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Abstract—We develop a framework to select a subset of sensors
from a field in which the sensors have an ingrained independence
structure. Given an arbitrary independence pattern, we construct
a graph that denotes pairwise independence between sensors,
which means those sensors may operate simultaneously. The set
of all fully-connected subgraphs (cliques) of this independence
graph forms the independent sets of a matroid over which
we maximize the minimum of a set of submodular objective
functions. We propose a novel algorithm called MatSat that
exploits submodularity and, as a result, returns a near-optimal
solution with approximation guarantees that are within a small
factor of the average-case scenario. We apply this framework to
ping sequence optimization for active multistatic sonar arrays
by maximizing sensor coverage and derive lower bounds for
minimum probability of detection for a fractional number of
targets. In these ping sequence optimization simulations, MatSat
exceeds the fractional lower bounds and reaches near-optimal
performance.

I. INTRODUCTION

Subset selection problems are important for many appli-
cations in areas such as wireless communications, environ-
mental monitoring, and speech processing [1]–[4]. This paper
addresses general sensor selection, with a specific focus on
sensor networks with interfering sensors, and we demonstrate
improved performance on active multistatic sonar arrays [5].
As is the case with most optimization problems, it would be
advantageous for the problem to be convex. However, framing
sensor selection problems as convex has two main problems.
First, sensor selection is inherently a discrete optimization
problem since selecting a sensor is an absolute choice. One
cannot partially choose a sensor, and convex optimization
utilizes continuous variables. Second, convex optimization is
unable to handle dependence constraints between variables in
a way that is appropriate for our task. Specifically, there is no
known way to enforce dependent values between variables in
a convex framework such that if a pair of sensors interfere,
the two sensors will not be present in the solution together.

Submodular function optimization (SFO) provides a more
intuitive framework for handling these two problems, since
it inherently uses set functions and can be constrained to
optimize over the independence sets of matroids. Matroids
are a structure that generalize the notion of linear indepen-
dence from vector spaces to set systems, and can be used to

Fig. 1: General system diagram for sensor selection.

form constraints in SFO. They will be addressed further in
Section II.

The main focus of this paper is a novel optimization
algorithm, MatSat, that is a modification of SATURATE [3].
MatSat maximizes the minimum of a set of submodular func-
tions subject to matroid independence constraints rather than
cardinality constraints, and as a result offers a new strategy
for robust submodular optimization over constraint sets (such
as matroids) that are not easily expanded as in the case of
a cardinality constraints. We also investigate modeling sensor
networks as graphs and then using the graph structure to form
matroid independence sets for use as constraints in submodular
function optimization. SFO can handle constraints that make
problems nonconvex or non-polynomial (NP) hard and find
polynomial time solutions that are provably near-optimal with
performance guarantees [6]. Section II describes how to model
sensor network interference patterns as an independence graph
can be folded directly into SFO as a series of matroids [7], [8].
This new approach is applied to scheduling active multistatic
deep-water sonar arrays, or ping sequence optimization (PSO),
in which we repeatedly optimize to select a subset of buoys
that maximize a probabilistic coverage metric. We detail this
application in Section III. In order to demonstrate the specific
advantages of MatSat, we compare its performance to SFO-
Greedy and exhaustive search approaches in Section V.

II. SUBMODULARITY AND INDEPENDENCE GRAPHS

The discrete nature of sensor selection makes optimization
difficult. Typically, one represents the sensor nodes in an
indicator vector with a selected sensor node as ones and
unselected sensor nodes as zeros. These independence con-
straints make optimization problems nonconvex. One of the



main contributions of this paper is modeling independence
constraints on the sensor networks.

Submodularity is a property that describes set functions
similar to how convexity describes functions in a continuous
space. For ping sequence optimization, submodular functions
can be used to find optimal subsets of buoys to achieve
objectives like maximizing coverage of non-interfering buoys,
or maximizing probability of target detection in a target
tracking scenario. Rather than exhaustively searching over all
combinations of subsets, submodular functions provide a fast
and tractable framework to compute a solution [6], [9], [10].

