of discrete divergences on sets (equivalently binary vectors)
that we call the submodular-Bregman divergences. We consider two kinds of
submodular Bregman divergence, defined either from tight modular upper or tight
modular lower bounds of a submodular function. We show that the properties of
these divergences are analogous to the (standard continuous) Bregman divergence.
We demonstrate how the submodular Bregman divergences generalize many
useful divergences, including the weighted Hamming distance, squared weighted
Hamming, weighted precision, recall, conditional mutual information, and a
generalized KL-divergence on sets. We also show that the generalized Bregman
divergence on the Lovász extension of a submodular function, which we call the
Lovász-Bregman divergence, is a continuous extension of a submodular Bregman
divergence. We point out a number of applications of the submodular Bregman and
the Lovász Bregman divergences, and in particular show that a proximal algorithm
defined through the submodular Bregman divergence provides a framework for
many mirror-descent style algorithms related to submodular function optimization.
We also show that a generalization of the k-means algorithm using the Lovász
Bregman divergence is natural in clustering scenarios where ordering is important.
A unique property of this algorithm is that computing the mean ordering is
extremely efficient unlike other order based distance measures. Finally we provide
a clustering framework for the submodular Bregman, and we derive fast algorithms
for clustering sets of binary vectors (equivalently sets of sets).

1 Introduction

The Bregman divergence first appeared in the context of relaxation techniques in convex programming
([4]), and has found numerous applications as a general framework in clustering ([2]), proximal
minimization ([5]) and online learning ([31]). Many of these applications are due to the nice properties
of the Bregman divergence, and the fact that they are parameterized by a single convex function.
They also generalize a large class of divergences on vectors. Recently Bregman divergences have
also been defined between matrices ([29, 7]) and between functions ([10]).

In this paper we define a class of divergences between sets, where each divergence is parameterized by
a submodular function. This can alternatively and equivalently be seen as a divergence between binary
vectors in the same way that submodular functions are special cases of pseudo-Boolean functions [3].
We call this the class of submodular Bregman divergences (or just submodular Bregman) ,and in the
following sections show how its properties are related to the (classical continuous) Bregman diver-
gence. We show an interesting mathematical property of the submodular Bregman, namely that they
can be defined based on either a tight modular (linear) upper bound or alternatively a tight modular
lower bound, unlike the traditional (continuous) Bregman definable only via a tight linear lower bound.
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Let V refer to a finite ground set {1, 2, . . . , |V |}. A set function f : 2V → R is submodular if ∀S, T ⊆
V , f(S) + f(T ) ≥ f(S ∪T ) + f(S ∩T ). Submodular functions have attractive properties that make
their exact or approximate optimization efficient and often practical. They naturally arise in many prob-
lems in machine learning, computer vision, economics, operations research, etc. Submodularity can
be seen as a discrete counterpart to convexity and concavity ([22]) and often the problems are closely
related ([1]).The link between convexity and submodularity is seen via the Lovász extension ([8, 22])
of the submodular function. Indeed, as we shall see in this paper, the connections between submodular-
ity and convexity and concavity will help us formulate certain discrete divergences that are analogous
to the Bregman divergence. We in fact show a direct connection between a submodular Bregman
and a generalized Bregman divergence defined through the Lovász extension. Exploiting many of
these relationships then gives us clustering algorithms for the submodular Bregman and the Lovász
Bregman divergences. Further background on submodular functions may be found in the text [11].

An outline of the paper follows. We first define the different types of submodular Bregman in
Section 2. We also define the Lovász Bregman divergence, and show its relation to a version of
the submodular Bregman. Then in Section 3, we prove a number of properties of the submodular
Bregman and show how they are related to the Bregman divergence. Finally in Section 4, we provide
applications in the context of clustering and proximal methods. In particular, we show how the
proximal framework of the submodular Bregman generalizes a number of mirror-descent style
approximate submodular optimization algorithms. We also consider generalizations of the k-means
algorithm using the Lovász Bregman divergence, and show how they can be used in clustering
applications where ordering or ranking is important. We also provide an efficient class of clustering
algorithms on sets of binary vectors via the submodular Bregman.

2 The Bregman and Submodular Bregman divergences

Notation: We use φ to refer to a convex function, f to refer to a submodular function, and f̂ as
f ’s Lovász extension. Lowercase characters x, y will refer to continuous vectors, while upper case
characters X,Y, S will refer to sets. We will also refer to the characteristic vectors of a set X as
1X ∈ {0, 1}V . Note that the characteristic vector of a set X , 1X is such that 1X(j) = I(j ∈ X),
where I(·) is the standard indicator function. We will refer to the ground set as V , and the cardinality
of the ground set as n = |V |. The (regular continuous) Bregman divergence will be expressed as dφ
while we refer to the upper bound submodular Bregman using df and the lower bound submodular
Bregman using df . A divergence on vectors and sets is formally defined as follows: Given a domain
of vectors S, a function d : S× S→ R+ is called a divergence if ∀x, y ∈ S, d(x, y) ≥ 0 and ∀x ∈ S,
d(x, x) = 0. Similarly we can define the notion of a divergence on sets Given a lattice of sets L
(recall, L is a lattice if ∀X,Y ∈ L, X ∪ Y,X ∩ Y ∈ L), a function d : L × L → R+ is called a
divergence if ∀X,Y ∈ L, d(X,Y ) ≥ 0 and ∀X ∈ L, d(X,X) = 0. For simplicity, we consider
mostly the Boolean lattice L = 2V but generalizations are possible as well [11].

2.1 Bregman and Generalized Bregman divergences

The Taylor series approximation of a twice differentiable convex function provides a natural way
of generating a (regular continuous) Bregman divergence ([4]). In particular the first order Taylor
series approximation of a convex function is a lower bound on the function, and is linear in x for
a given y and hence given a twice differentiable convex function φ(x), we can define a divergence
dφ : S× S→ R+ as:

dφ(x, y) = φ(x)− φ(y)− 〈∇φ(y), x− y〉. (1)
For non-differentiable convex functions, we can extend equation (1) to define the generalized Bregman
divergence [14, 20]. Define a subgradient map Hφ, which for every vector y, gives a subgradient
Hφ(y) = hy ∈ ∂φ(y) [14], where ∂φ(y) is the subdifferential of φ at y.

d
Hφ
φ (x, y) = φ(x)− φ(y)− 〈Hφ(y), x− y〉,∀x, y ∈ S. (2)

When φ is differentiable, then ∂φ(x) = {∇φ(x)} andHφ(y) = ∇φ(y). More generally, there may
be multiple distinct subgradients in the subdifferential, hence the generalized Bregman divergence is
parameterized both by φ and the subgradient-mapHφ. The generalized Bregman divergences have
also been defined in terms of “extreme” subgradients [28, 20].
d]φ(x, y) = φ(x)− φ(y)− σ∂φ(y)(x− y) and d\φ(x, y) = φ(x)− φ(y) + σ∂φ(y)(y − x), (3)
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where, for a convex setC, σC(.) , supx∈C〈., x〉. Then notice that we have: σ∂φ(y)(x−y) ≥ 〈hy, x−
y〉 ≥ −σ∂φ(y)(y−x),∀hy ∈ ∂φ(y). This then implies that: d]φ(x, y) ≤ dHφφ (x, y) ≤ d\φ(x, y),∀Hφ
which justifies their being called the extreme generalized Bregman divergences [14].

2.2 The Submodular Bregman divergences

In a similar spirit, we define a submodular Bregman divergence parameterized by a submodular
function and defined as the difference between the function and its modular (sometimes called linear)
bounds. Surprisingly, any submodular function has both a tight upper and lower modular bound
([17]), unlike strict convexity where only a tight first-order lower bound exists. Hence, we define
two distinct forms of submodular Bregman parameterized by a submodular function and in terms
of either its tight upper or tight lower bounds.

2.2.1 Lower bound form of the Submodular Bregman

Given a submodular function f , the submodular polymatroid Pf , the corresponding base polytope
Bf and the subdifferential ∂f (Y ) (at a set Y ) for a submodular function f [11] are respectively:

Pf = {x : x(S) ≤ f(S),∀S ⊆ V }, Bf = Pf ∩ {x : x(V ) = f(V )}, and (4)

∂f (Y ) = {y ∈ RV : ∀X ⊆ V, f(Y )− y(Y ) ≤ f(X)− y(X)}. (5)

Note that here y(S) =
∑
j∈S y(j) is a modular function. In a manner similar to the generalized

Bregman divergence ([14]), we define a discrete subgradient map for a submodular function Hf ,
which for every set Y , picks a subgradient Hf (Y ) = hY ∈ ∂f (Y ). Then, given a submodular
function f and a subgradient-mapHf , the generalized lower bound submodular Bregman – which
we shall henceforth call dHff , is defined as:

d
Hf
f (X,Y ) = f(X)− f(Y )− hY (X) + hY (Y ) = f(X)− f(Y )− 〈Hf (Y ), 1X − 1Y 〉). (6)

This form of submodular Bregman is parameterized both by the submodular function f and the
subgradient map Hf . In the sequel, we shall consider some examples below of the generalized
lower bound submodular Bregman divergence, by instantiating the submodular function f and the
subgradient mapHf .

The subdifferential corresponding to a submodular function is an unbounded polyhedron [11], with a
large number of possible subgradients. Its extreme points, however, are easy to find and characterize
using the greedy algorithm [8]. Thus, we define a subclass of dHff withHf chosen so that it picks
an extreme points of ∂f (Y ), which we will call the permutation based lower bound submodular
Bregman, henceforth referred to with dΣf . The extreme points of ∂f (Y ) can be obtained via a greedy
algorithm ([8, 11]) as follows:
Lemma 2.1. ([11], Theorem 6.11) A point y is an extreme point of ∂f (Y ), if and only if there
exists a chain ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn with Y = Sj for some j, such that y(Si) − y(Si−1) =
f(Si)− f(Si−1).

Let σ be a permutation of V and define Si = {σ(1), σ(2), . . . , σ(i)} as its corresponding chain. We
define ΣY as the set of permutations σY such that their corresponding chains contain Y , meaning
S|Y | = Y . Then we can define a subgradient hY,σY (which is an extreme point of ∂f (Y )) where:

∀σY ∈ ΣY , hY,σY (σY (i)) =

{
f(S1) if i = 1

f(Si)− f(Si−1) otherwise
. (7)

In the above, hY,σY (Y ) = f(Y ). Hence defineHΣ
f as a subgradient map which picks a subgradient

hY,σY , for some Σ(Y ) = σY ∈ ΣY . Here we treat Σ as a permutation operator which, for a given
set Y , produces a permutation σY ∈ ΣY . Hence the above, directly provides us with a subclass,
which we call the permutation based lower bound submodular Bregman and we can rewrite Eqn. (6),
with the above subgradient as

dΣf (X,Y ) = f(X)− hY,σY (X) = f(X)− 〈HΣ
f (Y ), 1X〉. (8)
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As can readily be seen, the dΣf are special cases of the dHff .

Similar to the extreme generalized Bregman divergence above, we can define forms of the “extreme”
lower bound submodular Bregman divergences d]f (X,Y ) and d\f (X,Y ), which provide bounds on the
forms of the lower bound submodular Bregman. In order to obtain these extreme forms of submodular
Bregman, we would need to compute maxh∈∂f (Y )〈h, 1X − 1Y 〉 and minh∈∂f (Y )〈h, 1X − 1Y 〉. Both
these expressions are linear programs over the submodular subdifferential. As we shall show below,
this can be obtained easily. In order to show this, we invoke the following theorem from [11].
Lemma 2.2. [11] For any submodular function f , ∂f (Y ) = ∂fY (Y )× ∂fY (∅), where fY (X) =

f(X),∀X ∈ [∅, Y ] and fY (Z) = f(Z ∪ Y ) − f(Y ),∀Z ∈ [Y, V ]\Y . Further define fY# (X) =

f(Y ) − f(Y \X). Then ∂f (Y ) = PfY# × PfY , where PfY# is a supermodular polyhedron, corre-

sponding to the supermodular function fY# on [∅, Y ] and PfY is a submodular polyhedron of fY on
[Y, V ]\Y .

In other words, the submodular subdifferential is an inner product between a submodular polyhedron
and a supermodular polyhedron.

We are now in a position to show that similar to the submodular polyhedron, a linear program over
the submodular sub-differential can be solved efficiently in certain cases. Though this result follows
directly from the results above, we could not find this result in the literature. Hence we explicitely
prove it here. We introduce the notion of a base sub-differential ∂Bf (Y ) = ∂f (Y )∩Bf , which is similar
to the base polytope. Define ∂Bf (Y ) = {y : y(X) ≤ f(X),∀X ⊆ V, y(Y ) = f(Y ), y(V ) = f(V )}.
Then we have the following facts about ∂Bf (Y ):

Lemma 2.3. For a submodular function f ,

∂Bf (Y ) = BfY × BfY (9)

where BfY is the base polytope of fY on [∅, Y ] and BfY is the base polytope of fY on [Y, V ]\Y .
Further ∂Bf (Y ) is the convex combinations of the extreme points of ∂f (Y ). In other words, ∂Bf (Y ) =

conv(hfσY ,∀σY ∈ ΣY ).

