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Abstract

Hidden Markov models (HMMs) have been successfully applied to the tasks of transmembrane protein topology prediction
and signal peptide prediction. In this paper we expand upon this work by making use of the more powerful class of
dynamic Bayesian networks (DBNs). Our model, Philius, is inspired by a previously published HMM, Phobius, and combines a
signal peptide submodel with a transmembrane submodel. We introduce a two-stage DBN decoder that combines the
power of posterior decoding with the grammar constraints of Viterbi-style decoding. Philius also provides protein type,
segment, and topology confidence metrics to aid in the interpretation of the predictions. We report a relative improvement
of 13% over Phobius in full-topology prediction accuracy on transmembrane proteins, and a sensitivity and specificity of
0.96 in detecting signal peptides. We also show that our confidence metrics correlate well with the observed precision. In
addition, we have made predictions on all 6.3 million proteins in the Yeast Resource Center (YRC) database. This large-scale
study provides an overall picture of the relative numbers of proteins that include a signal-peptide and/or one or more
transmembrane segments as well as a valuable resource for the scientific community. All DBNs are implemented using the
Graphical Models Toolkit. Source code for the models described here is available at http://noble.gs.washington.edu/proj/
philius. A Philius Web server is available at http://www.yeastrc.org/philius, and the predictions on the YRC database are
available at http://www.yeastrc.org/pdr.

Citation: Reynolds SM, Käll L, Riffle ME, Bilmes JA, Noble WS (2008) Transmembrane Topology and Signal Peptide Prediction Using Dynamic Bayesian
Networks. PLoS Comput Biol 4(11): e1000213. doi:10.1371/journal.pcbi.1000213

Editor: Burkhard Rost, Columbia University, United States of America

Received June 2, 2008; Accepted September 23, 2008; Published November 7, 2008

Copyright: � 2008 Reynolds et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by National Institutes of Health (NIH) awards R01-EB007057 and P41-RR11823 and by an NIH National Research Service Award
Training Grant.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: noble@gs.washington.edu

Introduction

The structure of a protein determines its function. Knowledge

of the structure can therefore be used to guide the design of drugs,

to improve the interpretation of other information such as the

locations of mutations, and to identify remote protein homologs.

Indirect methods such as X-ray crystallography and nuclear

magnetic resonance spectroscopy are required to determine the

tertiary structure of a protein. Membrane proteins are essential to

a variety of processes including small-molecule transport and

signaling, and are of significant biological interest. However, they

are not easily amenable to existing crystallization methods, and

even though some of the most difficult problems in this area have

been overcome in recent years, the number of known tertiary

structures of membrane structures remains very low. Computa-

tional methods that can accurately predict the basic topology of

transmembrane proteins from easily available information there-

fore continue to be of great interest. To be most valuable, a

predicted topology include not only the locations of the

membrane-spanning segments, but should also correctly localize

the N- and C-termini relative to the membrane.

Many proteins include a short N-terminal signal peptide that

initially directs the post-translational transport of the protein

across the membrane and is subsequently cleaved off after

transport. A signal peptide includes a strongly hydrophobic

segment which is not a part of the mature protein but is often

misclassified as a membrane-spanning portion of a transmem-

brane protein. Conversely, a transmembrane protein with a

membrane-spanning segment near the N-terminus is often

misclassified as having a signal peptide. Therefore, signal peptide

prediction and transmembrane topology prediction should be

performed simultaneously, rather than being treated as two

separate tasks.

Membrane proteins are classically divided into two structural

classes: those which traverse the membrane using an a-helical

bundle, such as bacteriorhodopsin, and those which use a b-barrel,

such as porin. The b-barrel motif is found only in a small fraction

of all membrane proteins (e.g., in the outer membrane of Gram

negative bacteria and in the mitochondrial membrane). Lately,

some attention has been given to some irregular structures such as

re-entrant loops and random coil regions. In this work, however,

we focus on the a-helical class, both because most membrane

proteins fall into this class, and because they constitute most of the

known 3D structures.

The two most common machine learning approaches applied to

the prediction of both signal peptides and the topology of

transmembrane proteins are hidden Markov models (HMM) and

artificial neural networks (ANN), while some predictors use a

combination of these two approaches. HMMs are particularly well

suited to sequence labeling tasks, and task-specific prior knowledge
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can be encoded into the structure of the HMM, while ANNs can

learn to make classification decisions based on hundreds of inputs.

The first HMM-based transmembrane protein topology pre-

dictors were introduced ten years ago: TMHMM [1] and

HMMTOP [2]. Both of these predictors define a set of structural

classes which capture the variation in amino acid composition of

different portions of the membrane protein. For example, the

membrane-spanning helix is known to be highly hydrophobic, and

cytoplasmic loops generally contain more positively charged

amino acids than non-cytoplasmic loops (the so-called positive-

inside rule). During training the HMM learns a set of emission

distributions, one for each of the structural classes. TMHMM is

trained using a two-pass discriminative training approach followed

by decoding using the one-best algorithm [3]. HMMTOP

introduced the hypothesis that the difference between the amino

acid distributions in the various structural classes is the main

driving force in determining the final protein topology, and that

therefore the most likely topology is the one that maximizes this

difference for a given protein. HMMTOP [4] was also the first to

allow constrained decoding to incorporate additional evidence

regarding the localization of one or more positions within the

protein sequence. The presence of a signal peptide within a given

protein has also been successfully predicted using both HMMs [5]

and ANNs [6].

As mentioned above, the confusion between signal peptides and

transmembrane segments is one of the largest sources of error both

for conventional transmembrane topology predictors and signal

peptide predictors [7,8]. Motivated by this difficulty, the HMM

Phobius [9] was designed to combine the signal peptide model of

SignalP-HMM [5] with the transmembrane topology model of

TMHMM [1]. The authors showed that including a signal peptide

sub-model improves overall accuracy in detecting and differenti-

ating proteins with signal peptides and proteins with transmem-

brane segments.

In this work, we introduce Philius, a combined transmembrane

topology and signal peptide predictor that extends Phobius by

exploiting the power of dynamic Bayesian networks (DBN). The

application of DBNs to this task provides several advantages,

specifically: (a) a new two-stage decoding procedure, (b) a new way

of expressing non-geometric duration distributions, and (c) a new

approach to expressing label uncertainty during training. Philius is

inspired by Phobius and tackles the problem of discriminating

among four basic types of proteins: globular (G), globular with a

signal peptide (SP+G), transmembrane (TM), and transmembrane

with a signal peptide (SP+TM). Philius also predicts the location of

the signal peptide cleavage site and the complete topology for

membrane proteins.

We report state-of-the-art results on the discrimination task and

improvements over Phobius on the topology prediction task. We

also introduce a set of confidence measures at three different levels:

at the level of protein type, at the level of the individual topology

segment (e.g., inside, membrane, outside), and at the level of the

full topology. Confidence measures for topology predictions were

introduced by Melén et al. [10], and we expand upon this work

with these three types of scores that correlate well with the

observed precision.

Finally, based on the Philius predictions on the entire Yeast

Resource Center [11] protein database, we provide an overview of

the relative percentages of different types of proteins in different

organisms as well as the composition of the class of membrane

proteins.