Let the set of available objects, known as the ground set,
be denoted as V . A submodular function f maps a set of
objects denoted by a binary indicator vector of length V to
a real number. The binary indicator vector is represented by
the expression 2V since the variable can take two values and
is indexed by elements of set V . As mentioned previously,
a value of 1 or 0 for the ith element of the indicator vector
denotes the inclusion or exclusion of the ith element of the
ground set V , and therefore any subset A ⊆ V can be placed
in one-to-one correspondence with incidence vectors.

A submodular function f is defined as one with the follow-
ing property: for all A,B ⊆ V ,

f (A) + f (B) ≥ f (A ∪B) + f (A ∩B) (1)

In light of the above equivalence between subsets and in-
cidence vectors, a submodular function can also seen to be
one that operates on 0/1-vectors with entries elements indexed
by elements of V . Submodularity is sometimes viewed as a
discrete analog to convexity [9], although it should be noted
that submodularity and convexity are quite distinct for many
reasons.

Submodularity can equivalently, and perhaps more intu-
itively, be expressed via the notion of diminishing returns, i.e.,
the incremental gain of the objective diminishes as the context
grows. Defining the incremental gain of adding v to A as
f (v|A) = f (A ∪ {v})−f (A), then submodularity is defined
as any function with f (v|A) ≥ f (v|B). for all A ⊆ B ⊂ V
and a v /∈ B.

Submodularity is very closely tied to structures known as
matroids, which generalize the notion of linear independence
in vector spaces [7]. One can think of matroids as a general-
ization of matrices, which extend the definition of rank beyond
column vectors of a matrix to more general independent sub-
sets over a finite ground set. More importantly, SFO allows for
matroid independence constraints to be placed on the problem,
which means complicated variable dependence patterns can be
encoded into the problem and polynomial time solutions can
be obtained. Given a finite set V and a finite set of subsets
I = {I1, I2, . . . }, the pair (V, I) is said to be a matroid when
the family of sets I satisfies the following three properties:

1) ∅ ∈ I
2) I1 ⊆ I2 ∈ I
3) I1, I2 ∈ I, |I1| < |I2| =⇒ ∃v ∈ I2\I1 : I1 ∪ v ∈ I

This leads us to the independence graphs, where nodes on the
graph represent sensors and edges denote pairwise indepen-

dence between sensors. An edge between two sensors, in other
words, means both sensors can be used at the same time. For
this setup, the nodes in any fully connected subgraph (clique)
is an allowable subset. The set of all cliques, also called
the clique complex, from this independence graph, denoted
by G, can form a partition matroid if the stable sets of the
complimentary graph Ḡ form a partition. This is not true
in general for the independence graphs generated from the
interference patterns in a sensor field. However, the clique
complex can be modeled as the intersection of k matroids [11].
Kashiwabara et al. give the following algorithm to construct
the k matroids.

Algorithm 1 Clique Complex to Matroids

1: Construct the stable-set graph S (G)
2: Find a k-coloring of S (G)
3: The nodes of each color form the partitions of one of the
k matroids

The stable-set graph of G, denoted S (G), is a graph whose
vertices are the maximal stable, or independent, sets of G. An
edge exists between vertices that share vertices of G. The k-
coloring problem, in which the goal is to assign each vertex
one of k colors such that adjacent vertices are different colors.
In terms of S (G), vertices of the same color do not share
any vertices from G, and thus each vertex forms a partition.
Kashiwabara et al. also prove that the clique complex of a
graph of n vertices can be represented by the intersection of at
most n−1 partition matroids [11]. By turning the interference
pattern of a sensor field into a set of matroid constraints, we
can guarantee that two interfering sensors will not be chosen
in the solution.