The proof of the above Lemma is in Appendix A.1 Then we show the following crucial theorem.
Theorem 2.1. Given a vector w ∈ Rn and a set Y , consider a permutation σ ∈ ΣY such that
w(σ(1)) ≥ w(σ(2) · · · ≥ w(σ(|Y |)) and w(σ(|Y | + 1)) ≥ · · · ≥ w(σ(n)). Define s∗ ∈ Rn
such that s∗(σ(i)) = f(Si) − f(Si−1), for i = [1, 2, · · · , n], with Si = [σ1, · · · , σi]. Then
argmaxs∈∂Bf (Y ) s

>w = s∗. Further if additionally w is such that w(i) ≤ 0,∀i ∈ Y and w(i) ≥
0,∀i /∈ Y , then argmaxs∈∂f (Y ) s

>w = s∗.

The proof of this theorem is in Appendix A.2. Notice that this theorem is very analogous to the
greedy algorithm for the submodular polyhedron. In particular we can use exactly the same procedure,
except that we individually order the elements inside Y and those outside Y , based on w.

Now define the “extreme lower bound submodular Bregman as follows:

d]f (X,Y ) = f(X)− f(Y )− σ∂f (Y )(1X − 1Y ) (10)

The theorem above, shall play a significant role in showing that the above expression can be obtained
easily for a submodular function.

Theorem 2.2. For a submodular function f , d]f (X,Y ) = f(X) + f(Y )− f(X ∩ Y )− f(X ∪ Y ).

The proof of this theorem is in Appendix A.3. Unfortunately an analogous expression for the other
extreme form of the lower bound submodular Bregman will be unbounded (if maximized over
the entire sub-differential). This can be verified as follows. Notice that the subdifferential is an
unbounded polyhedron and correspondingly d\f (X,Y ) defined on the polyhedron is unbounded

above. Let hY ∈ ∂f (Y ) ∩ Bf . Then we have that dHff (X,Y ) = f(X) − hY (X). We then can
define h′Y = hY − c1Ȳ (where Ȳ is the complement of Y ) for any constant c ≥ 0. Then with respect

to the subgradient h′Y , d
H′f
f (X,Y ) = f(X)− h′Y (X)− f(Y ) + h′Y (Y ) = d

Hf
f (X,Y ) + c|Ȳ ∩X|.
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This can be unbounded above. Hence we define d\f (X,Y ) over ∂f (Y ) ∩ Bf = ∂Bf (Y ). Hence
define the other extreme generalized submodular Bregman as:

d\f (X,Y ) = f(X)− f(Y ) + σ∂Bf (Y )(1Y − 1X) (11)

Then d\f (X,Y ) also has a nice representation, as we show below:

Theorem 2.3. For a submodular function f , d\f (X,Y ) = f(X) − f(Y ) + f(Y \X) − f ](X\Y ),
where f ](A) = f(V )− f(V \A)

The proof of this theorem is in Appendix A.4

Finally we relate the different forms of lower bound submodular Bregmans in the Lemma below:

Corollary 2.3.1. For every hY ∈ ∂f (Y ) ∩ Bf , d]f (X,Y ) ≤ dHff (X,Y ) ≤ d\f (X,Y ). Similarly for

every permutation map Σ, d]f (X,Y ) ≤ dΣf (X,Y ) ≤ d\f (X,Y ).

The above corollary shows that the extreme submodular Bregman divergences give bounds for dHff
and dΣf . Further we see that d]f is exactly the divergence which defines the submodularity of f . Also
notice that this is unlike the generalized Bregman divergences, where the “extreme” forms may not be
easy to obtain in general [14]. It is easy to check that d]f (X,Y ) = 0 whenever X ⊆ Y and Y ⊆ X .

This is not surprising since in these cases the minimum value of dHff and dΣf over ∂f (Y ) is zero.
Further it is possible to show just from the definition of submodularity (independently of the above
theorem) that d]f (X,Y ) ≤ d\f (X,Y ).

We show below three examples of the lower bound submodular Bregman divergence. Few more
examples are shown in table 1.

Hamming and weighted Hamming distance: Recall that given binary vectors 1X , 1Y , we can
define the hamming distance as dH(X,Y ) =

∑n
j=1 |1X(j)− 1Y (j)| = |X\Y |+ |Y \X|. Similarly

for a weight vector w ∈ Rn+, dwH(X,Y ) =
∑n
j=1 wj |1X(j)− 1Y (j)| = w(X\Y ) +w(Y \X). This

is the weighted Hamming distance. Both these distance measures are special cases of the lower bound
submodular Bregman.

Let f(X) = w(X) andHf (Y ) = 2.w � 1Y .

d
Hf
f (X,Y ) =f(X)− f(Y )− hY (X) + hY (Y )

=w(X)− w(Y )− 2w(X ∪ Y ) + 2w(Y )

=w(X|) + w(Y )− 2w(X ∪ Y )

=w(X\Y ) + w(Y \X) = dwH(X,Y ) (12)

Substituting w =1, gives us the Hamming distance.

Recall and weighted Recall: For sets X,Y we can define the recall divergence (note that recall
is a similarity and its inverse is a distance measure) as dR(X,Y ) = 1 − |X∩Y ||Y | . Similarly we can

define a weighted recall as: dwR(X,Y ) = 1− w(X∩Y )
w(Y ) , for a weight vector w ∈ Rn+.

Let f(X) = 1 andH(Y ) = w�1Y
w(Y ) .

d
Hf
f (X,Y ) = f(X)− f(Y )− hY (X) + hY (Y )

= 1− 1− 2
w(X ∪ Y )

w(Y )
+ 1

= 1− w(X ∩ Y )

w(Y )
= dwR(X,Y ) (13)

Again with w =1, we get back Recall.
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Table 1: Instances of the dHff

Name Type d(X,Y ) f(X) hY

Hamming d
Hf
f (X,Y ) |X\Y |+ |Y \X| |X| 2 · 1Y

Weighted Hamming d
Hf
f (X,Y ) w(X\Y ) + w(Y \X) w(X) 2 · w � 1Y

Recall d
Hf
f (X,Y ) 1− |X∩Y ||Y | 1 1Y

|Y |

Weighted Recall d
Hf
f (X,Y ) 1− w(X∩Y )

w(Y )
1 w�1Y

w(Y )

d(X,Y ) = AER(Y,X;Y ) d
Hf
f (X,Y ) 1− |Y |+|Y ∩X|

2|Y |
1
2

1Y
2|Y |

Cond. Mutual Information d]f (X ∪ C, Y ∪ C) I(XX ;XY |XC),when X ∩ Y = ∅ H(XX) -

Conditional Mutual Information as a special case of d]f (X,Y ): Define a set function diver-
gence dI(A,B) = I(XA;XB |XC) for sets A,B : A ∩B = ∅ and a given set C. Then we have the
famous equality:

I(XX\Y ;XY \X |XX∩Y ) = H(XX) +H(XY )−H(XX∩Y )−H(XX∪Y )

= d]f (X,Y ) (14)

with the submodular function f(X) = H(XX).

This is interesting since conditional mutual information I(XX\Y ;XY \X |XX∩Y ) can be seen as a
special case of the lower bound submodular Bregman divergence.

2.2.2 The upper bound submodular Bregman

For submodular f , [26] established the following properties:

f(Y ) ≤ f(X)−
∑

j∈X\Y

f(j|X − {j}) +
∑

j∈Y \X

f(j|X ∩ Y ) (15)

and f(Y ) ≤ f(X)−
∑

j∈X\Y

f(j|X ∪ Y − {j}) +
∑

j∈Y \X

f(j|X), (16)

where f(j|X) = f(X ∪ j) − f(X) is the gain of element j in the context of set X . In [26], it is
shown that these in fact characterize submodular functions, in that a function f is a submodular
function if and only if it satisfies the above bounds. Then we define two divergences, which we call
the Nemhauser divergences:

df] (X,Y ) , f(X)−
∑

j∈X\Y

f(j|X − {j}) +
∑

j∈Y \X

f(j|X ∩ Y )− f(Y ) (17)

df\ (X,Y ) , f(X)−
∑

j∈X\Y

f(j|X ∪ Y − {j}) +
∑

j∈Y \X

f(j|X)− f(Y ), (18)

Notice that df] (X,Y ) and df\ (X,Y ) are valid divergences if and only if f is submodular. Similar to
the approach in ([17]), we can relax the Nemhauser divergences to obtain three modular upper bound
submodular Bregmans as:

df1 (X,Y ) , f(X)−
∑

j∈X\Y

f(j|X − {j}) +
∑

j∈Y \X

f(j|∅)− f(Y ), (19)

df2 (X,Y ) , f(X)−
∑

j∈X\Y

f(j|V − {j}) +
∑

j∈Y \X

f(j|X)− f(Y ). (20)

df3 (X,Y ) , f(X)−
∑

j∈X\Y

f(j|V − {j}) +
∑

j∈Y \X

f(j|∅)− f(Y ). (21)

We call these the Nemhauser based upper-bound submodular Bregmans of, respectively, type-I, II
and III. Henceforth, we shall represent andrefer to them as df1 , df2 and df3 and when referring to them
collectively, we will use df1:3. The Nemhauser divergences are analogous to the extreme divergences of
the generalized Bregman divergences since they bound the Nemhauser based submodular Bregmans.
Its not hard to observe th following fact:
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Lemma 2.4. Given a submodular function f , df3 (X,Y ) ≥ df1 (X,Y ) ≥ df] (X,Y ). Similarly

df3 (X,Y ) ≥ df2 (X,Y ) ≥ df\ (X,Y )

Similar to the generalized lower bound submodular Bregman dHff , we define a generalized upper
bound submodular Bregman divergence dfGf in terms of any supergradient of f . Interestingly for
a submodular function, we can define a superdifferential ∂f (X) at X as follows:

∂f (X) = {x ∈ RV : ∀Y ⊆ V, f(X)− x(X) ≥ f(Y )− x(Y )}. (22)

Similar to the subgradient map, we can define Gf as the supergradient map, which picks a
supergradient from Gf (X) = gX ∈ ∂f (X). Given a supergradient at X , Gf (X) = gX ∈ ∂f (X),
we can define a divergence dfGf , as:

dfGf (X,Y ) = f(X)− f(Y )− gX(X)− gX(Y ) = f(X)− f(Y )− 〈Gf (X), 1X − 1Y 〉 (23)

In fact, it can be shown that all three forms of df1:3 are actually special cases of dfGf , in that they form
specific supergradient maps.

Define three supergradients as follows:

g1
X(j) =

{
f(j|X − j) if j ∈ X
f(j|∅) if j /∈ X (24)

g2
X(j) =

{
f(j|V − j) if j ∈ X
f(j|X) if j /∈ X (25)

g3
X(j) =

{
f(j|V − j) if j ∈ X
f(j|∅) if j /∈ X (26)

Denote the super-gradient corresponding maps Gf1 ,G
f
2 and Gf3 . Then we have the following theorem.

(proof in Appendix B.1).

Theorem 2.4. For a submodular function f , g1
X , g

2
X , g

3
X ∈ ∂f (X). Correspondingly the divergences

df1 , df2 and df3 are special cases of dfGf with gX being g1
X , g

2
X and g3

X respectively.

Note that a convex function does not have a supergradient and hence an analogous expression
does not exist for the standard Bregman divergence. However this can be seen to be akin to a form
of a concave Bregman divergence (which is actually identical to the class of standard Bregman
divergences, since for every concave function g, −g is convex.) dfGf also subsumes an interesting
class of divergences for any submodular function representable as concave over modular. Consider
any decomposable submodular function [27] f , representable as: f(X) =

∑
i λihi(mi(X)), where

the his are (not necessarily smooth) concave functions and the mis are vectors in Rn. Let h′i be any
supergradient of hi. Then we define gcmX =

∑
i λih

′
i(mi(X))mi. Further we can define a divergence

defined for a concave over modular function as:

dfcm(X,Y ) =
∑
i

λi(hi(mi(X))− hi(mi(Y ))− hi(mi(X))(mi(X)−mi(Y )) (27)

Then we have the following Lemma. (proof in Appendix B.2).

Lemma 2.5. Let f(X) =
∑
i λihi(mi(X)), be a decomposable submodular function, where hi’s

are concave functions and mi’s are modular. Then gcmX ∈ ∂f (X) and correspondingly dfcm is a
special case of dfGf with gX = gcmX .

We now consider below a number of examples of the upper bound submodular Bregman divergence.
A complete list of examples is in Table 2.
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Hamming and weighted Hamming distance: The Hamming and weighted Hamming can be
shown to be special cases of the upper bound submodular Bregman as well.