Background
Transmembrane protein topology prediction can be stated as a

supervised learning problem over amino acid sequences. The

training set consists of pairs of sequences of the form (o,s) where

o = o1,…,on is the sequence of amino acids for a protein of known

topology, and s = s1,…,sn is the corresponding sequence of labels.

The oi are drawn from the alphabet of 20 amino acids A, and the si

are drawn from the alphabet of topology labels, L~ i,M,o,Sf g,
corresponding respectively to cytoplasmic (‘‘inside’’) loops, mem-

brane-spanning segments, non-cytoplasmic (‘‘outside’’) loops, and

signal peptides. After training, a learned model with parameters H
takes as input a single amino acid test sequence o and seeks to

predict the ‘best’ corresponding label sequence s* (with no

unknowns).

We solve this problem using a DBN, which we call Philius.

Before describing the details of our model, we first review HMMs

and explain how they are a simple form of DBN. The generality of

the DBN framework provides significantly expanded flexibility

relative to HMMs, as described in [12]. A recently published

primer [13] provides an introduction to probabilistic inference

using Bayesian networks for a variety of applications in

computational biology.

Hidden Markov Models
HMMs are conceptually simple and yet also almost unlimited in

their flexibility [14]. An HMM is a generative model in which an

observed sequence is generated according to an underlying but

unknown sequence of states. More precisely, an HMM is a joint

probability distribution over a set of 2N variables: the N

observations o, and the N hidden states, s. The HMM assumes

that the joint distribution over these 2N variables can be factorized

as follows:

Pr s,o½ �~ P
N

i~1
Pr si si{1j½ �Pr oi sij½ � ð1Þ

where s = {s1,…,sN}, o = {o1,…,oN}, Pr s1 s0j½ � ¼D Pr s1½ �, and where

i represents position along the observed sequence. An HMM is

Author Summary

Transmembrane proteins control the flow of information
and substances into and out of the cell and are involved in
a broad range of biological processes. Their interfacing
role makes them rewarding drug targets, and it is
estimated that more than 50% of recently launched drugs
target membrane proteins. However, experimentally de-
termining the three-dimensional structure of a transmem-
brane protein is still a difficult task, and few of the
currently known tertiary structures are of transmembrane
proteins despite the fact that as many as one quarter of
the proteins in a given organism are transmembrane
proteins. Computational methods for predicting the basic
topology of a transmembrane protein are therefore of
great interest, and these methods must be able to
distinguish between mature, membrane-spanning pro-
teins and proteins that, when first synthesized, contain an
N-terminal membrane-spanning signal peptide. In this
work, we present Philius, a new computational approach
that outperforms previous methods in simultaneously
detecting signal peptides and correctly predicting the
topology of transmembrane proteins. Philius also supplies
a set of confidence scores with each prediction. A Philius
Web server is available to the public as well as
precomputed predictions for over six million proteins in
the Yeast Resource Center database.
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often used to compute the probability distribution over the

observations Pr[o] by summing (or marginalizing) over all possible

hidden state sequences s in the above joint distribution. An HMM

might also be used as a means to infer a most probable sequence of

states from an input sequence of observations. The factorization

property of an HMM makes these sorts of computations

(collectively called statistical inference) based on an HMM tractable,

and has been one of the keys to their widespread success.

The two conditional relationships that define an HMM are

generally constant with respect to the position i. An HMM such as

this is referred to as a time-homogeneous model (since the parameters

are homogeneous with respect to time). This time-homogeneity

allows the HMM to represent sequences of states and observations

of arbitrary length N with a fixed and finite number of parameters.

Most HMMs and dynamic Bayesian networks are time-homoge-

neous.

It is perhaps most common in the literature to represent an

HMM using a state transition graph in which each node is a state in

the model, and directed edges between pairs of nodes show the

allowed (non-zero probability) transitions between states. Such a

graph shows only the allowable state transitions–nothing in this

graph describes the observation distributions Pr[oi|si] nor is

anything stated about the HMM joint distribution and the

factorization properties mentioned in Equation 1.

HMMs as Bayesian Networks
In many applications and publications using HMMs, the HMM

state transition diagram may be the only descriptive graphic

provided. In our research, we often use in addition a quite

different graphical description of an HMM, one that depicts a very

different set of HMM properties. As mentioned above, Equation 1

makes explicit the factorization properties of an HMM, and these

properties allow for efficient inference on the HMM. We can use a

type of graph known as a Bayesian network (BN) to visually and

precisely convey this set of properties, as is done in Figure 1.

Figure 1a shows the ‘‘static’’ relationship between a state variable

and the associated observation at a single point i corresponding to

the factor Pr[oi|si] in Equation 1. Figure 1b shows the graph for

the expanded HMM corresponding to Equation 1, which includes

a node for each state and observation variable for all time-points

i = 1,…,N. This figure makes clear the dynamic aspect of the

model, i.e., Pr[si|si21] and Pr[oi|si] for all i. A Bayesian network (BN)

is one type of graphical model in which edges are directed, and in

which directed cycles are not allowed [15].

A frame (often also referred to as a slice or time-slice) in an HMM

corresponds to one vertical section, corresponding to a single time

point i. For example, in order to model a protein of length N, we

could use an HMM that consists of N frames, where each amino

acid has its own local copy of the basic HMM template. In an

HMM, this slice contains only two random variables. We refer to

the first and last frames as the prologue and epilogue of the model

respectively, and to each frame in between as a chunk. In order to

create an HMM of length N, the chunk is replicated N22 times, a

process sometimes referred to as unrolling. The prologue and

epilogue often differ slightly from the chunk, allowing for distinct

modeling at the extreme ends of the sequence. In the BN

representation, we follow the convention that shaded nodes

represent observations (also collectively referred to as the evidence),

while unshaded nodes represent hidden variables. The chain of

hidden variables is where the HMM gets its name–there is a

presumed underlying set of hidden variables that form a (first

order) Markov chain.

The BN representation of an HMM illustrates the minimum

factorization properties required of a joint probability distributions

that fits the model. More generally, the use of the term graphical

model [16], implies that there is a graph (a set of nodes and edges) in

which nodes correspond to random variables, and edges encode in

a mathematically precise way the set of conditional independence

(or factorization) properties of any probability distribution over

those random variables which can be represented by the graph.

Dynamic Bayesian Networks
Dynamic Bayesian networks (DBNs) are BNs that extend over time

(or some other dimension such as genomic or protein sequence

position). DBNs are strict generalizations of both HMMs and BNs

and are constructed in much the same way: by concatenating

identical (except possibly the first and last) copies of a ‘‘static’’ BN

and linking the adjacent BN copies together in some consistent

way. The same advantage of being able to model sequences of

essentially unbounded length using a finite number of parameters

that gives the HMM much of its power carries over naturally to

the DBN. In fact, any HMM is an instance of a DBN—Figure 1a

shows the static BN which when repeated over and over gives us

the DBN description of an HMM in Figure 1b. The converse, that

any DBN is an instance of an HMM, is however not true.

More variables can mean fewer free parameters. DBNs

gain flexibility over HMMs because, in a DBN, the repeated static

BN is not limited to be a network with two variables as in

Figure 1a. For example, Figure 2 shows three DBNs where each

repeated frame consists of multiple random variables. The

relationship between the variables is expressed by a graph, and

like any BN the graph conveys factorization properties of any joint

distribution that is to be represented by the DBN. As with the

HMM, it is the factorization properties of a DBN that (may) allow

for efficient inference.