III. APPLICATION TO PING SEQUENCE OPTIMIZATION

We apply this sensor selection framework to active sonar
arrays, where each buoy has a co-located transmitter and
receiver that operates monostatically. However, since SFO
allows for multiple buoys to be selected, the array functions
multistatically in that multiple receivers are operating simulta-
neously and at potentially overlapping regions. An example of
a spatial buoy arrangement where some of the buoys interfere
can be found in Fig. 2a. The four buoys are arranged in a
diamond pattern with locations represented by black dots. In
Fig. 2a, the blue rings denote the coverage regions for each
buoy and the red rings denote the regions where another buoy
will interfere with a given buoy. Coverage is defined by the
probability of target detection for a buoy. If two interfering
buoys transmit simultaneously, the direct path signal from
the first will arrive at the second when the second buoy’s
reflections would arrive. Fig. 2a also shows the relationship
between the coverage and interference regions for the buoys.
In this arrangement, the buoys across from each other, i.e.
the top and bottom pair and left and right pair, will interfere
with each other, since the buoys in each pair are in the red
interference region of the other buoy. However, any other pair
of buoys can ping simultaneously [5].
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(a) Four buoys (black dots) with coverage regions
(blue rings) and interference regions (red rings).

(b) Independence graph for four buoys as nodes
with edges that signify pairwise independence.

Fig. 2: Relationship between the independence graph, coverage regions and interference regions for a four buoy arrangement.

In order to find out the maximum number of buoys that
can ping simultaneously, the largest set of nodes is picked
such that all the nodes in the set are connected to every
node in the set. Note that self-loops are implied, since a
buoy does not interfere with itself. The problem of finding
the largest subset of fully connected nodes is a well known
problem in computer science [12]. Exact methods for solving
this problem run in exponential time, but for reasonable graph
sizes (a hundred vertices), the algorithm runs fairly quickly.
For example, if the graph meets certain conditions, i.e. if the
graph is “planar” or “perfect,” finding the largest clique can be
solved in polynomial time [13]. For the arrangement in Fig. 2a,
there is a four-way tie for largest clique, which are the adjacent
pairs (top and left buoys, left and bottom buoys, bottom and
right buoys, and right and top buoys). The independence graph
for this arrangement is depicted in Fig. 2b. In a real scenario,
the detection regions will not be perfect rings, so one of the
pairs might have better coverage than the others. A more
complicated interference pattern will emerge as the number
of buoys is increased, which is demonstrated in Fig. 5b.

Our objective function is a variant of probabilistic coverage.
It utilizes target state estimates to help determine which buoys
are selected. Let V be the set of N buoys bi, i = 1...N .
Let B ⊆ V such that B is a clique of G, where G is the
independence graph determined by the interference pattern of
all the buoys bi in V . Let the set of all sets of sensors that form
cliques on the graph be a partition matroid I. Coverage is a
positive, non-decreasing objective, so the goal is to maximize
the objective function. Two different problem formulations
can be used, which correspond to maximizing the average
coverage over a set of target locations [14], Equation (2),
and maximizing the worst-case coverage over a set of target
locations, Equation (3). Then the optimal set of buoys for the
average-case scenario is given by

B∗ ∈ argmax
B∈I

1

M

M∑
i=1

fi (B). (2)

The worst-case scenario is given by

B∗ ∈ argmax
B∈I

min
i
fi (B) . (3)

In both cases, i = 1, ...,M corresponds to the predicted target
locations and M is the number of targets, and the functions
fi : 2V → R are given by the equation

fi (B) = 1−
∏
bi∈B

(1− Pi,bi) (4)

where Pi,bi is the probability of detection of buoy bi at location
i determined by a table look-up for pre-computed probability
of detection maps for each buoy.

Our approach emphasizes tracking in that the objective
prioritizes covering areas where known targets are located,
but it provides good coverage as well. After the algorithm
addresses coverage of the known targets, it adds as many
non-interfering buoys as are available, and thus provides an
effective simultaneous track and search framework.