Let f(X) = −w(X) and hY = −2.w � 1Y .

dfGf (X,Y ) =f(X)− f(Y )− hY (X) + hY (Y )

=− w(X) + w(Y )− 2w(X ∪ Y ) + 2w(X)

=w(X|) + w(Y )− 2w(X ∪ Y )

=w(X\Y ) + w(Y \X) = dwH(X,Y ) (28)

Again substituting w =1, gives us the Hamming distance

Precision and weighted Precision: Recall that the lower bound submodular Bregman gives
recall and weighted recall based divergence. With the upper bound submodular Bregman, we can
get precision and weighted precision. Given sets X,Y we can define the precision divergence as
dP (X,Y ) = 1− |X∩Y ||X| . Similarly we can define a weighted precision as: dwPX,Y ) = 1− w(X∩Y )

w(Y ) ,
for a weight vector w ∈ Rn+.

Let f(X) = −1 and gX = −w�1Y
w(X) .

dfGf (X,Y ) = f(X)− f(Y )− hY (X) + hY (Y )

= −1 + 1− 2
w(X ∪ Y )

w(X)
+ 1

= 1− w(X ∩ Y )

w(X)
= dwP (X,Y ) (29)

Again substituting w =1, gives us the Precision.

Generalized KL like divergence on sets: The upper bound submodular Bregman also generalizes
a divergence which looks very much like a generalized KL divergence on sets. Given sets X,Y
we define a divergence dKL(X,Y ) = |Y | log |Y ||X| − |Y |+ |X|. Similarly we can define a weighted

generalized KL divergence as: dwKLX,Y ) = w(Y ) log w(Y )
w(X) − w(Y ) + w(X), for a weight vector

w ∈ Rn+.

Let f(X) = −w(X) logw(X) and gX = −(1 + logw(X))w. Then we have that:

dfGf (X,Y ) = f(X)− f(Y )− gX(X) + gX(Y )

= −w(X) logw(X) + w(Y ) logw(Y ) + w(X)(1 + logw(X))− (1 + logw(X))w(Y )

= w(Y ) log
w(Y )

w(X)
− w(Y ) + w(X) = dwKL(X,Y ) (30)

Again substituting w =1, we get a cardinality based distance measure dKL(X,Y ).

We next consider a viewpoint that will make the df1:3 look more like divergences. We show this in the
following theorem (proof in Appendix B.3).
Theorem 2.5. Given sets X and Y , define the series X = X0 ⊆ X1 ⊆ X2 · · · ⊆ Xk = X ∪ Y ,
and Y = Y0 ⊆ Y1 ⊆ Y2 · · · ⊆ Yl = X ∪ Y . Define Xj\X = [x1, · · ·xj ] and Yj\Y = [y1, · · · yj ],
then df2 (X,Y ) =

∑k
j=1

[
f(xj |(X) − f(xj |Xj−1)

]
+
∑l
j=1

[
f(yj |Yj−1) − f(yj |V − yj)

]
. Sim-

ilarly define the series X = X0 ⊇ X1 ⊇ X2 · · · ⊇ Xk = X ∩ Y , and Y = Y0 ⊇
Y1 ⊇ Y2 · · · ⊇ Yl = X ∩ Y . Define X\Xj = [x1, · · ·xj ] and Y \Yj = [y1, · · · yj ], then
df1 (X,Y ) =

∑k
j=1

[
f(xj |∅) − f(xj |Xj−1)

]
+
∑l
j=1

[
f(yj |Yj−1) − f(yj |Y − yj)

]
. Finally

df3 (X,Y ) =
∑k
j=1

[
f(xj |∅)− f(xj |Xj−1)

]
+
[
f(yj |Yj−1)− f(yj |V − yj)

]
.

2.3 The Lovász Bregman divergence

The Lovász extension ([22]) offers a natural connection between submodularity and convexity. The
Lovász extension is a non-smooth convex function, and hence we can define a generalized Bregman
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Table 2: Instances of dfGf

Name dfGf (X,Y ) f(X) gX
Hamming |X\Y |+ |Y \X| |X| 2 · 1Y

Weighted Hamming w(X\Y ) + w(Y \X) −w(X) −2 · w � 1X

Precision 1− |X∩Y ||X| -1 − 1X
|X|

Weighted Precision 1− w(X∩Y )
w(X)

-1 −w�1X
|X|

Itakura-Saito like |Y |
|X| − log

|Y |
|X| − 1 log|X| 1

|X|

Weighted Itakura-Saito like w(Y )
w(X)

− log w(Y )
w(X)

− 1 logw(X) w
w(X)

Generalized KL like divergence |Y | log |Y ||X| − |Y |+ |X| −|X| log |X| −(1 + log |X|)1
Weight. Gen. KL divergence w(Y ) log w(Y )

w(X)
− w(Y ) + w(X) −w(X) logw(X) −w(1 + logw(X))

- e|Y | − e|X| − e|X|(|Y | − |X|) −e|X| 1e|X|

Cut based - 1 2|τ(X\Y )|+ 2|τ(Y \X)|+ 2|τ(X ∩ Y, X̄ ∩ Y )| |δ(X)| Eqn. (47)
Cut based - 2 2|τ(X\Y )|+ 2|τ(Y \X)|+ 2|τ(X̄ ∩ Ȳ , X ∩ Ȳ )| |δ(X)| Eqn. (49)

divergence ([14, 20]) which has a number of properties and applications analogous to the Bregman
divergence. Recall that the generalized Bregman divergence corresponding to a convex function
φ is parameterized by the choice of the subgradient mapHφ. The Lovász extension of a submodular
function has a very interesting set of subgradients, which have a particularly nice structure in that
there is a very simple way of obtaining them [8].

For simplicity, we define the Lovász Bregman divergence on vectors x, y ∈ [0, 1]n. Then
given a vector y, define a permutation σy such that y[σy(1)] ≥ y[σy(2)] ≥ · · · ≥ y[σy(n)]

and define Yk = {σy(1), · · · , σy(k)}. The Lovász extension ([8, 22]) is defined as: f̂(y) =∑n
k=1 y[σy(k)]f(σy(k)|Yk−1). For each point y, we can define a subdifferential ∂f̂(y), which has

a particularly nice form [11]: for any point y ∈ [0, 1]n, ∂f̂(y) = ∩{∂f (Yi)|i = 1, 2 · · · , n}. This

naturally defines a generalized Bregman divergence d
Hf̂
f̂

of the Lovász extension, parameterized by a
subgradient mapHf̂ , which we can define as:

d
Hf̂
f̂

(x, y) = f̂(x)− f̂(y)− 〈hy, x− y〉, for some hy = Hf̂ (y) ∈ ∂f̂(y). (31)

We can also define specific subgradients of f̂ at y as hy,σy , with hy,σy (σy(k)) = f(Yk) −
f(Yk−1),∀k [22]. These subgradients are really the extreme points of the submodular polyhe-
dron. Then define the Lovász Bregman divergence df̂ as the Bregman divergence of f̂ and the
subgradient hy,σy ,which can be obtained as follows:

〈y, hy,σy 〉 =
∑
i

y[σy(i)]hy,σy [σy(i)] =
∑
i

y[σy(i)](f(Yi)− f(Yi−1)) = f̂(y) (32)

Thus we have that:
df̂ (x, y) = f̂(x)− 〈hy,σy , x〉 = 〈x, hx,σx − hy,σy 〉 (33)

Note that if the vector y is totally ordered (no two elements are equal to each other), the subgradient
of f̂ and the corresponding permutation σy at y will actually be unique. When the vector is not totally
ordered, we can consider σy as a permutation operator which defines a valid and consistent total
ordering for every vector y, and we can then define the Bregman divergence in terms of it. Note also
that the points with no total ordering in the interior of the hypercube is of measure zero. Hence for
simplicity we just refer to the Lovász Bregman divergence as df̂ . The Lovász Bregman divergence is
closely related to the lower bound submodular Bregman, as we show below.
Lemma 2.6. The Lovász Bregman divergences are an extension of the lower bound submodular
Bregman, over the interior of the hypercube. Further the Lovász Bregman divergence can be expressed
as df̂ (x, y) = 〈x, hx,σx−hy,σy 〉, and hence depends only x, the permutation σx and the permutation
of y(σy), but is independent of the values of y.

Further this relationship can be made more precise as we show in the theorem below. The proof of
this theorem is in Appendix C.
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Theorem 2.6. The lower bound submodular Bregman is closely related to the Lovász Bregman
divergence in the following ways (Assume X0 ⊆ X1 ⊆ · · · ⊆ Xn and Y0 ⊆ Y1 ⊆ · · · ⊆ Yn are the
chains corresponding to x and y):

• If x and y are vertices of the hypercube, then dΣf is exactly df̂ , if the chosen subgradients
of both are the same.
• If x is a point in the interior of the hypercube and y = 1Y is a vertex of the hypercube, then
df̂ (x, y) = (1−x(σX(n)))d

Hf
f (X0, Y ) +

∑n−1
i=1 (x(σX(i))−x(σX(i+ 1))d

Hf
f (Xi, Y ) +

x(σX(n))d
Hf
f (Xn, Y ), for dHff , and df̂ , as long as the chosen subgradient of df̂ (at

y = 1Y ) isHf (Y ).
• Let y be a point in the interior of the hypercube and x = 1X is a vertex of the hypercube.

Then df̂ (x, y) = (1−y(σY (n)))dΣf (X,Y0)+
∑n−1
i=1 (y(σY (i))−y(σY (i+1))dΣf (X,Yi)+

y(σY (n))dΣf (X,Yn), where the permutation map Σ satisfies Σ (Yi) = σy,∀i.
• Finally, when both x and y are vectors within the hypercube, df̂ (x, y) is a convex

combination of dΣf (Xi, Yj), where Xi and Yj belong to the chain of sets corresponding
to vectors x and y and the permutation map Σ satisfies Σ (Yi) = σy,∀i.

2.4 Extension of the upper bound submodular Bregman

In this section, we introduce a partial extention of the upper bound submodular Bregman in terms of
the Lovász extention. This is unlike the Lovász Bregman divergence, since the concave extention of a
submodular function is NP hard to compute [30]. However as we show below, we define df̂ (x, y)
as a partial extension of the generalized upper bound submodular Bregman to the interior of the
hypercube through the Lovász extension. We however restrict x be a vertex of the hypercube, while y
is allowed to be a point in the interior of the hypercube, i.e y ∈ [0, 1]n. Then we have

df̂Gf (1X , y) = f̂(1X)− f̂(y)− 〈Gf (X), 1X − y〉 (34)

For simplicity we just represent this as df̂ . It is evident that df̂ (1X , 1Y ) = dfGf (X,Y ). However we

can relate df̂ (1X , y) to dfGf , for any y ∈ [0, 1]n (proof in Appendix C).

Theorem 2.7. df̂ (1X , y) is a valid divergence from {0, 1}n × [0, 1]n → R+. Further df̂ (1X , y) =

(1− y(σ(n)))dfGf (X, ∅) +
∑n−1
i=1 (y(σ(i))− y(σ(i+ 1))dfGf (X,Yi) + y(σ(n))dfGf (X,Yn), as long

as the chosen supergradinet of df̂ is Gf (X).

We shall use this extention in providing effecient algorithms for clustering the submodular Bregman
divergences.

3 Properties of the submodular Bregman and Lovász Bregman divergences

In this section, we investigate some of the properties of the submodular Bregman and Lovász Bregman
divergences which make these divergences interesting, both from theorotical and practical viewpoints.

3.1 The submodular Bregman

In the following, we list a number of interestig properties of the submodular Bregman divergences. A
highlight of these properties is as follows. All forms of the submodular Bregman divergences are
non-negative, and hence they are valid divergences. Also the lower bound submodular Bregman
is submodular in X for a given Y , while the upper bound submodular Bregman is supermodular
in Y for a given X . A direct consequence of this is that problems involving optimization in X
or Y (for example in finding the discrete representatives in a discrete k-means like application
which we consider in the later part of this paper), can be performed either exactly or approximately
in polynomial time. In addition to these the forms of the submodular Bregman divergence also
satisfy interesting properties like a characterization of equivalence classes, a form of set separation, a
generalized triangle inequality over sets and a form of both Fenchel and submodular duality. Finally
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the generalized submodular Bregman divergence has an interesting alternate characterization, which
shows that they can potentially subsume a large number of discrete divergences. In particular, a
divergence d is of the form d

Hf
f iff for any sets A,B ⊆ V , the set function fA(X) = d(X,A) is

submodular in X and the set function d(X,A)− d(X,B) is modular in X . Similarly a divergence d
is of the form dfGf iff, for any set A,B ⊆ V , the set function fA(Y ) = d(A, Y ) is supermodular in
Y and the set function d(A, Y )− d(B, Y ) is modular in Y . These facts show that the generalized
Bregman divergences are potentially a very large class of divergences while Tables 2 and 1 provide
just a few of them.

We now list and prove some interesting properties about the various forms of the submodular Bregman
divergences, and compare it with the corresponding property of its continuous counterpart. We have
already seen some close correspondences while defining them, but now we make the relations more
formal. Note that any property true for dHff will also be obeyed by the dΣf , and any property is true
for dfGf will also be true for any of the special cases df1:3 and dfcm .