The flexibility to define more than two variables in each frame,

as well as more than one connection between adjacent frames has

several advantages. While it is sometimes possible to bundle all the

variables in a DBN frame into a single HMM ‘‘super-variable’’,

such an HMM super-variable loses the factorization and explicit

relationships between variables that can be expressed in a DBN.

This loss of factorization can lead to substantial computational

costs for an equivalent HMM as compared to a DBN, as well as a

dramatically increased number of free parameters.

In any machine learning setting, it is important to control the

model complexity, in particular when the amount of training data

is limited. Tying of parameters is one way to control the number of

free parameters and hence model complexity. Parameter-tying is

implicit in all time-homogeneous DBNs (including HMMs)

because parameters are tied across time. The flexibility to specify

a larger number of variables within each frame of the DBN brings

with it the ability to also tie parameters within a single time slice.

Constrained inference. Any factorization of the joint

probability distribution of a set of random variables, which can

Figure 1. Hidden Markov model. (a) BN with two variables which
constitutes the basic (single frame) template for an HMM, and (b) A DBN
representation of an HMM obtained by concatenating a variable
number of the BN frames and connecting successive state variables.
doi:10.1371/journal.pcbi.1000213.g001
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be expressed as a graphical model, implies a set of constraints. The

topology of the traditional HMM is one way of describing and

constraining the relationships between the states and the

observations. It has become common practice to impose

additional constraints on HMMs, typically during decoding, by

implementing customized versions of common algorithms [4,10].

The DBN framework permits these types of constraints to be

expressed directly within the graph topology [17], without

requiring any changes to the underlying inference algorithms.

A variety of constraints based on prior knowledge can be built

into a DBN and can be used both during training and decoding to

preclude certain combinations of variable assignments by

specifying that these combinations have zero probability. In fact,

training on labeled examples can be thought of as learning a

Figure 2. Philius training and decoding graphical models. (a) Training DBN: only the amino acid and the topoLabel are observed in each
frame. The topoLabel is used to constrain the hidden state using an observed child node. The color of the edge between two nodes indicates the
type of relationship: black is deterministic, and red is random. (b) First stage decoding DBN: the topoState is hidden and dependent on the state
and the previous topoState, and specifies the behavior of pType, an additional hidden variable. (c) Second stage decoding DBN: the observed
amino acid node and the duration modeling nodes have been removed, and Pr[topoStatei] is defined by the posterior probabilities computed in
the first stage using the virtual evidence node topoVE.
doi:10.1371/journal.pcbi.1000213.g002
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probability distribution subject to the constraints specified by the

labels. Training on partially labeled examples enforces constraints

where the labels are known, while removing constraints where the

labels are not known. During decoding, constraints may represent

experimental knowledge about a particular protein; for example,

the location of the N- or C-terminus, or the number of membrane-

spanning segments. As an example of such a constrained HMM, a

version of TMHMM was created explicitly to predict the topology

of known 7-TM GPCRs [18]. More generally, these constraints

can be ‘‘hard’’ (e.g., the N-terminal is known to be on the inside),

or ‘‘soft’’ (e.g., there is conflicting experimental evidence, but it is

likely that the N-terminal is on the inside).

One source of difficulty in defining an HMM for our task is

related to the labeling of the training examples, both the

uncertainty in the precise locations of the segment boundaries,

and the occasionally missing (unknown) labels. Furthermore, there

is a one-to-many association between the labels and the structural

classes defined in the model, which typically subdivide many of the

labeled regions, e.g., membrane, into two or more sub-regions

with different emission distributions and/or duration models. Our

DBN implementation allows for this one-to-many relationship

between labels and states as well as the occasionally missing labels

by expressing the relationship between the label and the state as a

flexible constraint, including the use of a wildcard label which

effectively removes the label-imposed local constraint on the state,

while the probabilistic relationships (e.g., grammar constraints)

between the state and the rest of the graph are maintained.

Virtual evidence. A flexible method for applying constraints

on a DBN, while remaining within the graphical DBN framework,

is to use a concept known as virtual evidence [15,17,19] (sometimes

also referred to as soft evidence). The virtual evidence nodes typically

represent binary random variables, and the evidence is that they are

observed to be equal to 1. In this work we use two slightly different

virtual evidence mechanisms. In the first, the virtual evidence node c

is called an ‘observed child’ [19] and is used to induce a relationship

between its (hidden and otherwise unconnected) parents. Consider,

for example, three variables, a, b, and c, where a and b are the

parents of c, and we observe that c = 1. We define Pr[c = 1|a,b] /
f(a,b) where f(a,b)$0 can be used to express a preference for certain

pairs (a,b), or forbid those for which f(a,b) = 0. Depending on the

objectives, this relationship may be based on prior knowledge or it

can be learned during training. In the second usage, the virtual

evidence node c has a single parent a which we want to influence in

some way. Again we observe c = 1, and set Pr[c = 1|a] = f(a) where

f(a)$0 expresses the desired influence. A further extension of this

notion of virtual evidence, used during the decoding procedure (see

Methods) allows position-dependent (i.e., time inhomogeneous)

CPTs, i.e., Pr[ci = 1|a] / f(a,i).

Duration modeling. DBNs also offer more flexibility in

defining segment duration distributions. In a typical HMM, the

duration associated with a state s follows a geometric distribution:

Pr[Ds = d] = p(12p)d21, where Ds is the random variable

representing the duration of state s, d is a particular segment

duration, and p is the probability of transitioning to a new state

q?s. If p = 1, then Pr[Ds = 1] = 1. The geometric distribution is

such that the single most likely duration is 1, the mean duration is

1/p, and any arbitrarily long duration can occur with non-zero

probability. Although the geometric distribution is reasonable for

some tasks, it is preferable in many applications to model an

arbitrary but finite duration distribution (one with a hard limit on

the maximum duration). In an HMM, this modeling is typically

done using a ‘ladder’ or ‘chain’ of non-self-looping states, in which

Dmax distinct states are used to capture a finite duration

distribution over [1,Dmax] by allowing certain states to be

skipped with non-zero probability. This is the strategy adopted

by the Phobius HMM [9]. Another common HMM strategy

chains multiple geometric states together each with self-repeating

loops, thus yielding a negative-binomial duration distribution [14]. A

DBN can greatly simplify the specification and learning of a

variety of complex duration behaviors within the DBN framework

itself, without requiring large numbers of states and more

complicated state-transition graphs. For example, the DBN

presented in this work defines three basic duration behaviors,

one of which will be associated with each state. One of these

behaviors captures the geometric distribution described above.

The other two are for finite-duration states: a fixed duration D,

and a variable duration within a fixed window [Dmin,Dmax]. This

latter case is expressed very easily by defining a duration

distribution over a fixed range, and then sampling from this

distribution to determine the actual segment duration. This

duration modeling is similar to that implemented in the GHMM

described by Kulp et al. [20], an early example of an extension to

the basic HMM.

The Graphical Model Toolkit. In this work, we perform all

training and inference in DBNs using the Graphical Model

Toolkit [21] which includes generalized versions of the forward-

backward, Baum-Welch, and Viterbi algorithms, and which

supports all of the features mentioned above. For discrete

variables, training consists of estimating the conditional

probability table (CPT), Pr[v|pv], for each variable v given its

parents pv such that the likelihood of the data is maximal. If all

variables are observed during training, then estimating these tables

is reduced to a simple counting task. If some variables are hidden,

then the expectation-maximization (EM) algorithm [22] is used to

find maximum likelihood estimates of the CPTs.