IV. MATROID CONSTRAINED SATURATE (MATSAT)

To optimize the Equation (3), we develop a novel algorithm
MatSat, which generalizes the SATURATE algorithm created
by Krause et al. [3]. Krause et al. use SATURATE to optimize
an objective function of the form

A∗ = argmax
|A|≤k

min
i
fi (A) (5)

where fi (A) is a set of monotone submodular functions.
SATURATE solves this worst-case optimization problem by
proposing an alternative formulation and relaxing the cardi-
nality constraint from |A| ≤ k to |A| ≤ αk. As long as α is



large enough, the solution Â from the SATURATE algorithm
guarantees that

minifi(Â) ≥ argmax
|A|≤k

min
i
fi (A) and |Â| ≤ αk.

Krause et al. claim that the only way to achieve a non-trivial
guarantee is to relax the constraint, which limits both the types
of constraints that can be applied to the problem as well as the
values the objective functions can take, i.e. integral or rational
valued objective functions. Matroid constraints, for instance,
have no immediately obvious relaxation. One way to relax the
matroid constraint, however, might be to expand the bases of
the matroid. For our task, this leads to undesirable solutions.
For example, for ping sequence optimization, the resulting
solutions might contain interfering buoys. However, there is
another way to achieve non-trivial guarantees, which is to relax
the objective itself, leaving the constraints intact, and produce
a fractional bound on the objective function, something that
is made possible thanks to the use of submodularity. The
proposed algorithm, MatSat, uses this alternative approach
to find a solution such that a fraction γ of the submodular
functions are above a minimum value β. Moreover, the user
can set particular values of β or γ, as long as β is less than
the submodular guarantee α and γ < 1. The derivation for the
lower bound is given below.

By relaxing the problem, we can consider the following
constrained optimization problem:

A∗ = argmax
A∈I

min
i
fi (A) (6)

where I are the independent sets of a matroid. For a fixed
value of c, which can be thought of as the saturation level, we
can determine if fi (A) ≥ c via submodular maximization of
the following surrogate function:

f c (B) =
1

M

M∑
i=1

min{fi (B) , c}. (7)

f c(B) is a submodular function, because it is a non-negatively
weighted sum of functions min{fi (B) , c} which are sub-
modular [15]. At each iteration of MatSat, we run a greedy
algorithm described in Algorithm 2. Basically, the greedy
approach selects the buoy which provides the best incremental
gain in coverage and does not interfere with any of the other
previously selected buoys.

Algorithm 2 Greedy (f c, c)

1: B ← ∅
2: while ∃b ∈ V \B s.t. B ∪ {b} ∈ I and f c (b|B) > 0 do
3: S ← {b ∈ V \B : B ∪ {b} ∈ I}
4: s∗ ← argmaxs∈Sf

c (b|B)
5: B ← B ∪ {s∗}
6: end while
7: return B

MatSat is outlined in Algorithm 3. Given monotone sub-
modular functions (f1, ..., fM ), approximation guarantee α for

the matroid constrained submodular maximization problem,
and tolerance threshold ε, we first set cmin and cmax to values
that ensure the true optimal value lies in the interval. While
performing a binary search over c, we test the value of the
approximate solution f c(B̂) against the lower bound αc. If the
approximate solution is less than the lower bound, we know
that the true optimal is less than c, so we limit the search to
the lower half of the interval. Likewise, if the lower bound
is met, we store the solution (which, as we describe below, is
fractionally good w.r.t. the current c) and then continue attempt
to find a better one (higher c) by searching over the upper
half of the interval. We stop when the range falls within the
tolerance.

Algorithm 3 MatSat (f1, ..., fM , α, ε)

1: cmin ← 0, cmax ← minifi (V )
2: while (cmax − cmin) > ε do
3: c← (cmax − cmin) /2
4: f c (B)← 1

M

∑M
i=1 min{fi (B) , c}

5: B̂ ← Greedy (f c, c)
6: if f c(B̂) < αc then
7: cmax ← c
8: else
9: cmin ← c, Bbest ← B̂

10: end if
11: end while
12: return Bbest

Theorem 1. Given a value β < α, MatSat finds a solution B̂
that guarantees the following fraction γ of the M functions
min{fi

(
B̂
)
, c} ≥ βc:

γ ≥ α− β
1− β

where α is the approximation guarantee for matroid
independence set constrained submodular maximization
problem.