1) Nonnegativity: All forms of submodular Bregmans are divergences, in that d(X,Y ) ≥
0,∀X,Y ⊆ V and d(X,X) = 0. The property “d(X,Y ) = 0 iff X = Y ” we refer to as the
“iff non-negativity property.” In general, the submodular Bregman do not satisfy this property.
However in certain cases they do satisfy this property:

Theorem 3.1. Given a strictly submodular function f , dHff (and dfGf ) satisfy the iff non-negativity
property if the subgradient hY (respectively supergradient gX ) lie in the strict interior of the
subdifferential (respectively superdifferential). Correspondingly, for a strictly submodular functions
f , both dfcm and df3 satisfy the iff non-negativity property.

The above theorem can directly be verified from the definitions of the different forms of the submod-
ular Bregman divergences.

2) Submodularity and convexity: The Bregman divergence (and the generalized Bregman
divergence) is convex in x for fixed y, but not necessarily convex in y for fixed x. Similarly the
Lovász Bregman divergence is convex in x for a given y. Correspondingly, dHff (X,Y ) is submodular
in X for fixed Y and dfGf (X,Y ) is supermodular in Y under fixed X . Further, df1 and df2 can be
naturally expressed as a difference between submodular functions in X under certain conditions
on the function f (stated and proved in Appendix-D.1) and df3 (X,Y ) is submodular in X for a given
Y and supermodular in Y for a given X .

3) Linearity: The Bregman divergence is a linear operator in φ. In the theorem below, we give
similar properties for the some forms of the submodular Bregman (proof in Appendix D.2).

Theorem 3.2. For a submodular function f , dΣf , df1:3, dfcm and df̂ are linear operators in f .

4) Equivalence classes: The Bregman divergence of functions which differ only in an affine term
are equal. A similar property holds for certain forms of the submodular Bregman, as shown in the
following (proof in Appendix D.2).
Theorem 3.3. Let m(X) be a modular function. Then dΣf satisfies: dΣf (X,Y ) = dΣf+m(X,Y ).
Similarly df1:3 and dfcm , satisfy the property that: df1:3(X,Y ) = df+m

1:3 (X,Y ) and dfcm(X,Y ) =
df+m
cm (X,Y ).

Thus, we need use only polymatroidal rank functions f within dΣf , df1:3, dfcm and df̂ [6].

5) Set Separation: The Bregman divergence has the property of linear separation — the set of
points x equidistant to two fixed points µ1 and µ2 (i.e., {x : dφ(x, µ1) = dφ(x, µ2)}) comprise a
hyperplane. The theorem below shows that the upper and lower bound submodular Bregmans have
similar properties (the proofs follow immediately from the definitions).
Theorem 3.4. A set X which is equidistant to two sets Y1 and Y2 (for the generalized lower bound
case dHff (X,Y1) = d

Hf
f (X,Y2) and generalized upper bound cases dfGf (Y1, X) = dfGf (Y2, X)),

must satisfy an equation of the type m(X) = c(Y1, Y2), where m : 2V → R is a modular function
and c(Y1, Y2) is a constant dependent on Y1 and Y2.
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While the classical Bregman divergence has this property only when x is the first argument, the
different forms of submodular Bregmans have it for alternative arguments due to their complementary
nature.

6) Generalized Triangle Inequality: The Bregman divergence doesn’t follow the triangle
inequality in general. However the following generalized Pythagorean theorem holds:

dφ(x1, x3) = dφ(x1, x2) + dφ(x2, x3)− 〈x1 − x2,∇φ(x3)−∇φ(x2)〉 (35)

We next derive similar relationships for the submodular Bregman (proof in Appendix D.3).

Theorem 3.5. The generalized triangle inequality for dHff is:

d
Hf
f (X1, X3) = d

Hf
f (X1, X2) + d

Hf
f (X2, X3)− 〈1X1

− 1X2
, hX3

− hX2
〉 (36)

Similarly we can give a generalized triangle inequality for dfGf as:

dfGf (X1, X3) = dfGf (X1, X2) + dfGf (X2, X3)− 〈1X2
− 1X3

, gX1
− gX2

〉 (37)

Interestingly, the df1:3 in certain cases satisfy the triangle inequality (proof also in Appendix D.3).

Theorem 3.6. For sets X,Y, Z, if X ⊆ Y , then we have: df1 (X,Y ) + df1 (Y,Z) ≥ df1 (X,Z).
Similarly if Y ⊆ X , then df2 (X,Y ) +df2 (Y, Z) ≥ df2 (X,Z). Further df3 always satisfies the triangle
inequality, in that ∀X,Y, Z ⊆ V, df3 (X,Y ) + df3 (Y,Z) ≥ df3 (X,Z).

7) Fenchel conjugate divergence: d
Hf
f also enjoys a nice duality relationship with respect to the

Fenchel conjugate of a submodular function [11]. The Fenchel conjugate of a submodular function
is a convex function defined as: f∗(y) = max{y(X) − f(X) | X ⊆ V }, (y ∈ RV ). Noting
that f∗ is convex, we can define ∂2f

∗(y) as the binary subdifferential [11] of f∗ at y defined as
∂2f
∗(y) = {Y ⊆ E | ∀x ∈ RV , x(Y ) − y(Y ) ≤ f∗(x) − f∗(y)}. f∗ may not in general be a

smooth convex function, but we can still define a generalized Bregman divergence with respect to f∗,
for binary subgradient Y ∈ ∂2f

∗(y), as:

df∗,Y (x, y) = f∗(x)− f∗(y)− x(Y ) + y(Y ), for Y ∈ ∂2f
∗(y) (38)

An interesting result from [11] states that x ∈ ∂f (X) iff X ∈ ∂2f
∗(x). This yields the following

theorem (proof in Appendix-D.4).
Theorem 3.7. Let hX ∈ ∂f (X), hY ∈ ∂f (Y ) be two vectors, with hY being the subgradient at Y
defining dHff (X,Y ). Then dHff (X,Y ) = df∗(hY , hX).

8) Submodular Dual divergence The df1:3 have an interesting property related to submodular
duality. A dual function of a submodular function [11] is defined as fd(X) = f(V )− f(V −X).
It is known that this dual is a supermodular function, and hence we define a submodular dual as:
f#(X) = −fd(X). Then we have the following theorem.

Theorem 3.8. For a submodular function f , df
#

1 (X,Y ) = df2 (V − X,V − Y ). Similarly,

df
#

2 (X,Y ) = df1 (V −X,V − Y ) and df
#

3 (X,Y ) = df3 (V −X,V − Y ).

The proof is in Appendix-D.4. This property is interesting, since it connects the (Nemhauser) upper
bound based submodular Bregmans.

9) Necessary and sufficient conditions: The necessary and sufficient conditions for a divergence d
to represent a Bregman divergence is that for any vector a, the function φa(x) = d(x, a) is strictly
convex and differentiable, and d(x, y) = dφa(x, y). We can similarly define necessary and sufficient
conditions for a divergence d to represent the submodular Bregman, which we state in the form of the
following theorem (proof in Appendix D.5).
Theorem 3.9. The following are the necessary and sufficient conditions for a divergence d to be an
instance of a submodular Bregman.

(a): A divergence d is of the form d
Hf
f iff for any sets A,B ⊆ V , the set function fA(X) = d(X,A)

is submodular in X and the set function d(X,A)− d(X,B) is modular in X .
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(b): A divergence d is of the form dfGf iff, for any set A,B ⊆ V , the set function fA(Y ) = d(A, Y )

is supermodular in Y and the set function d(A, Y )− d(B, Y ) is modular in Y .
(c): A divergence d is of the form dΣf iff, for any set A, the function fA(X) = d(X,A), is submodu-

lar in X , and for every Y , there exists a permutation σ of V such that d(X,Y ) = dfA,σ(X,Y ).
(d): A divergence d is of the form df1:3 iff, for any set A, the function fA(Y ) = d(A, Y ) is

supermodular in Y , and d(X,Y ) = d−fA1:3 (X,Y ), for one of the three Nemhauser based upper
bound submodular Bregman.

3.2 The Lovász Bregman divergence

The Lovász Bregman divergence also has a number of very interesting properties. In particular, notice
that the Lovász Bregman divergences are also non-negative (and hence valid divergences). In addition,
they are convex in their first argument for a given second argument. Additionally they also satisfy
the property of linearity, i.e given submodular functions f1, f2, d ˆf1+f2

(x, y) = df̂1(x, y) + df̂2(x, y).
Further, since it is a form of generalized Bregman divergence, a lot of the properties of generalized
Bregman divergences extend to the Lovász Bregman divergence as well [28, 14].

In addition, the Lovász Bregman divergences satisfy a number of other interesting properties. Notable
amongst these is the fact that it has an interesting property related to permutations.

Theorem 3.10. Given a submodular function whose polyhedron contains all possible extreme points
(e.g., f(X) =

√
|X|), df̂ (x, y) = 0 if and only if σx = σy .

Proof. The proof of this theorem follows from standard notions of the submodular polyhedron,
and the definition of the Lovász Bregman divergence. Recall Eqn. (39), and it follows that x 6= 0,
df̂ (x, y) = 0, iff hx,σx = hy,σy . Further from the definition of h and the fact that the function f has
all possible extreme points, corresponding to every permutation σ we have a unique extreme point.
Hence proved.

Hence the Lovász Bregman divergence can be seen as a divergence between the permutations. While
a number of distance measures capture the notion of a distance amongst orderings [19], the Lovász
Bregman divergences has a unique feature not present in these distance measures. The Lovász
Bregman divergences not only capture the distance between σx and σy, but also weighs it with the
value of x, thus giving preference to the values and not just the orderings. Hence it can be seen
as a divergence between a score x and a permutation σy, and hence we shall also represent it as
df̂ (x, y) = df̂ (x||σy) = 〈x, hx,σx − hx,σy 〉. Correspondingly, given a collection of scores, it also
measures how confident the scores are about the ordering. For example given two scores x and y
with the same orderings such that the values of x are nearly equal (low confidence), while the values
of y have large differences, the distance to any other permutation will be more for y than x. This
property intuitively desirable in a permutation based divergence. Finally, as we shall see the Lovász
Bregman divergences are easily amenable to k-means style alternating minimization algorithms for
clustering ranked data, a process that is typically difficult using other permutation-based distances.

4 Applications

In this section, we show the utility of the submodular Bregman and Lovász Bregman divergences by
considering some practical applications in machine learning and optimization. The first application
is that of proximal algorithms which generalize several mirror descent algorithms. As a second
application, we motivate the use of the Lovász Bregman divergence as a natural choice in clustering
where the order is important. Finally we provide a clustering framework for the submodular Bregman,
and we derive fast algorithms for clustering sets of binary vectors (equivalently sets of sets).

4.1 A proximal framework for the submodular Bregman divergence

The Bregman divergence has some nice properties related to a proximal method. In particular ([5]), let
ψ be a convex function that is hard to optimize, but suppose the functionψ(x)+λdφ(x, y) is easy to op-
timize for a given fixed y. Then a proximal algorithm, which starts with a particular x0 and updates at
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every iteration xt+1 = argmaxxψ(x)+λdφ(x, xt), is bound to converge to the global minima. In fact
the standard proximal procedures used φ as the quadratic function which gives the Euclidean distance.

Algorithm 1: Proximal Minimization Algorithm

X0 = ∅
while until convergence do

Xt+1 := argminX∈S F (X) + λd(X,Xt)
t← t+ 1

We define a similar framework for the submodu-
lar Bregmans. Consider a set function F , and an
underlying combinatorial constraint S . Optimiz-
ing this set function may not be easy — e.g., if S
is the constraint that X be a graph-cut, then this
optimization problem is NP hard even if F is
submodular ([17]). Consider now a divergence
d(X,Y ) that can be either an upper or lower bound submodular Bregman. Note, the combinatorial
constraints S are the discrete analogs of the convex set projection in the proximal method. We offer
a proximal minimization algorithm (Algorithm 1) in a spirit similar to [5]. We have the following
theorem which guarantees that the solution is monotonically decreasing over iterations.

Theorem 4.1. Consider the proximal minimization algorithm. Then the values of F (Xt) are non-
increasing with t (i.e., F (X0) ≥ F (X1) ≥ F (X2) ≥ . . . ). Further since F is a set function, it is
finite, and hence the algorithm is guaranteed to reach a local minimum.

Proof. Observe from the algorithm that: F (Xv+1) + d(Xv+1, Xv) ≤ F (Xv) ⇒ F (Xv+1) ≤
F (Xv), since d(Xv+1

1 , Xv) ≥ 0. Hence we have that F (Xv+1) ≤ F (Xv).