Methods

The Philius Model
Philius’s state transition diagram is shown in Figure 3. The model

includes three basic regions–cytoplasmic, membrane, and non-

cytoplasmic–each containing multiple states and representing one or

more different topology labels. At this level of description, Philius

exactly mimics Phobius. In the Phobius HMM, the states shown in

Figure 3 are implemented as collections of HMM states, with

transitions defined to produce the desired segment duration

distributions. In Philius, by contrast, the duration modeling is explicit.

Training
For the typical HMM as in Figure 1b, a state transition diagram

along with the transition probabilities and emission distributions is

sufficient to completely describe the model. The same DBN is used

in training and decoding, the only difference being that the states

are observed during (supervised) training and hidden during

testing. With DBNs, it is common to use different graph topologies

for training and decoding. Philius uses three different graphs,

shown in Figure 2.

The training DBN shown in Figure 2a addresses the duration

and labeling issues described earlier. The Markov chain backbone

over the state nodes is the same as in a typical HMM, and the

relationship between statei and statei21 is defined by the usual

state transition matrix, Pr[si|si21], represented in the state

transition diagram shown in Figure 3. Beyond the backbone, this

DBN differs significantly from the standard HMM. Within each

frame, the state node is related to three other random variables:

the durationClass , the emissionClass, and the topoLabel.

The first two are hidden variables, but in both cases the

relationship to the state is a deterministic mapping that does

Topology Prediction by Dynamic Bayesian Networks
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not impact the computational complexity. The mapping from

state to durationClass reflects which states share similar

duration properties. Similarly, the mapping from state to

emissionClass reflects which states share similar emission

distributions. The emissionClass node is the one that ‘emits’

the amino acid according to the appropriate distribution. The

amino acid is observed during training and during the first

decoding stage.

The relationship between state and topoLabel is enforced

using an observed child mechanism [19], i.e., the value of state is

constrained by the observed value of topoLabel. There can be a

many-to-one relationship between the state and the topoLabel:

one value of topoLabel, such as inside, allows the state variable

to take on several different values, while another label, such as

cleavage site constrains the state variable to a single value. This

approach is more flexible than the class-HMM described by

Krogh in [23] in which each state emits a (class, observation) pair.

As previously described, the wildcard label places no restrictions

on the current state, while the sequence of states remains

constrained by the allowed state transitions and state durations,

thereby preserving the grammar. Even with fully labeled training

data, there is some uncertainty in the locations of the boundaries

between adjacent segments. To account for this uncertainty and to

allow the model more flexibility during training, we remove up to

five labels on either side of every boundary (while keeping at least

one label per segment), and replace these labels with the wildcard

label. During training the model will adjust the location of the

boundary in order to maximize the probability of each training

example given the model parameters. Other researchers have

addressed this issue with a two-stage training procedure in which

an initial model is trained and then used to relabel the training

data, before the final model is trained. This type of two-stage

training approach may result in a final model that is overly

dependent on the decisions made by the initial model. Our

wildcard label approach allows us to train the model in a single

pass, maintaining the expression of uncertainty regarding the

labels, and can also be used in a semi-supervised setting,

combining partially-labeled data with fully-labeled data.

The duration modeling for each duration class is handled by the

stateCountDown and changeState nodes. Three basic types of

duration models are allowed: (i) fixed and finite durations; (ii)

random and finite durations; and (iii) geometric (possibly infinite)

durations. The first two types are defined using a CPT

Pr[D = d|Cv], representing the probability that the duration of

the current segment D is equal to d, conditioned on the duration

class Cv. The dimensions of this table are Dmax by |Cv|, where

Dmax is the maximum finite duration and |Cv| is the number of

different duration classes to be learned. When a transition to a new

(different) state occurs, a randomly chosen duration is used to

initialize the stateCountDown node. This value is decremented

in each successive frame until it reaches a value of 1 whereupon

the changeState node is set to true and a state transition is

triggered in the next frame. The states with a geometric duration

distribution are handled using a slightly different mechanism. For

these states, the stateCountDown node is assigned the value of 0,

which is not decremented in the subsequent frame. Instead, the

binary changeState node is set randomly to TRUE or FALSE based

on the self-looping probability p for the appropriate duration class.

The model is trained on labeled data (with wildcards as

described above) using the EM algorithm. The free parameters

learned during training consist of the start state probabilities, the

transition probabilities for the few states that have more than one

allowed next-state, the emission distributions for each emission

class, the duration distributions for the finite duration classes, and

the self-looping probabilities for the geometric duration classes, for

a total of 388 free parameters. (There are 6 possible start-states, 4

states with more than one possible next state, 15 different emission

classes, 87 finite-duration model parameters and 6 geometric-

duration model parameters.) The emission class probabilities were

smoothed by adding a single pseudo-count to each of the

accumulated counts during training. Although the EM algorithm

is only guaranteed to converge to a local maximum, in this case the

uncertainties during training are only related to the exact

placement of the segment boundaries and we found that repeated

EM training runs did not result in significantly different

parameters (data not shown).

Figure 3. State transition diagram. Each rectangle represents a state, which is characterized by an emission distribution and a duration
distribution. The state transition topology of Philius exactly mimics that of Phobius.
doi:10.1371/journal.pcbi.1000213.g003
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Decoding
The Viterbi algorithm is commonly used to find the most likely

sequence of hidden states in an HMM given the observations and

the model parameters. For a DBN, a generalized version of the

Viterbi algorithm similarly finds the single most likely assignment

to the set of all hidden variables h = [h1,…,hH] given the evidence

variables e = [e1,…,eE] and the model parameters H:

h
1
~ argmax

h

Pr h e,Hj½ �

In this application, however, we are interested in finding the most

likely sequence of labels l*, where the variables in l form a subset of

h, but the best partial assignment l* is not necessarily contained in

the best overall assignment h*. Computing l* is intractable in

general [24], because it requires first that we compute the

probabilities of all possible assignments and then sum over all

assignments that correspond to each possible sequence of labels. In

order to estimate the most likely sequence of labels, we have

developed a novel two-stage approach. In the first stage, we

compute the posterior probabilities for each l by marginalizing out

all other hidden variables. Defining a sequence of labels l directly

based on these posterior probabilities may produce a sequence that

does not obey the grammar of the underlying model. Instead, we use

the posterior probabilities on the labels in a second stage to influence

the choice of the ‘best’ assignment h*, while enforcing the same

grammar defined by the state transition matrix. Each of the two

decoding stages uses a different graph than the one used in training,

and these graphs are shown in Figure 3b and 3c.

This two-stage decoding is similar to the posterior Viterbi

algorithm described in [25] and applied to predicting the topology

of b-barrel membrane proteins, and is also similar to the optimal

accuracy decoding used in [26] to combine information from

homologous proteins. Both of these approaches use Viterbi-like

algorithms to find the permissible sequence of states that

maximizes some function of the posterior state probabilities. Here,

we are effectively finding the permissible sequence of states that

maximizes the product of the posterior label probabilities, subject

to the topology grammar. By using DBNs combined with virtual

evidence, there is no need to construct special-purpose inference

algorithms; the only changes are in the definition of the topology

of the graphical model and in the incorporation of the virtual

evidence.