Interestingly, a number of approximate optimization problems considered in the past turn out to be
special cases of the proximal framework. We analyze this in detail in [15], and hence provide only a
summary of the results below:

Minimizing the difference between submodular (DS) functions: Consider the case where
F (X) = f(X)− g(X) is a difference between two submodular functions f and g. This problem is
known to be NP hard and even NP hard to approximate [25, 13]. However there are a number of heuris-
tic algorithms which have been shown to perform well in practice [25, 13]. Consider first: d(X,Xt) =
dΣt
g (X,Xt) (for some appropriate schedule Σt of permutations), with λ = 1 and S = 2V . Cor-

respondingly at every iteration we have: Xt+1 ∈ argminX
(
f(X)− g(X) + dg,σXt (X,X

t)
)

=

argminX f(X)−hgXt(X), where hgXt,σXt (X) refers to the modular lower bound of g atXt. Thus at
every iteration we minimize a submodular function, a process which is the submodular-supermodular
(sub-sup) procedure ([25]). Moreover, we can define d(X,Xt) = df1:3(Xt, X), again with λ = 1 and

S = 2V . Then at every iteration, we have: Xt+1 ∈ argminX

(
f(X)− g(X) + df1:3(Xt, X)

)
=

argminX m
f
Xt(X)− g(X), where mf

Xt(X) refers to one of the modular upper bounds of g at Xv.
Thus every iteration is a submodular function maximization, which is exactly the supermodular-
submodular (sup-sub) procedure [13]. Finally defining d(X,Xt) = df1:3(Xt, X) + dΣt

g (X,Xt), we
get the modular-modular (mod-mod) procedure [13]. Further, the sup-sub and mod-mod procedures
can be used with more complicated constraints like cardinality, matroid and knapsack constraints
while the mod-mod algorithm can be extended with even combinatorial constraints like the family
of cuts, spanning trees, shortest paths, covers, matchings, etc. [13]

Submodular function minimization: Algorithm 1 also generalizes a number of approximate
submodular minimization algorithms. If F is a submodular function and the underlying constraints
S represent the family of cuts, then we obtain the cooperative cut problem ([17], [16]) and
one of the algorithms developed in ([17]) is a special case of Algorithm 1 with F = f λ = 1,
d(X,Xt) = df2 (Xt, X), and S representing the family of cuts. In this case at every iteration is a stan-
dard graph-cut problem which is relatively easy. If S = 2V above, we get a form of the approximate
submodular minimization algorithm suggested for arbitrary (non-graph representable) submodular
functions ([18]). The proximal minimization algorithm also generalizes three submodular function
minimization algorithms IMA-I, II and III, described in detail in [15] again with λ = 1,S = 2V and
d(X,Xt) = df1 (Xt, X), df2 (Xt, X) and d(X,Xt) = df3 (Xt, X) respectively. These algorithms are
similar to the greedy algorithm for submodular maximization [26]. Interestingly these algorithms
provide bounds to the lattice of minimizers of the submodular functions. It is known [1] that the
sets A = {j : f(j|∅) < 0}, B = {j : f(j|V − {j}) > 0 are such that, for every minimizer X∗,
A ⊆ X∗ ⊆ B. Thus the lattice formed with A and B defined as the join and meet respectively,
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Figure 1: Results of k-means clustering using the Lovász Bregman divergence (two plots on the left)
and the Euclidean distance (two plots on the right). URLs above link to videos.

gives a bound on the minimizers, and we can restrict the submodular minimization algorithms to
this lattice. However using d = df3 as a regularizer (which is IMA-III) and starting with X0 = ∅ and
X0 = V , we get the sets A and B [15] respectively from Algorithm 1. With versions of algorithm 1
with d = df1 and d = df2 , and starting respectively from X0 = ∅ and X0 = V , we get sets that
provide a tighter bound on the lattice of minimizers than the one obtained with A and B. Further
these algorithms also provide improved bounds in the context of monotone submodular minimization
subject to combinatorial constraints. In particular, these algorithms provide bounds which are better
than 1

ν , where ν is a parameter related to the curvature of the submodular function. Hence when
the parameter ν is a constant, these bounds are constant factor guarantees, which contrasts the
O(n) bounds for most of these problems. As an example, for monotone submodular minimization
subject to a spanning tree, perfect matching or edge cover constraints, we obtain an improved bound
of O( n

1+(n−1)ν ), which matches the lower bound for these problems for the class of submodular
functions with curvature ν. For a more elaborate and detailed discussion related to this, refer to [15].

Submodular function maximization: If f is a submodular function, then using d(X,Xv) =

dΣv
f (X,Xv) forms an iterative algorithm for maximizing the modular lower bound of a submod-

ular function. This algorithm then generalizes a algorithms number of unconstrained submodular
maximization and constrained submodular maximization, in that by an appropriate schedule of Σv
we can obtain these algorithms. Notable amongst them is a 1

2 approximate algorithm and a 1− 1
e

approximation algorithm for unconstrained and cardinality constrained submodular maximization
respectively. Further, similar to the minimization case, we get improved curvature related bounds for
monotone submodular maximization subject to cardinality and matroid constraints. For a complete
list of algorithms (and results) generalized by this and a much detailed description, refer to [15].

We point out that the proximal framework provided above, is very broad and can be used for
a vast class of optimization problems. In this section however, we have only considered a few
special cases of this framework. Notice that akin to the proximal framework of [5], this framework
will be useful only if the function F (X) + λd(X,Xt) for an appropriate choice of a submodular
Bregman, is easier than minimizing F directly. In the above, we considered special cases, which
make F (X) + λd(X,Xt) either modular, submodular or supermodular, thus making every step of
the algorithm optimal (or approximately optimal). On the other hand, there could be other cases as
well. For example, the performance of most approximate algorithms for constrained submodular
minimization or maximization, depend on the curvature ν of a submodular function [15]. In particular,
if F is monotone but too highly curved (for example a matroid rank function), it might be the case
that adding the regularizer, preserves the monotonicity (and submodularity, which is possible if f
is chosen to be an appropriate monotone submodular function), improves the curvature at every
iteration, thus improving the guarantees of every inner iteration. These are some interesting open
questions, which could be investigated in future work.

4.2 Clustering framework with the Lovász Bregman divergence

In this section we investigate a clustering framework similar to [2], using the Lovász Bregman
divergence and show how this is natural for a number of applications. Recall that the Lovász Bregman
divergence can be written as:

df̂ (x, y) = f̂(x)− 〈hy,σy , x〉 = 〈x, hx,σx − hy,σy 〉. (39)

15

http://youtu.be/kfEnLOmvEVc
http://youtu.be/kfEnLOmvEVc
http://youtu.be/IqRhemUg14I
http://youtu.be/IqRhemUg14I


Recall also that the Lovász Bregman divergence in some sense measures the distance between the
ordering of the vectors and can be seen as a form of the “sorting” distance. We define the clustering
problem as given a set of vectors, find a clustering into subsets of vectors with similar orderings.
For example, given a set of voters and their corresponding ranked preferences, we might want to
find subsets of voters who mostly agree. Let X = {x1, x2, · · · , xm} represent a set of m vectors,
such that ∀i, xi ∈ [0, 1]n. We first consider the problem of finding the representative of these vectors.
Given a set of vectors X and a Lovász Bregman divergence df̂ , a natural choice of a representative
(in this case a permutation) is the point with minimum average distance, or in other words:

σ = argmin
σ′

n∑
i=1

df̂ (xi||σ′) (40)

Interestingly for the Lovász Bregman divergence this problem is easy and the representative permuta-
tion is exactly the permutation of the arithmetic mean of X
Theorem 4.2. Given a submodular function f , the Lovász Bregman representative
argminσ′

∑n
i=1 df̂ (xi||σ′) is exactly σ = σµ, µ = 1

n

∑n
i=1 xi

The proof of the above theorem is in Appendix E.1 It may not suffice to encode X using a
single representative, and hence we partition X into disjoint blocks C = {C1, · · · , Ck} with each
block having its own Lovász Bregman representative, with the set of representatives given by
M = {σ1, σ2, · · · , σk}. Then we define an objective, which captures this idea of clustering vectors
into subsets of similar orderings:

min
M,C

k∑
j=1

∑
xi∈Cj

df̂ (xi||σj) (41)

Consider then a k-means like alternating algorithm [21, 23]. It has two stages, often called the as-
signment and the re-estimation step. In the assignment stage, for every point xi we choose its cluster
membership Cj such that j = argminl df̂ (xi||σl). The re-estimation step involves finding the repre-
sentatives for every cluster Cj , which is exactly the permutation of the mean of the vectors in Cj .

Algorithm 2: The Lovász Bregman k-means algorithm
Given a set of sets X , find a clustering C and set of permutationsM.
InitializeM0 as a particular choice of initial permutations.
t = 0
while not converged do

t← t+ 1
The assignment step:
∀i = 1, 2, · · · ,m, assign xi to a cluster Ctj such that j = argminl d(xi||σt−1

l ).
The re-estimation step:
For the clustering Ct obtained above, find the representative (or mean) σtj for each Ctj .

Algorithm 4 is very similar to the k-means algorithm. Further it is obvious that the performance of
this algorithm depends on the choice of the the initial permutations. We do not consider any schemes
of choosing the initial permutations, however similar to the standard k-means, it is possible to provide
hueristics for this.

We remark here that a number of distance measures capture the notion of orderings, like the
bubble-sort distance [19], etc. However for these distance measures, finding the representative may
not be easy. The Lovász Bregman divergence naturally captures the notion of distance between
orderings of vectors and yet, the problem of finding the representative in this case is very easy. Then
similar to [2], we can show that:
Lemma 4.1. A k-means clustering algorithm defined above will monotonically decrease the objective
of equation (43) at every iteration.

This theorem can be proved in a manner similar to [2]. Further It is interesting to analyze the results
of this algorithm at convergence. We have the following theorem.
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Lemma 4.2. At the convergence of Algorithm 2, we are guaranteed to converge to a local minimum
in the sense that the loss function cannot be improved by either the assignment step, or by changing
the means (permutations) of any existing clusters.

To demonstrate the utility of our clustering framework, we show some results in 2 and 3 dimensions
(Fig. 1), where we compare our framework to a k-means algorithm using the euclidean distance.
We use the submodular function f(X) =

√
w(X), for an arbitrary vector w ensuring unique base

extreme points. The results clearly show that the Lovász Bregman divergence clusters the data based
on the orderings of the vectors.

4.3 A clustering framework for the submodular Bregman

It has been shown ([2]) that the Bregman divergence possesses very interesting properties regarding
clustering in the k-means framework. It is the only class of continuous divergences which has the
property that the point having the minimum average distance to a set of points x1, x2, · · · , xm is
simply the mean of these points. The previous section, shows yet another application of this through
the Lovász Bregman divergences.

In this section however, we extend the clustering framework of [2] to cluster sets of binary vectors
(or equivalently sets), with the centroids themselves being binary vectors (sets). Clearly, we cannot
naı̈vely use the continuous clustering framework for such vectors. Hence the underlying problem
is to find the set (binary vector) that has the minimum average distance to a set of sets. This can be
useful in machine learning applications where objects (which might be structured and/or variable
length such as strings, trees, or graphs) are well-represented by a fixed size set of binary features. We
motivate this by an example of the Hamming distance clustering.
Example 4.1. In this context, we want to cluster a set of sets, using the Hamming distance. We can
use a k-means like algorithm for this, and the Hamming representative has a particularly nice form.
Given a set of sets X1, X2, · · · , Xn, the hamming representative (we formally define the notion of a
discrete representative in the following section), is XH which is an integer rounding of

∑n
i=1 1Xi
n (We

show this in Appendix E.2).

In this paper, we consider a clustering framework using the submodular Bregmans as the class of
discrete divergences (notice that this subsumes the Hamming distance clustering discussed above).

4.3.1 Finding the submodular Bregman representatives

Let X = {X1, X2, · · · , Xm} represent a set of m sets (or m binary vectors) that we want to cluster.
Then we can define two problems, which we call the left and right means problems respectively. Let
Sl and Sr represent the left and right Bregman representatives respectively — then we have, for a
divergence d:

Sl = argmin
S⊆V

n∑
i=1

d(S,Xi), Sr = argmin
S⊆V

n∑
i=1

d(Xi, S) (42)

Both the above are set function minimization problems that in general can be intractable. However
when d is an instance of the submodular Bregman divergence, some very interesting properties
exist. It is evident from the definitions, for example, that for d = d

Hf
f , the left means problem is a

submodular minimization problem, and correspondingly for d = dfGf , the right means problem is a
submodular maximization problem. Hence there are a number of fast algorithms to approximately
(or sometimes exactly) solve them [9, 18, 12, 24].

The other two problems (the right mean with d = d
Hf
f , and left mean with d = dfGf ) can also be

approximately solved, thanks to the structure of the submodular Bregmans and their connection to the
Lovász extension (Sections 2.3 and 2.4). As shown in the theorem below, the right means problem
with d = d

Hf
f , is exactly equivalent to solving Xr = argminS df̂ (µ, 1S), where µ is the continuous

mean of 1X1
, 1X2

, · · · , 1Xn . Similarly the left means problem with d = dfGf , is equivalent to solving

Xr = argminS d
f̂ (1S , µ). Thus, we need to find the vertex of the hypercube that is closest to the

continuous mean µ (in the generalized Bregman divergence sense), and correspondingly we would
expect that rounding µ would give the optimal mean.
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Algorithm 3: Generalized rounding procedure

1. Define L(S) =
∑n
i=1

1
nd(S,Xi) and R(S) =

∑n
i=1

1
nd(Xi, S)

2. Sort the elements of µ (the continuous mean of 1X1
, 1X2

, · · · , 1Xn ) to obtain the chain of sets
U1 ⊆ U2 ⊆ · · · ⊆ Un
3. Assign Sl = Uk, where k = argminj L(Uj) (for the left mean) and k = argminj R(Uj) (for the
right mean).

Consider the procedure described in Algorithm 3 for obtaining the means. Observe that this
procedure is identical to rounding the continuous mean at different thresholds and picking the
best one — that is, picking any of the sets Ui corresponds to thresholding the mean µ at µ(σ(i))
(i.e., setting all elements less than it to 0, and the ones above it to 1). We formally show this in
Theorem 4.3 (proof in Appendix E.2).
Theorem 4.3. We have that:

• The left means problem for d =dfGf , is equivalent to solving Xl = argminX d
f̂ (1X , µ) =

argminX
∑m
i=1 λid

f
Gf (X,Ui), where λi are constants and Ui’s are as defined in Algo-

rithm 3.
• The right means problem for the lower bound submodular Bregman is equivalent to solving
Xr = argminXdf̂ (µ, 1X) = argminX

∑m
i=1 λid

Hf
f (Ui, X), where λi are constants and

Ui’s are as defined in Algorithm 3.
For the Hamming distance, Algorithm 3 gives the exact representatives.

The above theorem suggests the utility of the rounding procedure 3 for these problems. Notice that
the problem of finding the means is equivalent to minimizing the weighted sum of the divergences to
the chain of sets corresponding to the continuous means. Hence intuitively if the divergence is not
too curved, one would expect the minimizer to be one of the sets in the chain (which corresponds
to rounding the continuous mean at different points). In particular, notice that this is the case for a
modular divergence, like the Hamming or Recall/ Precision etc. Finally however we point out that we
do not have any theorotical guarantees for general forms of submodular Bregman, and it would be
interesting if either constant factor or log factor guarantees could be provided for this.

Hence we see, similar to [2], finding the representative of a given set is computationally efficient and
salable (very low polynomial time complexity, and essentially O(n) in some cases). Importantly,
note that it is the structure of the submodular Bregman divergences that give these nice properties,
and the generalized rounding algorithm will not work for arbitrary discrete divergences.

We formally define the clustering problem in the framework of [2]. Let X = {X1, X2, · · · , Xm}
represent a set of m sets (or m binary vectors) that we want to cluster.

4.3.2 The clustering framework

We first consider the problem of finding the submodular Bregman representatives. Since the sub-
modular Bregman is not in general symmetric, we have two problems above, which we have called
the left mean (L) and right mean (R) problems respectively. The sets that minimize the expressions
above are the submodular Bregman representatives and are named Sl and Sr respectively. Hence we
generalize equation (42). Thanks to the nice structure of the submodular Bregman, we can efficiently
find the submodular Bregman representatives as we show in Section 4.3 and Theorem 4.3.

It may not suffice to encode X using a single representative, and hence we partition X into disjoint
blocks C = {C1, · · · , Ck} with each block having its own submodular Bregman representative. Let
d be a discrete divergence (which in this framework, we assume is a form of submodular Bregman)
andM = {M1, · · · ,Mk} be the set of representatives. Then we define the clustering objective as:

min
M,C

k∑
j=1

∑
Xi∈Cj

d(Xi,Mj) (43)

Here and in the below, we have explicitly defined the right-means problem, but a similar expression
and equations can be given for the left means as well.
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Consider now a k-means like alternating algorithm [21, 23]. It will typically have two stages, often
called the assignment and the re-estimation step. In the assignment step, for every point Xi we
choose its cluster membership Cj such that j = argminl d(Xi,Ml). The re-estimation step involves
finding the representatives for every cluster Cj (by solving equation (42)). This immediately yields
Algorithm 4.

Algorithm 4: The submodular Bregman k-means algorithm
Given a set of sets X , find a clustering C and set of centroidsM that attempts to minimize Eqn. (43)
InitializeM0 to be random centroids.
t = 0
while not converged do

t← t+ 1
The assignment step:
∀i = 1, 2, · · · ,m, assign Xi to a cluster Ctj such that j = argminl d(Xi,M

t−1
l ).

The re-estimation step:
For the clustering Ct obtained above, find the representative M t

j for each Ctj using equation (42).
For each j, pick the best out of M t

j and M t−1
j

Algorithm 4 is very similar to the k-means algorithm, except that at every stage, for each j =
1, 2, · · · , k, we pick the best representative amongst M t

j and M t−1
j . By “best”, we mean the one that

has a lesser average distance to the sets in Ctj . Note that the reason for this is that, in all except one
case (finding the left mean of a lower-bound submodular Bregman function, which is a submodular
minimization problem that can be solved exactly in polynomial time) the representatives of the
submodular Bregman are approximate means (e.g., the right mean problem of the upper bound
submodular Bregman divergence is a submodular maximization problem which can only be solved
approximately in polynomial time, and also the right (respectively left) mean problem of the lower
(respectively upper) bound submodular Bregman function which is also only approximate). Hence by
picking the best of M t

j and M t−1
j , we are guaranteed to not increase objective (43) at every iteration.

Further, if M t−1
j is a better representative, then the preceding mean is a better representative of the

current clustering and hence we choose it.

Then similar to [2], we can show that:

Lemma 4.3. A k-means clustering algorithm defined above will monotonically decrease the objective
of equation (43) at every iteration.

This theorem can be proved in a manner similar to [2]. The assignment step clearly reduces the
objective. Further, the way we have defined the re-estimation step, again the objective can only reduce
at every iteration. Since this is a discrete problem with a finite number of clusters k, the number of
distinct clusterings are finite, and hence we are guaranteed to converge.

It is interesting to analyze the results of this algorithm at convergence. We have the following theorem.

Theorem 4.4. The following is true at convergence of Algorithm 4:

• For the left means problem, with the lower bound submodular Bregman, we are guaranteed
to converge to a local minimum in the sense that the loss function cannot be improved by
either the assignment step, or by changing the means of any existing clusters.

• For the right means problem, with the upper bound submodular Bregman, if we use a local
search technique for non-monotone submodular maximization [9], then we are guaranteed
to converge to a local minimum, in the sense that the loss function cannot improve by either
the assignment step, or by taking any subset or superset of the means of the existing clusters.

• For the right means problem of the lower bound submodular Bregman, and the left means
problem, of the upper bound submodular Bregman, we are guaranteed to converge to a local
minimum, in the sense that the loss function cannot improve by either the assignment step or
by any other rounding of the means of the current clustering.

19



Proof. For the proof of this theorem, observe first that since submodular minimization can exactly
in polytime, the means computed at every step are the global minima, and hence for the current
clustering no other means can improve the solution. Now for the right means problem of the upper
bound submodular Bregman, since it is a submodular maximization problem, the local search solution
of [9] converges to a local maxima. Further the local maxima has the property that no subset of
superset of the optimal set can be better than it. Hence the means obtained at convergence will have
the property that no subset of superset of them will be better. Finally observe that the generalized
clustering algorithm gives the best rounding of the continuous mean and hence we are guaranteed
that if the assignment step does not change the clustering, then the means obtained will be the best
rounding of the means of the current clusterings.

5 Conclusions

In this paper, we introduced a submodular Bregman divergence, characterized by a submodular
function. Using both the upper and lower bounds, we defined two forms of the submodular Bregman,
and also analyzed their relation with the Bregman divergence. We also introduced the Lovász
Bregman divergences, as a form of the generalized Bregman divergence on the Lovász extention.
We showed how the submodular Bregman divergences generalize many useful distance measures
like the hamming, precision and recall, and showed how the Lovász Bregman divergences provide
a natural framework for clustering vectors based on their ordering. We Finally we showed some
useful applications of these, in the context of clustering and as a proximal operator, which provides a
framework for submodular optimization.

This new notion of the submodular Bregman divergences are indeed very exciting, and we hope that
they can be found to be useful in many more application contexts in machine learning, in addition to
the ones we consider. Further the Lovász Bregman divergences also provide a very exciting class of
continuous divergences, which enrich the already existing utilities of the Bregman divergences in
Machine Learning.
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A Proofs related to the lower bound submodular Bregman

A.1 Proof of Lemma 2.3

Proof. To prove this theorem, observe that ∂f (Y ) = PfY# × PfY . However since we have that

∀y ∈ ∂Bf (Y ), y(Y ) = f(Y ), we have that the vectors in PfY# actually belong to the base polytope

of fY# . Further the base polytope of fY# is exactly the base polytope of fY . A similar argument
proves that the other part is the base polytope of fY . Lastly observe that the base polytope is a
closed polytope and hence it is the convex combinations of its extreme points. Hence each part in
the direct product is a convex combination of their respective extreme points, and hence the base
sub-differential is a convex combination of the extreme points of the sub-differential.
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A.2 Proof of theorem 2.1

Proof. Observe that from the earlier result, the submodular sub-differential is a direct product of a
dual submodular polyhedron and a submodular polyhedron. Hence the linear program actually can
be broken up into two smaller linear programs as follows:

maxs∈∂f (Y )s
>w = max

s1∈PfY
#

s>1 w1 + max
s2∈PfY

s>2 w2 (44)

where w1 is a vector formed of elements of w inside Y , and w2 is a vector formed of elements
outside Y . Then the results from Fujishige [11] directly show that we obtain the maximizer if we
order the elements using the greedy algorithm, to order the elements both within and outside the
set Y . For the maximizers over ∂f (Y ) to be bounded however, we require that the elements within
Y be non-positive, while the elements outside Y be non-negative. Since the base subdifferential is
bounded, the linear program over the base subdifferential will always remain bounded.

A.3 Proof of theorem 2.2

Proof. Observe that σ∂f (Y )∩Pf (1X − 1Y ) = maxy∈∂f (Y )∩Pf 〈y, 1X − 1Y 〉. We then invoke the
theorem above, to order the elements in 1X − 1Y and find a permutation Si = [σ(1), σ(2), · · · , σ(i)],
with S|Y | = Y . In addition {1X − 1Y }(j) ≤ 0, j ∈ Y and {1X − 1Y }(j) ≥ 0, j /∈ Y , and hence
the maximization over the subdifferential will be bounded.

We require the orderings then to ensure that {1X − 1Y }(σ(1) ≥ {1X − 1Y }(σ(2)) · · · {1X −
1Y }(σ(|Y |)) and similarly for elements for those outside Y , {1X − 1Y }(σ(|Y | + 1)) ≥ {1X −
1Y }(σ(|Y |+ 2)) · · · {1X − 1Y }(σ(n)).

Let h represent the maximizer. Then the ordering of h, should contain the elements in X ∩ Y first
since those correspond to the maximum value of 1X −1Y inside Y (Notice that for j ∈ Y, 1Y (j) = 1.
The next set of elements would be the elements in Y \X . Similarly we can show that for the elements
outside Y (i.e j /∈ Y ), we order the elements in X\Y first followed by the rest of the elements.
Hence h(X ∩ Y ) = f(X ∩ Y ), h(Y ) = f(Y ) and h(X ∪ Y ) = f(X ∪ Y ). Then simple algebra
reveals that:

σ∂f (Y )(1X − 1Y ) = 〈h, 1X − 1Y 〉
= h(X)− h(Y )

= h(X ∩ Y ) + h(X\Y )− h(Y )

= f(X ∩ Y ) + f(X ∪ Y )− f(Y )− f(Y ) (45)

Substituting this back, we get d]f (X,Y ) = f(X) + f(Y )− f(X ∩ Y )− f(X ∪ Y ).

A.4 Proof of theorem 2.3

Proof. Again this follows from the greedy algorithm corresponding to the subdifferential. Notice
that σ∂f (Y )B(1Y − 1X) = maxh∈∂f (Y )B(1Y − 1X).