In the first stage decoding DBN, shown in Figure 2b, the

observed topoLabel in the training graph is removed and

replaced with a hidden topoState which is dependent on the

current state and the previous topoState, and combines both

the current topology label (L~ i,M,o,Sf g) and whether or not the

label has just changed (i.e., a new segment has been started).

Incorporating this change-of-label information was found to

significantly improve the precise localization of the signal peptide

cleavage site. In addition, a new summary variable, pType , has

been added which takes on one of four values in {G, SP+G, TM,

SP+TM}, representing the four basic protein types. The pType
node keeps track of whether or not a particular state assignment

includes a signal peptide, and whether or not it includes a (non-SP)

transmembrane segment. This is done by initializing pType= G

and then or-ing together the pType from the previous frame with

information from the current topoState to determine the pType
up to and including the current frame. Full inference is performed

on this graph to compute the posterior probabilities of all nodes

given the evidence (the amino acid sequence) and the model

parameters. Specifically, this first stage of the decoding produces as

output the posterior probabilities for the topoState variable in

each frame as well as the posterior probabilities for pType in the

final (right-most) frame. Note that these posterior probabilities on

the final protein type node should not be confused with a posterior

probability on the location of the C-terminus of the protein; for

each type in {G, SP+G, TM, SP+TM}, it represents the total

probability, after all other hidden variables have been marginal-

ized out, that the test protein is of that type.

The second stage decoding DBN, shown in Figure 2c, is

significantly simpler than the other two graphs: the amino acid
evidence has been removed along with the emissionClass node,

as has the entire segment duration portion of the graph. In order

to incorporate the information from the first stage, a new observed

child node topoVE has been added in each frame. The parent of

this new node is the topoState node, and the conditional

relationship is defined, in a position- inhomogeneous manner,

based on the posterior label probability computed in the first stage:

Pr topoVEi
topoStateij ~a½ � ¼D Pr li~a e,Hj½ �:

Because the posterior probabilities already include the effects of

the transition, emission and duration probabilities, these no longer

need to be included in the second stage. The output of the second

stage of the decoder is the topology resulting from the Viterbi

assignment to the hidden variables in Figure 2c. The Viterbi

topology lv is now much closer to the optimal solution l* because

of the inclusion of the posterior probabilities from the first stage.

Experimental information can also be easily incorporated into

this decoding process. For example, if the protein type is known,

then the final pType node can be constrained to match. If other

information is known, such as the location of the C-terminus or

details regarding particular membrane-spanning segments, this too

can be easily incorporated as additional evidence constraining the

topoState nodes in those frames where the evidence exists.

Confidence Scores
In the Results section, we describe three types of confidence

scores: protein type, per-segment, and topology. The first score

reflects Philius’s confidence in the assignment of the protein type–

G, SP+G, TM or SP+TM. The protein type score is computed

using the posterior probabilities for the pType variable in the final

frame of the first stage decoding DBN. This computation produces

a single set of probabilities Pr[y] for each evaluated protein. The

second stage of the decoder produces the topology prediction and

the predicted protein type ŷ. The confidence score associated with

the protein type prediction is the posterior probability Pr[ŷ]. The

second type of score is the per-segment score, which represents an

estimate of the accuracy of the label and boundaries of a particular

segment. For this score, we use the Viterbi segmentation from the

second stage and compute the arithmetic mean of the first stage

posterior probabilities within that segment for the Viterbi-assigned

topology label. The third score applies only to transmembrane

proteins and reflects Philius’s confidence in the overall predicted

topology. We define this score as the minimum segment score over

all predicted membrane segments and the N-terminal and C-

terminal segments.

Datasets
We used the Phobius dataset [9] during model development.

This dataset consists of four non-overlapping subsets of 1087

globular (G) proteins, 1275 globular proteins with signal peptides

(SP+G), 247 transmembrane (TM) proteins and 45 transmem-

brane proteins with signal peptides (SP+TM). The maximum

Topology Prediction by Dynamic Bayesian Networks
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homology among the 247 TM proteins is 80%, and the maximum

homology among the 45 SP+TM proteins is 35%. The same cross-

validation folds and the same labels that were used to train and test

Phobius were also used in this work.

Two additional datasets were obtained and used in the final

testing and evaluation of the model: the SCAMPI dataset [27] of

124 transmembrane proteins (http://octopus.cbr.su.se/index.

php?about = download) and the SignalP 3.0 [28] training dataset.

The labels in the SCAMPI dataset include re-entrant regions

which do not completely span the membrane. These were

removed and relabeled as inside or outside because Philius does

not currently model those types of segments. The maximum

homology among these 124 proteins is 40%. Based on homology

between these and the original Phobius TM proteins, this set was

divided into one set of 77 proteins that does not overlap the

Phobius dataset (maximum homology 80%), and one set of 47

proteins that does. For the purposes of training and testing Philius

we only used the signal peptide portion of the SignalP dataset,

combining the eukaryotic and bacterial proteins into a single set of

1728 proteins. Truncated versions of these proteins were used in

training because the labels covered only the signal peptide and

cleavage-site of each protein.

Results

We evaluated the performance of Philius on the development

dataset using ten-fold cross-validation. We measured the perfor-

mance of the model as well as the accuracy of all three types of

confidence scores. For proteins containing a signal peptide, we also

considered the accuracy with which the cleavage site is localized.

We chose to compare our method to Phobius because it is the

only method that we know of that simultaneously predicts signal

peptides and complete transmembrane topologies. Several meth-

ods, such as MemBrain [29] and PROTEUS [30], predict

transmembrane helices and signal peptides, but without any

topological (inside/outside) information. The web server PONGO

[31] gives predictions from individual transmembrane topology

and signal peptide predictors without combining the individual

predictors.

Protein Type Classification
Initially, we evaluate how accurately Philius identifies a given

protein’s class as G, SP+G, TM or SP+TM. Table 1 shows the

performance of Phobius and Philius at this task using accuracy,

precision, sensitivity, specificity and Matthews correlation coeffi-

cient as metrics. Note that, because the SP+TM subset consists of

only 45 examples, fewer than 2% of the 2654 proteins in the

development set, we will sometimes group them together with the

other TM proteins to provide more meaningful statistics. The

largest difference between Philius and Phobius at this level is in the

precision for the TM and SP+TM category, for which Philius calls

29% fewer false positives than Phobius. (Phobius finds 265 of the

292 true positives, and miscalls 82 of the 2362 true negatives; on

the same data, Philius finds 268 TPs and miscalls 58 TNs.)

Overall, the performance on the G and SP+G subsets has

decreased slightly in exchange for an improvement on the TM

subset which is of greatest interest. Note that the class sizes in this

dataset are skewed (48% SP+G, 41% G, and 11% TM and

SP+TM), and that compared to a complete proteome, the

transmembrane proteins are underrepresented in this dataset by

a factor of 2 to 3.

For each prediction, Philius reports a protein type confidence

score, and Figure 4 shows that this score correlates extremely well

with the precision of the classification decision. Furthermore, on

this dataset, more than 70% of the confidence scores are greater

than 0.95. For the TM and SP+TM proteins (the smallest class),

the confidence score tends to be somewhat optimistic, as indicated

by the points below y = x. We attribute this skew to the fact that the

model was tuned to maximize the balanced accuracy across the

three major classes.

Segment-Level Prediction
Next, we evaluated the performance of Philius at the segment

level. Philius predicts four basic segment types: signal peptide,

transmembrane segment, and inside and outside loops. For a

transmembrane segment, the predicted segment must overlap the

annotated segment by at least five amino acids to be deemed

correctly identified. In order to correctly identify a signal peptide,

the model must only predict its existence at the N-terminus of the

protein. Because many of the inside and outside loops are very

short, the overlap required for these segments is only one amino

acid. The sensitivity and precision of the model in predicting each

of these segment types is shown in Table 2. Accuracy and

specificity cannot be calculated at the segment level, because there

is no sensible way to define the number of true negatives. Results

for outside segments are reported for all segments as well as for the

subset of outside loops within transmembrane proteins (i.e., those

with at least one non-SP TM segment). All of the inside segments

reported are loops within TM proteins. Predicting whether a loop

between two adjacent TM segments is on the ‘inside’ or on the

‘outside’ of the membrane is clearly the most challenging aspect of

this task.

As shown in Figure 5, the segment-level scores correlate well

with precision. The membrane segment and inner and outer loop

scores tend to be conservative, as indicated by the points above

y = x. The segment score should be interpreted conditioned on the

assumption that the protein type has been correctly predicted.

Signal Peptide Cleavage Site Accuracy
Although the precise boundaries of the membrane segments of a

transmembrane protein are somewhat difficult to define, the

Table 1. Phobius and Philius protein type classification performance on the development set: for each protein class, the fraction of
the dataset of that type, and the accuracy, precision, sensitivity, specificity, and Matthews correlation coefficient.

Accuracy Precision Sensitivity Specificity Matthews C

Protein Type Data % Phobius Philius Phobius Philius Phobius Philius Phobius Philius Phobius Philius

TM, SP+TM 11% 0.98 0.98 0.79 0.87 0.91 0.92 0.98 0.98 0.83 0.88

SP+G 48% 0.96 0.95 0.97 0.95 0.94 0.95 0.97 0.96 0.92 0.91

G 41% 0.97 0.97 0.97 0.97 0.96 0.95 0.98 0.98 0.94 0.93

doi:10.1371/journal.pcbi.1000213.t001
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cleavage site of a signal peptide can be very precisely defined if the

first amino acid of the mature protein is known. We therefore also

evaluated Philius’ ability to correctly localize the signal peptide

cleavage site.

Combining the SP+G and the SP+TM proteins into one group

and the G and TM proteins into another, the development dataset

contains 1320 proteins with signal peptides and 1334 without. In

the cross-validation experiment, Philius predicts 1271 true

positives, 1278 true negatives, 49 false negatives, and 56 false

positives (accuracy = 0.96, precision = 0.96, sensitivity = 0.96, and

specificity = 0.96).

Of the 1271 predicted true positives, in 948 cases (75% of the

predicted positives, and 72% of all positives), the annotated

cleavage site is found exactly. Among the errors, there is very little

skew in the localization error: in 51% of the cases, the cleavage site

is predicted ‘‘early’’ (median offset is 3 amino acids), and in 49% of

the cases the cleavage site is predicted ‘‘late’’ (median offset is 2

amino acids).

Full Topology Prediction
For proteins with transmembrane segments (with or without a

signal peptide), it is important to be able to correctly predict the

entire protein topology. Getting this prediction right requires not

only that all of the transmembrane segments be correctly

identified, but that the loop regions between the membrane

Figure 4. Protein-type classification precision vs confidence score computed by sorting the proteins by score and computing the
average score and precision within a sliding window. Left: precision vs average score for each of the three main protein types. Right: average
(black) and average 6one standard deviation (gray) across all proteins.
doi:10.1371/journal.pcbi.1000213.g004

Table 2. Segment-level metrics.

Segment Type Sensitivity Precision

SP 0.96 0.96

TM 0.94 0.92

Inside 0.87 0.85

Outside(TM) 0.89 0.88

Outside(all) 0.97 0.97

doi:10.1371/journal.pcbi.1000213.t002

Figure 5. Segment-level classification precision vs score for
each of the segment types (excluding the ‘outside’ segments of
G and SP+G proteins).
doi:10.1371/journal.pcbi.1000213.g005
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segments be correctly localized. Grouping the TM and SP+TM

proteins together, Philius predicts the correct topology for a total

of 212 out of 292 proteins (72.6%). For comparison, Phobius

predicts 198 correct topologies (67.8%) on this same dataset.

Table 3 shows the confusion matrices for Philius and Phobius.

Within each half of the table, values on the diagonal represent

correct protein-type predictions, while off-diagonal values repre-

sent errors. For G and SP+G proteins, a correct protein-type

prediction implies a correct topology, whereas for TM and

SP+TM proteins this is not necessarily the case. For these proteins,

the first number represents the number of correct complete

topologies while the second number represents the number of

incorrect topologies. (Incorrect protein-type calls necessarily imply

incorrect topologies.)

Figure 6 shows that the full-topology confidence score correlates

reasonably well with the observed precision for the transmem-

brane proteins in the dataset. As with the segment scores, the full-

topology confidence score should be interpreted conditioned on

the assumption that the protein type has been correctly inferred.

Results on Test Data
Following the model-development phase, we evaluated Philius

on an enhanced dataset that includes the SCAMPI dataset [27]

and the SignalP 3.0 dataset of signal peptide proteins [27]. These

new datasets partially overlap the original Phobius datasets that

were used during model development as shown in Figure 7. We

incorporated this new data to create a new set which we used for a

final round of ten-fold cross-validated training and testing. This

new dataset was made up of the original Phobius G and SP+TM

subsets, the SignalP signal peptide set (combining eukaryotic and

bacterial proteins), and a merged TM set created by combining

the 124 TM proteins from the SCAMPI set with the 200 non-

homologous TM proteins from the Phobius TM subset, for a total

of 324 TM proteins.

Results were evaluated in two areas: full-topology accuracy on

the transmembrane proteins, and signal peptide prediction

accuracy on the SignalP dataset. The full-topology accuracy on

the TM proteins after performing ten-fold cross-validation on this

new dataset is summarized in Table 4. The accuracies reported in

the first 2 rows of the table are consistent with one another and

with the accuracy of 72.6% reported on the development set.

Comparing the last two rows in the table it is clear that the novel

portion of the SCAMPI dataset contains membrane proteins that

are more difficult to predict. This is likely due to the presence in

the SCAMPI set of 20 proteins known to have one or more re-

entrant segments. Of these 20 proteins, all but one are in the

Table 3. Confusion matrices for Phobius and Philius.

Phobius G SP+G TM SP+TM Philius G SP+G TM SP+TM

G 1042 25 20 0 G 1033 43 11 0

SP+G 27 1207 20 21 SP+G 25 1200 19 31

TM 5 9 157/66 10 TM 8 9 172/54 4

SP+TM 0 1 2 41/1 SP+TM 0 1 2 40/2

Rows are true protein types, and columns are predicted protein types. Where there are two numbers, the first number represents the number of proteins for which the
full topology was correctly predicted, while the second number represents the number of proteins for which the protein type was correct but the full topology was not.
These results are from the development dataset.
doi:10.1371/journal.pcbi.1000213.t003

Figure 6. Full-topology prediction precision vs score for the TM
proteins. The black line is the average score within the sliding window
used to estimate the precision, and the gray lines indicate the average
plus and minus one standard deviation.
doi:10.1371/journal.pcbi.1000213.g006

Figure 7. Original Phobius datasets (G, SP+G, TM and SP+TM)
and new SignalP and SCAMPI datasets. Figure is approximately to
scale.
doi:10.1371/journal.pcbi.1000213.g007
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SCAMPI \ Phobius set, and the full-topology accuracy on these 19

proteins is only 53% (10/19).