Let h represent the maximizer. Then the ordering of h, should contain the elements in Y \X first
since those correspond to the maximum value of 1Y − 1X inside Y . The next set of elements would
be the elements in X ∩ Y . Similarly we can show that for the elements outside Y (i.e j /∈ Y ),
we order the elements which are not in X ∪ Y first followed by the rest of the elements. Hence
h(Y \X) = f(Y \X), h(Y ) = f(Y ) and h(X\Y ) = f(V ) − f(V \{X\Y }) = f ](X\Y ). Then
simple algebra reveals that:

σ∂f (Y )∩Bf (1Y − 1X) = 〈h, 1Y − 1X〉
= h(Y )− h(X)

= −h(X ∩ Y )− h(X\Y ) + h(Y )

= −h(Y ) + h(Y \X)− h(X\Y ) + h(Y )

= f(Y \X)− f ](X\X) (46)

Substituting this back, we get the expression for d\f .
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B Proofs related to the upper bound submodular Bregman

B.1 Proof of Theorem 2.4

Proof. Consider first df1 . Now define a vector g1
X ∈ RV , such that:

g1
X(j) =

{
f(j|X − j) if j ∈ X
f(j|∅) if j /∈ X (47)

Now for any Y ⊆ V we have:

g1
X(Y )− g1

X(X) = g1
X(Y \X) + g1

X(X ∩ Y )− g1
X(X)

=
∑

j∈Y \X

f(j|∅) +
∑

j∈X∩Y
f(j|X − j)−

∑
j∈X

f(j|X − j)

=
∑

j∈Y \X

f(j|∅)−
∑

j∈X\Y

f(j|X − j) (48)

and we obtain terms belonging to the submodular Bregman of the first type. Hence we have that df1 ,
is a special case of dfGf . We can also similarly define a g2

X for the submodular Bregman of the second
type, as:

g2
X(j) =

{
f(j|V − j) if j ∈ X
f(j|X) if j /∈ X (49)

It is not hard to see that from g2
X(Y ) − g2

X(X) we get terms in the submodular Bregman of the
second type, and from g3

X , we get the submodular Bregman of third type and hence df2 d
f
3 are also

special cases of dfGf .

B.2 Proof of Lemma 2.5

Proof. We define f(X) =
∑
i λihi(mi(X)) with λi ≥ 0,∀i. Given that hi’s are concave functions,

we have from the definition of concavity (∀i):

hi(x)− hi(y)− h′i(x)(x− y) ≥ 0 (50)

Where h′i here represents a supergradient of the concave function at x. There should be no confusion
to the reader, however, that if hi’s are differentiable at x, then the supergradient is exactly the
derivative. Now consider evaluating this function at x = mi(X) and y = mi(Y ). Further let mi be
the vector corresponding to mi(X), or in other words mi(X) = 〈mi, 1X〉. Then we have that:

hi(mi(X))− hi(mi(Y ))− h′i(mi(X))(mi(X)−mi(Y )) ≥ 0

⇒ hi(mi(X))− hi(mi(Y ))− h′i(mi(X))(〈mi, 1X〉 − 〈mi, 1Y 〉) ≥ 0

⇒ hi(mi(X))− hi(mi(Y ))− h′i(mi(X))〈mi, 1X − 1Y 〉 ≥ 0

⇒ hi(mi(X))− hi(mi(Y ))− 〈h′i(mi(X))mi, 1X − 1Y 〉 ≥ 0 (51)

Note that hi(m(X)) is just a scalar. Hence we have that the supergradient of gi(X) , hi(mi(X))
(seen as a submodular function) at X is h′i(mi(X))mi. We can then easily show the result, by
multiplying the expression above by λi, and summing over i.∑

i

λi

(
hi(mi(X))− hi(mi(Y ))− 〈h′i(mi(X))mi, 1X − 1Y 〉

)
≥ 0∑

i

λihi(mi(X))−
∑
i

λihi(mi(Y ))− 〈
∑
i

λih
′
i(mi(X))mi, 1X − 1Y 〉 ≥ 0

f(X)− f(Y )−

〈∑
i

λih
′
i(mi(X))mi, 1X − 1Y

〉
≥ 0 (52)

Hence
∑
i λih

′
i(mi(X))mi is actually then a supergradient of f(X) at X . Hence proved.
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B.3 Proof of Theorem 2.5

Proof. Consider for now df2 :

df2 (X,Y ) = f(X)−
∑

j∈X\Y

f(j|V − {j}) +
∑

j∈Y \X

f(j|X)− f(Y )

=
∑

j∈Y \X

f(j|X)− f(X ∪ Y ) + f(X) + f(X ∪ Y )− f(Y )−
∑

j∈X\Y

f(j|V − {j})

=

k∑
j=1

[
f(xj |X)− f(xj |Xj−1)

]
+

l∑
j=1

[
f(yj |Yj−1)− f(yj |V − yj)

]
(53)

Note that the two sums are over elements, respectively, in X\Y and Y \X and that the terms within
each of the sums is non-negative. The submodular Bregman seen in this form now seems like a
distance measure, since would expect that (like the Hamming distance dH(X,Y ) = |X\Y |+|Y \X|)
the distance would be larger if |X\Y | and |Y \X| is larger. Analogously df1 can also be written as:

df1 (X,Y ) =

k∑
j=1

[
f(xj |∅)− f(xj |Xj−1)

]
+

l∑
j=1

[
f(yj |Yj−1)− f(yj |Y − yj)

]
(54)

The bounds now, directly follow from the above equations. The case of df3 is analogous to the above,
and we leave it to the reader.

C Proofs related to the continuous extentions of the submodular Bregman
divergences

Proof of Theorem 2.6

Proof. To show the first part, we argue that if x = 1X and y = 1Y are vertices of the hypercube
corresponding to sets X and Y , then the subgradient defined on the Lovász extension is actually the
same as the set of modular lower bounds, corresponding to the lower bound submodular Bregman. In
other words if Y is the set corresponding to the vertex 1Y , then hY = h1Y . To see this, observe that
when 1Y is ordered following a permutation π, all the permutations of sets will involve the ones first
followed by the zeros. Clearly 1Y has |Y | ones and hence every such permutation π of V will be such
that W|Y | = Y , and hence hY,π = hy,π. This fact seen with equation (33) and (6) shows the third
item of the theorem. Another probably simpler way to see this fact is that since the subdifferentials
corresponding to hy and hY are identical, and hence their extreme points are identical.

We then show the second item as follows. Note that this is true for any generalized lower bound Breg-
man divergence, and any generalized Bregman divergence of the Lovász extension (any subgradient),
as long as the chosen subgradient of f̂ at 1Y and that of f at Y are the same. Now observe that from
the Lovász extension that we have: f̂(x) = x(σ(n))f(Xn) +

∑n−1
i=1 (x(σ(i))−x(σ(i+ 1))f(Xi) =∑n

i=1 λif(Xi). Further also notice that x =
∑n
i=1 λi1Xi and

∑n
i=1 λi = x(σ(1)). Thus we have

(using that h1Y = hY )

df̂ (x, y) = f̂(x)− f̂(y)− 〈hY , x− y〉

=
∑
i

λif(Xi)− f̂(y)− 〈hY ,
∑
i

λi1Xi − y〉

=
∑
i

λif(Xi) + (
∑
i

λi + 1− x(σ(1)))f(Y )− 〈hY , (
∑
i

λi + 1− x(σ(1)))1Y −
∑
i

λi1Xi〉

=
∑
i

λid
Hf
f (Xi, Y ) + (1− y(σ(1)))d

Hf
f (X0, Y ) (55)

Finally note that since λi ≥ 0 and x(σ(1)) ≤ 1 and thus we have the Lovász extension of the
Bregman divergence, when x is a continuous vector within the hypercube and y is a vertex of the
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hypercube, is a convex combination of the submodular Bregman between Y and the chain of sets,
corresponding to x.

We now show the third statement of the theorem. Observe that from the Lovász extension, we have:
f̂(y) = y(σ(n))f(Yn) +

∑n−1
i=1 (y(σ(i))− y(σ(i+ 1))f(Yi) =

∑n
i=1 λif(Yi). Further also notice

that y =
∑n
i=1 λiYi and

∑n
i=1 λi = y(σ(1)). First we define now a permutation for every set Yi.

Notice that for every i, the permutation σ is a valid permutation for Yi since each Yi appears in that
chain. Hence let, hYi,σ = hy,σ . In other words, corresponding to every set in the chain, we define the
subgradient corresponding to the same permutation σ. Further let x = 1X . Thus we have:

df̂ ,σ(x, y) = f̂(x)− f̂(y)− 〈hy,σ, x− y〉

= f̂(1X)−
∑
i

λif(Yi)− 〈hy,σ, 1X −
∑
i

λi1Yi〉

= (
∑
i

λi + 1− y(σ(1)))f(X)−
∑
i

λif(Yi)− 〈hy,σ, (
∑
i

λi + 1− y(σ(1)))1X −
∑
i

λi1Yi〉

=
∑
i

λi(f(X)− f(Yi)− 〈hYi,σ, 1X − 1Yi〉) + (1− y(σ(1)))(f(X)− 〈hY0,σ, 1X〉)

=
∑
i

λif(X)− hYi,σ(X) + (1− y(σ(1)))f(X)− hY0,σ(X)

=
∑
i

λid
Hf
f (X,Yi) + (1− y(σ(1)))d

Hf
f (X,Y0) (56)

Finally the last statement of the theorem directly follows from the above two statements.

This is the proof of Theorem 2.7.

Proof. First observe that from the Lovász extension, we have: f̂(y) = y(σ(n))f(Yn) +∑n−1
i=1 (y(σ(i)) − y(σ(i + 1))f(Yi) =

∑n
i=1 λif(Yi). Further also notice that y =

∑n
i=1 λi1Yi

and
∑n
i=1 λi = y(σ(1)). Thus we have:

df̂ (x, y) = f̂(x)−
∑
i

λif(Yi)− 〈gX , x−
∑
i

λi1Yi〉

= (
∑
i

λi + 1− y(σ(1)))f̂(1X)−
∑
i

λif(Yi)− 〈gX , (
∑
i

λi + 1− y(σ(1)))1X −
∑
i

λi1Yi〉

=
∑
i

λi(f(X)− f(Yi)− 〈gX , 1X − 1Yi〉) + (1− y(σ(1)))(f(X)− 〈gX , 1X〉)

=
∑
i

λid
f
Gf (X,Yi) + (1− y(σ(1)))dfGf (X,Y0) (57)

D Proofs related to the properties of the submodular Bregman divergences

D.1 Submodularity of the Upper bound submodular Bregman in the first argument

Theorem D.1. In the below, let mY (X) be a given modular function in X parameterized by a fixed
Y .

For a fixed Y and if f is monotone non-increasing submodular function, the submodular Bregman
of the first type d1

f (X,Y ) can be expressed as a difference between two submodular functions in X
as follows:

d1
f (X,Y ) =

(
f(X) +

∑
j∈X\Y

f(X − j) +mY (X)
)
−
( ∑
j∈X\Y

f(X)
)

(58)
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Similarly, for fixed Y and if f is monotone non-decreasing submodular function, then the submodular
Bregman of the second type d2

f (X,Y ) can be expressed as a difference between two submodular
functions in X as follows:

d2
f (X,Y ) =

(
f(X) +

∑
j∈Y \X

f(X + j) +mY (X)
)
−
( ∑
j∈Y \X

f(X)
)

(59)

Proof. Recall the expression for the upper bound submodular Bregman of the first type:

df1 (X,Y ) = f(X)−
∑

j∈X\Y

f(j|X − {j}) +
∑

j∈Y \X

f(j|∅)− f(Y ) (60)

and if we fix Y , and letting mY : V → R be a modular function in X , we get

= f(X)−
∑

j∈X\Y

f(X) +
∑

j∈X\Y

f(X − j) +mY (X) (61)

We now show that
∑
j∈X\Y f(X) and

∑
j∈X\Y f(X − j) are both submodular. Observe first that if

f is non-increasing, then g(X) =
∑
j∈X\Y f(X) is submodular. Again consider X ⊆ Z ⊆ V and

e /∈ Z. Then we have:

g(e|X) = g(X ∪ e)− g(X)

=
∑

j∈X∪e\Y

f(X ∪ e)−
∑

j∈X\Y

f(X)

=
∑

j∈X\Y

(f(e|X)) + I(e /∈ Y )f(X ∪ e) (62)

Now note that X\Y ⊆ Z\Y , and f(e|X) ≥ f(e|Z) since f is submodular. Both, however, are
non-positive since f is non-increasing. Hence we have

∑
j∈X\Y f(e|X) ≥

∑
j∈X\Y f(e|Z) ≥∑

j∈Z\Y f(e|Z). Finally note that again as f is non-increasing f(X ∪ e) ≥ f(Z ∪ e) and hence
g(e|X) ≥ g(e|Z).

The proof that
∑
j∈X\Y f(X − j) is submodular in X is similar to the above except replacing X by

X − j. Note that all the same steps will follow. The claim is proved.

The proof of the second part of the theorem for the submodular Bregman of the second type is very
similar so we leave it for the reader.

D.2 Proofs of theorems 3.2 and Theorem 3.3

Proof of Theorem 3.2

Proof. Observe the way we have defined the permutation based lower bound Bregman divergence.
For a given Y , ∂f (Y ) is a linear operator in f [11]. Hence the extreme points are linear operators of
f and correspondingly hY is a linear operator of f . From this it directly follows from the definition
that dHff (X,Y ) is a linear operator in f .

For the modular upper bound based submodular Bregman, we see that the gain of a submodular
function (i.e., f(j|.)) is a linear operator in f , and hence f(j|X), f(j|E−j), f(j|∅) and f(j|X−{j})
are all linear operators of f and hence the upper bound submodular Bregmans are linear operators in
f .