Training and testing Phobius in the same way on this new

merged dataset yielded an overall TM topology accuracy of 62.7%

(203 out of 324). Compared to Phobius, on this new dataset,

Philius achieves a relative increase of 13% in the number of

correct topologies (230 correct topologies vs 203).

The signal peptide performance is improved over that reported for

the development dataset. We attribute this improvement to the

higher quality SignalP dataset. On 1728 signal peptides, Philius

predicted 1679 true positives and 49 false negatives (30 were classified

as transmembrane proteins, while 19 were classified as globular

proteins) for a sensitivity of 0.97 (compared to 0.96 on the Phobius SP

set). Furthermore, 1292 cleavage sites are predicted exactly,

representing 75% of all signal peptides in the test set, compared to

72% when trained and evaluated on the Phobius SP set.

Although we combined the eukaryotic and bacterial signal

peptides during training, we also report in Table 5 the results

broken down by taxon. For these results, the positive set is the

SignalP dataset of signal peptides (with the counts for each subset

as shown in the table), and the negative set is the Phobius globular

protein set (1087 proteins). The results represent the summary

from a ten-fold cross-validation experiment. Although we are not

using the same set of negative (non-SP) proteins and thus cannot

exactly replicate the experiments leading to the SignalP 3.0

performance figures reported by Bendtsen et al. in [28], Philius’

detection and discrimination of signal peptides is comparable to

that reported for SignalP-HMM for eukaryotes and Gram

negative bacteria. The cleavage site accuracy reported here for

Philius is slightly worse than SignalP-HMM for the eukaryote and

the Gram negative sets (down 4% and less than 3% respectively),

but is significantly worse for the Gram positive set (down 24%).

This decline in performance is to be expected, considering that we

trained a single model for all three categories, and the Gram

positive signal peptides are significantly different from the other

two types.

The key difference between Philius and SignalP, however, is

that SignalP is trained to discriminate between proteins with and

without signal peptides, excluding transmembrane proteins,

whereas Philius has been trained to discriminate between proteins

with and without signal peptides and those with and without other

(non-SP) membrane-spanning segments. It has previously been

reported that SignalP 3.0 falsely predicts 21% (52 of 247) of the

Phobius TM dataset as containing signal peptides and that 30–

65% of all predictions from SignalP 3.0 on whole proteomes

overlap with TMHMM 2.0 predictions [8]. Philius, in contrast,

predicts only 5% (13 of 247) of the Phobius TM dataset as

containing a signal peptide.

S. cerevisiae Membrane Proteome
Kim et al. [32] described the experimental localization of the C-

terminus for 617 Saccharomyces cerevisiae proteins predicted by

TMHMM to be multi-spanning membrane proteins using a reporter

construct. Based on consistent experimental results as well as BLAST

homology searches, the C-terminal location could be confidently

assigned for a total of 546 proteins. For 69% of the 546 proteins, the

initial TMHMM prediction of the C-terminal location agreed with

the experimental result. New topology predictions were made using

both TMHMM and prodiv-TMHMM [33] constrained by the

experimentally determined C-terminal location.

The Philius predictions for the 546 proteins described above

match the experimentally assigned C-terminal location 78% of the

time (428 out of 546). For those C-terminal segments that were

correctly predicted by Philius, the median confidence score was 0.90.

For those incorrectly predicted, the median score was 0.72. Figure 8

shows the total counts and fraction of correctly localized C-terminals

as a function of the C-terminal segment confidence score.

Constrained Philius topology predictions were then made and

compared to those given in [32]. The Philius-predicted topology

matched both TMHMM and prodiv-TMHMM for 41% of the

536. (For 10 out of the original 546 proteins, the length of the

protein given in the supplementary data of [32] did not match the

length of the ORF of the same name in the YRC database, so

these proteins were disregarded for all other comparisons.)

proteins, only prodiv-TMHMM for 21%, only TMHMM for

16%, and neither for 22%. The constrained predictions from

Table 4. Philius full-topology accuracy on new merged TM
dataset (top row).

TM Dataset Size Correct Count Correct %

Phobius < SCAMPI 324 230 71.0%

SCAMPI only 124 90 72.6%

Phobius > SCAMPI 47 37 78.7%

SCAMPI \ Phobius 77 53 68.8%

The accuracy on various subsets of the merged set are listed below.
doi:10.1371/journal.pcbi.1000213.t004

Table 5. Philius signal peptide discrimination (accuracy,
precision, sensitivity, specificity, and Matthews correlations
coefficient) and cleavage-site accuracy (fraction of all SPs
detected for which the cleavage-site was predicted exactly).

Dataset Count Acc Prec Sens Spec cc C-Site

Eukaryotes 1192 0.97 0.97 0.97 0.97 0.94 72.4%

Gram2 370 0.97 0.91 0.98 0.97 0.92 87.8%

Gram+ 167 0.97 0.81 0.96 0.97 0.86 62.3%

All 1729 0.97 0.98 0.97 0.97 0.94 74.7%

The negative set contained 1087 globular proteins.
doi:10.1371/journal.pcbi.1000213.t005

Figure 8. The total counts and fraction of correct C-terminal
localizations as a function of C-terminal segment confidence
score for 546 yeast proteins with experimentally assigned C-
terminal locations.
doi:10.1371/journal.pcbi.1000213.g008
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TMHMM and prodiv-TMHMM match each other for 48% of the

546 proteins.

The constrained Philius predictions included 40 topologies

containing a predicted N-terminal signal peptide. Of these, 31

signal peptides had high confidence scores (greater than 0.9), and all

but one of these were also classified as containing a signal peptide by

SignalP 3.0. Of these 30 putative signal peptides identified both by

Philius and by SignalP, TMHMM annotates 18 (60%) as

transmembrane segments. Four of these proteins are classified as

SP+G by Philius, indicating that the mature protein is likely a

globular protein and not a membrane protein. Of these proteins,

three (YFL051C, YNL019C, and YNL033W) are putative proteins,

and the fourth (YFL067W) is of uncharacterized function.

Predictions on YRC Database
A final version of Philius, trained on all of the training data, was

used to predict and score the protein type and topology for all 6.3

million proteins in the YRC public data repository [11] as of

March 24, 2008. This database contains Uniprot/SwissProt, the

NCBI non-redundant database, the MIPS protein sequence

database, and a variety of organism-specific databases, including

the Saccharomyces Genome Database, Sanger’s S. pombe database

(pompep), Wormbase, Flybase and The Arabidopsis Information

Resource. Running Philius on this set required approximately 7.2 s

per protein, for a total of approximately 1.5 years of CPU time.

A summary of the predictions can be found in Table 6. The

median protein type confidence scores are very high for all protein

types. The median topology confidence score for TM proteins is

0.69, which agrees with the typical topology accuracy of 70%.