Proof of Theorem 3.3

Proof. Consider first the permutation based lower bound Bregman divergence dΣf . Notice that
dΣm(X,Y ) = m(X)−hY,σ(X), where hY is the modular lower bound ofm(X) in Eqn. (7). However
for any permutation σ, we have

∑
j∈X hY (j) =

∑
j∈X m(j) = m(X), and correspondingly
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dm(X,Y ) = 0,∀X,Y . Hence df+m(X,Y ) = d
Hf
f (X,Y ) using the linearity of dHff given by

Theorem 3.2.

In a similar manner we can show this for both of the upper bound Bregman divergences. Consider for
example the first type for f = m. Then we have f(X)−

∑
j∈X\Y f(j|X − j) +

∑
j∈Y \X f(j|∅)−

f(Y ) = m(X) − m(X\Y ) + m(Y \X) − m(Y ) = 0. A similar argument can be provided
for the second type and hence again from Theorem 3.2’s linearity, we have that df+m(X,Y ) =

df1:3(X,Y )

D.3 Proof of Theorem 3.5 and Theorem 3.6

Proof of Theorem 3.5.

Proof. Consider first the generalized lower bound submodular Bregman. Given three sets X1, X2

and X3, we can write:

d
Hf
f (X1, X2) + d

Hf
f (X2, X3) = f(X1)− f(X2)− 〈hX2

, 1X1
− 1X2

〉
+ f(X2)− f(X3)− 〈hX3 , 1X2 − 1X3〉

= f(X1)− f(X3)− 〈hX3
, 1X1

− 1X3
〉

− 〈hX2
, 1X1

− 1X2
〉+ 〈hX3

, 1X1
− 1X2

〉

= d
Hf
f (X1, X3) + 〈hX3 − hX2 , 1X1 − 1X2〉 (63)

To show the second part, we have the generalized upper bound submodular Bregman. (Eqn. (23)).

dfGf (X1, X2) + dfGf (X2, X3) = f(X1)− f(X2)− 〈gX1 , 1X1 − 1X2〉
+ f(X2)− f(X3)− 〈gX2

, 1X2
− 1X3

〉
= f(X1)− f(X3)− 〈gX1 , 1X1 − 1X3〉
− 〈gX2

, 1X2
− 1X3

〉+ 〈gX1
, 1X2

− 1X3
〉

= dfGf (X1, X3) + 〈gX1 − gX2 , 1X2 − 1X3〉 (64)

as desired.

Proof of Theorem 3.6.

Proof. First define: g = X∩Y ∩Z, f = Y ∩Z \g, e = X∩Z \g, d = X∩Y \g, a = X \{d, e, g},
b = Y \ {d, g, f}, and c = Z \ {e, g, f}. Consider now:

df2 (X,Y ) + df2 (Y, Z) = f(X)− f(Y ) +
∑

j∈Y \X

f(j|X)−
∑

j∈X\Y

f(j|E − j) + f(Y )− f(Z)

+
∑

j∈Z\Y

f(j|Y )−
∑

j∈Y \Z

f(j|E − j)

= f(X)− f(Z) +
∑

j∈Y \X

f(j|X) +
∑

j∈Z\Y

f(j|Y )−
∑

j∈Y \Z

f(j|E − j)−
∑

j∈X\Y

f(j|E − j)

Now we consider df2 (X,Y ) + df2 (Y,Z) − df2 (X,Z) =
∑
j∈Y \X f(j|X) +

∑
j∈Z\Y f(j|Y ) −∑

j∈Z\X f(j|X) −
∑
j∈Y \Z f(j|E − j) −

∑
j∈X\Y f(j|E − j) +

∑
j∈X\Z f(j|E − j) =∑

j∈b f(j|X) +
∑
j∈e f(j|Y ) +

∑
j∈c(f(j|Y )− f(j|X))−

∑
j∈b∪e f(j|E − {j}). The last step

can be verified from the Venn-diagram for sets X,Y, Z, and using the expressions for a, b, c, d, e, f
and g. Hence for the triangle inequality, we need:∑

j∈b∪e

f(j|E − {j}) ≤
∑
j∈b

f(j|X) +
∑
j∈e

f(j|Y ) +
∑
j∈c

(f(j|Y )− f(j|X)) (65)
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For this to be true we require that f(j|Y ) ≥ f(j|X),∀j ∈ c, which will be true if either Y ⊆ X
or c = ∅. Also we get an analogous expression from the triangle inequality for the upper bound
submodular Bregman of second type:∑

j∈b∪e

f(j|∅) ≥
∑
j∈b

f(j|X) +
∑
j∈e

f(j|Y ) +
∑
j∈d

(f(j|Y − {j})− f(j|X − {j})) (66)

Thus here we need f(j|Y − {j}) ≤ f(j|X − {j}),∀j ∈ d, which will follow if X ⊆ Y or d = ∅.

The proof of the triangle inequality of df3 follows in lines very similar to the above, and we leave it to
the reader.

D.4 Proofs of Theorem 3.7 and Theorem 3.8

Proof of Theorem 3.7

Proof. First observe that hY ∈ ∂f (Y ) and hence Y ∈ ∂2f(hY ). Thus, directly from the definition,
we have df∗(hY , hX) = f∗(hY )− f∗(hX)− hY (X) + hX(X). Further, also from [11], we have,
f∗(hY ) = hY (Y ) − f(Y ) and f∗(hX) = hX(X) − f(X). Therefore, we have: df∗(hY , hX) =
hY (Y ) − f(Y ) − hX(X) + f(X) − hY (X) + hX(X) = f(X) − f(Y ) − hY (X) + hY (Y ) =

d
Hf
f (X,Y ), as desired.

Proof of Theorem 3.8

Proof. Consider the first expression and we start for the dual function, with the submodular Bregman
of the first type. df

#

1 (X,Y ) = f#(X)−
∑
j∈X\Y f

#(j|X−{j})+
∑
j∈Y \X f

#(j|∅)−f#(Y ) =

f(V − X) − f(V ) +
∑
j∈X\Y f(j|V − X) −

∑
j∈Y \X f(j|V − {j}) + f(V ) − f(V − Y ) =

df2 (V −X,V − Y ). We have used here the fact that f#(j|X − {j}) = f#(X)− f#(X − {j}) =
−f(V ) + f(V − X) + f(V ) − f(V − X + {j}) = −f(j|V − X). Similarly we can show that
f#(j|∅) = f(j|V − {j}). Note that we started with the submodular Bregman of the first type, for
X and Y of the dual function f#, but obtained the submodular Bregman of the second type for
V −X,V − Y of f . The other expressions can be shown in a similar fashion.

D.5 Proof of Theorem 3.9

Proof of Theorem 3.9

Proof. We first show the necessary and sufficient conditions of the generalized lower bound sub-
modular Bregman. Notice that a generalized lower bound submodular Bregman satisfies both of
the given properties (of being submodular in the first argument given the other, and that for given
sets A,B, the difference d(X,A) − d(X,B) is modular in X). Hence one side is direct. To
show that any divergence satisfying these properties is a lower bound submodular Bregman, define
f(X) = d(X, ∅). Clearly f is a submodular function, and correspondingly, define h∅ = 0. Now
consider any d(X,A). From the second property we know that for a modular function m, and any
set function g, d(X,A) − d(X, ∅) = mA(X) + g(A) ⇒ d(X,A) = d(X, ∅) + mA(X) + g(A).
Now since d(A,A) = 0, we have d(A, ∅) +mA(A) + g(A) = f(A) +mA(A) + g(A) = 0. Hence
we have g(A) = −mA(A) − f(A). Then we have that d(X,A) = d(X, ∅) + mA(X) + g(A) =
f(X) +mA(X)−mA(A)− f(A). This is a lower bound submodular Bregman, using hA = −mA

for all setsA. Further we can see that since d is a valid divergence, hA is a subgradient. The statement
is proved. The necessary and sufficient conditions for the generalized upper bound based submodular
Bregman can be showed exactly using the same approach like above.

Now consider the necessary and sufficient conditions of the permutation based lower bound submod-
ular Bregman. Observe that the function fA(X) is submodular in X , and fA(X) and f(X) differ
in only a modular term and hence the corresponding submodular Bregman are identical. To show
that a divergence satisfying these properties is a lower bound submodular Bregman, observe that d is
directly a permutation based lower bound submodular Bregman characterized by a permutation σ
and function fA. Hence proved.
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Finally, for the Nemhauser based upper bound submodular Bregman, observe that first the function
fA is supermodular. Further we also have: fA(X) = df1:3(A, Y ) = f(A)−f(X)+ modular(X)+ c.
Hence f(X) and −fA(X) differ in only a modular term and hence the submodular Bregman
associated with f(X) and −fA(X) are identical. Clearly a function satisfying these properties
is indeed a Nemhauser based upper bound submodular Bregman parameterized by a submodular
function −fA(X). The statement is now proved.

E Proofs in the Applications

E.1 Proof of theorem 4.2

Proof. The proof of this is direct from the definition. Define µ̂ = 1
n

∑n
i=1 xi.

µ = argmin
x∈[01]n

n∑
i=1

df̂ (xi, x)

= argmin
x∈[01]n

n∑
i=1

f̂(xi)− 〈hx,σx , xi〉

= argmin
x∈[01]n

n∑
i=1

f̂(xi)− 〈hx,σx , xi〉

= argmin
x∈[01]n

n∑
i=1

f̂(xi)− f̂(µ̂) + f̂(m̂u)− 〈hx,σx , xi〉

= argmin
x∈[01]n

n∑
i=1

f̂(xi)− f̂(µ̂) + df̂ ,σx(µ̂, x) (67)

Hence µ = µ̂ is a minimizer of equation (40). Correspondingly σ = σµ is the Lovász Bregman
permutation representative.

E.2 Proof of theorem-4.3

Proof of item 1:

Proof. Recall that we can define a continuous extension of the upper bound submodular Breg-
man df̂ (1X , y) from Eqn. (34), for y being a point in the interior of the hypercube. Define
µ = 1

n

∑n
i=1 1Xi as the continuous mean. Then we have:

argminX

n∑
i=1

dfGf (X,Xi) = argminX

n∑
i=1

df̂ (1X , 1Xi)

= argminX

n∑
i=1

(
f̂(1X)− f̂(1Xi)− 〈gX , 1X − 1Xi〉

)

= argminX

n∑
i=1

(
f̂(1X)− f̂(µ)− 〈gX , 1X − µ〉+ f̂(µ)− f̂(1Xi)

)
= argminX f̂(1X)− f̂(µ)− 〈gX , 1X − µ〉 = argminXd

f̂ (1X , µ)

This gives a nice relation that we need to find a hypercube vertex 1X that is “closest” to the continuous
mean µ through a divergence df̂ . It seems that rounding the continuous mean µ should provide us
with the set X . We use this intuition and provide a generalized rounding procedure as follows. Recall
then from Theorem 2.7, we have:

df̂ (1X , µ) = (1−µ(σ(1)))dfGf (X, ∅)+
n−1∑
i=1

(µ(σ(i))−µ(σ(i+1))dfGf (X,Ui)+µ(σ(n))dfGf (X,Un)
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where the sets Ui are obtained from ordering the elements of µ in decreasing order, on the basis of a
permutation σ such that Ui = [σ(1), · · · , σ(i)].

Now from the intuition of vectors, we can see that the problem of finding X is now equivalent to
finding the minimum of a weighted sum of dHff (X,Ui) with the sets Ui being a chain of sets. Thus
we would expect the set X to be one of the sets Ui to minimize this sum.

Proof of item-2 and clustering using hamming distance:

This theorem actually follows from the relation of the generalized submodular Bregman and the
generalized Bregman divergence through the Lovász extension from Theorem 2.6. Now observe that:

argminX

n∑
i=1

d
Hf
f (Xi, X) = argminX

n∑
i=1

df̂ (1Xi , 1X)

= argminX

n∑
i=1

(
f̂(1Xi)− f̂(1X)− 〈hX , 1Xi − 1X〉

)

= argminX

n∑
i=1

(
f̂(1X)− f̂(µ)− 〈hX , 1X − µ〉+ f̂(µ)− f̂(1Xi)

)
= argminX f̂(1X)− f̂(µ)− 〈hX , 1X − µ〉 = argminXdf̂ (1X , µ)

Thus again we have now a relation that the mean set X is the closest point in terms of the generalized
Bregman divergence f̂ of the continuous mean µ, and hence we approximate this problem by rounding
the continuous mean.

Now consider clustering using the Hamming distance. We have:

argmin
X

∑
i

dH(X,Xi) = argmin
X

∑
i

|X|+ |Xi| − 2|X ∩Xi|

= argmin
X

n|X| −
∑
i

2|X ∩Xi|

= argmin
X
〈1X , 1V 〉 − 2〈1X , µ〉

= argmin
X
〈1X , 1V − 21Xi〉

(68)

Clearly if 1 − 2µ(j) ≥ 0, we have that 1X(j) = 0 and vice-verse. Thus we have 1X(j) = 0,
if µ(j) ≤ 0.5, and hence X is equivalent to rounding the continuous mean µ at 0.5. Hence the
generalized rounding procedure will give an exact result.
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