Table 7 shows the relative representation of the four basic protein

types, for four species. The total fraction of predicted membrane

proteins, between 22% and 29% is consistent with previous

estimates. Table 8 shows the fraction of predicted TM and

SP+TM proteins that have a single membrane-spanning segment

in the mature protein. Single-spanning membrane proteins

represent approximately 20% to 35% of all membrane proteins,

and an even larger fraction of membrane proteins with signal

peptides. For putative multi-spanning transmembrane proteins,

proteins predicted to contain an even number of membrane

segments outnumber those predicted to have an odd number of

membrane segments nearly 2 to 1 (data not shown). This

enrichment of membrane proteins with an even number of TM

segments may be due to internal duplication events resulting in an

even number of TM segments, or the process of membrane

insertion may be optimized for pairs of segments. Although the N-

terminus of a membrane protein is in general more likely to be on

the cytoplasmic side of the membrane, this bias is strongest for

proteins with an even number of membrane segments. Two

extreme examples illustrate this phenomenon: less than 41% of the

putative seven-transmembrane segment proteins are predicted to

have the N-terminal on the inside (the large family of GPCR

proteins have the N-terminal on the outside), whereas 96% of the

proteins predicted to have twelve transmembrane segments are

predicted to have the N-terminal on the inside. This same

phenomenon was seen in our training data and in other genome-

wide prediction studies [32,34].

Figure 9 shows the Philius topology prediction for the human

presenilin protein. This topology matches the nine-transmembrane

topology which has been recently described [35,36] and is

supported by experimental evidence. The nine membrane-spanning

regions are shown as vertical cylinders and the cytoplasmic and non-

cytoplasmic segments as horizontal bars. Each segment is colored

according to type and shaded according to the confidence score.

The seventh membrane-helix is missed by many topology predictors

and is assigned a relatively low confidence score by Philius and as

such is shaded gray. The protein type score for this protein is 0.99,

and the full-topology score is 0.56.

Discussion

We have described Philius, a DBN-based approach to

transmembrane protein topology prediction. Philius incorporates

a two-stage decoding procedure that approximates the most likely

label sequence given the protein sequence, a flexible way of

Table 6. Overall YRC predictions on 6.3 million proteins: number and relative fraction of each protein type, median protein type
confidence score, and median TM topology confidence score (when applicable).

Protein Type Count Percentage Median Type Confidence Median Topology Confidence

G 4,248,628 67.1% 0.98

TM 1,280,117 20.2% 0.99 0.69

SP+G 698,534 11.0% 0.97

SP+TM 101,224 1.6% 0.91 0.78

doi:10.1371/journal.pcbi.1000213.t006

Table 7. This table shows, for a few different organisms, the
total number of proteins for which predictions were made
and the relative fractions of the four basic protein types.

Organism Count G SP+G TM SP+TM

E. coli 4,929 61% 17% 21% 1%

S. cerevisiae 6,633 70% 7% 21% 1%

C. elegans 22,969 55% 15% 26% 3%

H. sapiens (HUPO) 16,941 60% 15% 18% 7%

doi:10.1371/journal.pcbi.1000213.t007

Table 8. This table shows the fraction of predicted TM and
SP+TM that have a single membrane-spanning segment in
the mature protein.

Organism Total TM ss Total SP+TM ss

E. coli 1,032 19% 35 49%

S. cerevisiae 1,416 35% 99 68%

C. elegans 5,919 29% 778 67%

H. sapiens (HUPO) 3,042 26% 1,222 74%

doi:10.1371/journal.pcbi.1000213.t008
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handling uncertainty in training labels or partially labeled data,

three different types of duration models, and a simple mechanism

for tying parameters in order to limit model complexity. We have

shown improvements in topology prediction accuracy over

Phobius and comparable signal-peptide discrimination to Sig-

nalP-HMM. Furthermore, Philius uses a probabilistic framework

to derive three informative confidence measures which have been

shown to correlate well with observed precision. Finally, we have

made available through the YRC web page a prediction server

and 6.3 million predicted protein topologies. The predictions

provide a global view of membrane protein topology and are a

significant resource for scientists interested in understanding

protein structure and function.

With respect to the transmembrane protein topology prediction

task, we plan to improve Philius in several respects. First, it has

previously been shown that the performance of Phobius could be

increased from 67.8% to 74.7% correctly predicted TM topologies

by including homologs during the decoding stage [26]. Philius

currently achieves 72.6% accuracy on the same dataset. We

believe that Philius’s performance could be similarly improved by

exploiting homologs. Other directions for future work include

learning periodic motifs (such as the hydrophobic moment [37]) in

transmembrane helices, and including parallel tracks of informa-

tion, such as hydrophobicity measures, in addition to the amino

acid sequence. A model that differentiates between single-spanning

and multi-spanning membrane proteins may also better capture

some of the diversity among these proteins, at the risk of data-

sparsity problems. However, including additional features such as

hydrophobicity or otherwise clustering the amino acids may help

to limit over-fitting to the training data. Furthermore, most

existing membrane protein models, including Philius, are guilty of

over-simplifying the problem, ignoring, for example, re-entrant

segments which penetrate but do not completely span the

membrane, or interfacial helices which run roughly parallel to

the membrane surface [38]. Modeling and predicting these types

of features without reducing the accuracy on more ‘‘conventional’’

membrane proteins remains an open problem.

Recently, some insight has been gained into which properties of a

protein govern the insertion of its membrane segments. Specifically,

it has been shown that for a potential transmembrane helix of a given

protein, the apparent free energy of insertion DGapp of a TM helix

can be expressed as a function of the concentration ratio Kapp

between the membrane integrated and the non-integrated forms:

DGapp = 2RT ln Kapp [39,40]. Furthermore, this DGapp can be

approximated as a sum of position- and residue-dependent

contributions from each amino acid in the helix, plus a hydrophobic

moment contribution and a length correction [27,40]. The additive

nature of DGapp, neglecting the hydrophobic moment term, supports

the conclusion that probabilistic models in which the probabilities of

individual amino acids are multiplied together, or equivalently the

log-probabilities are summed, provide an accurate representation of

the underlying membrane integration process. The length correction

term can be compared to log Pr[Dh], where Dh is the length of the

core membrane helix and Pr[Dh] is learned. Within the DBN

framework, it is also possible to incorporate additional dependencies

between nearby amino acids in order to capture effects such as the

hydrophobic moment.

Since their introduction to biological sequence analysis [41],

hidden Markov models have been considered one of the best ways

to model amino acid and DNA sequences. DBNs generalize

HMMs and offer a number of significant advantages. While

adding complexity to an HMM requires an ever-expanding state

space, a DBN can be used to more precisely describe the

relationships desired among the random variables, thereby

limiting the complexity only to what is actually needed. Because

DBNs expose additional factorizations that might not be apparent

in an HMM, DBNs may require fewer parameters and allow

computationally more efficient probabilistic inference procedures

than the corresponding HMM. Recently, Yao et al. [42] have

applied DBNs to the task of secondary structure prediction and it

seems like a logical step to similarly extend other applications such

as gene prediction [43], protein homology detection [23], and

coiled-coil prediction [44] from HMMs to DBNs. The DBN used

here for protein topology prediction can easily serve as the basis

for any similar segmentation and labeling task simply by specifying

a different set of states and a different grammar.
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