Proof f c(B) ≥ c only if mini fi(B) ≥ c. When all fi(B) ≥
c, then f c(B) = c. Likewise, when any fi(B) < c then the
f c(B) < c, since the maximum value of f c(B) is c. The
greedy solution B̂ for maximizing a monotone submodular
function subject to a matroid constraint is f c(B̂) ≥ αf c(B∗),
where α depends on the algorithm chosen. If line 6 of
Algorithm 3 is true, then f c(B̂) < αc which implies that
mini fi(B

∗) < c. Line 6 being true also implies that c
is too large, so cmax ← c. At line 12 of Algorithm 3,
(cmax − cmin) ≤ ε and the true optimal value mini fi(B

∗)
is in the interval [cmin, cmax]. The submodular approximation
guarantee ensures that f c(B̂) ≥ αf c(B∗) and f c(B̂) ≥ αc.
Given a value for β, the terms of f c(B̂) can be split into two
groups, one that have value less than βc and the other greater
than or equal to βc:

f c(B̂) =
1

M

∑
i:min{fi(B),c}<βc

min{fi (B) , c}+
1

M

∑
i:min{fi(B),c}≥βc

min{fi (B) , c}.
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Fig. 3: Visualization of lower bound as the saturation level
c and the fractional guarantee bγMc vary. The submodular
guarantee is fixed at α = 1

2 .

Let γ be the fraction of terms that meet the βc threshold.
Then, the two summation terms become f c(B̂) = (1− γ)βc+
γc ≥ αc. Rearranged, the expression becomes γ ≥ α−β

1−β . A
visualization of the lower bound over values of the saturation
level c and fractional number of targets bγMc is shown in
Fig. 3. In this case, the submodular guarantee for a monotone
submodular function constrained by a single matroid via the
greedy algorithm, which is α = 1/2.

V. EXPERIMENTAL RESULTS

In this section, we compare the performance of the proposed
ping sequence optimization algorithm MatSat to the previously
proposed SFO-Greedy and exhaustive search. MatSat and
exhaustive search are optimized with respect to Equation (3),
while SFO-Greedy is optimized with respect to Equation (2).
If SFO-Greedy were to be optimized with respect to Equation
(3), the algorithm would always select the empty set, except in
the degenerate case where there is a buoy that can detect every
single target. For the first experiment, there are nine buoys
in a grid pattern spaced 128 km away from their neighbors
and seven targets. The nine coverage regions and seven target
locations are represented by blue rings the red triangles,
respectively, in Figure 4. In this experiment, we allow the
targets to have unequal probabilities of detection. Ordered
from top to bottom and left to right, the targets have probability
of detection of P = {0.6, 0.6, 0.9, 0.2, 0.6, 0.9, 0.9} in each
buoy’s coverage region and P = 0 everywhere else. The
independence graph for the buoys can be found in Fig. 5b,
and the interference pattern in Fig. 5a. By applying Kashi-
wabara’s method for creating a set of matroid constraints to the
interference graph in Fig. 5b, the clique complex can be rep-
resented as the intersection of four partition matroids, whose
partitions are given as {ad, be, cf, hi, g}, {ab, de, fi, gh, c},
{bc, ef, dg, a, h, i}, and {eh, a, b, c, d, e, f, i}.

The results for experiment one can be found in Table I.
MatSat performs as well as the exhaustive search, which is
to say it achieved the optimal solution both in terms of worst
case and average coverage objectives. SFO-Greedy, however,
chooses the buoys {a, f, h} instead of {b, d, f, h}, which
misses one of the targets and results in suboptimal worst case
and average coverage.

Method MatSat SFO-Greedy Exhaustive search
Min PD 0.200 0.000 0.200

Mean PD 0.671 0.586 0.671
Buoys Selected {b, d, f, h} {a, f, h} {b, d, f, h}

TABLE I: Probability of detection (PD) results for seven
targets and nine buoys.

For the second experiment, we have thirty two buoys in a
ring. The corresponding clique complex of the independence
graph can be represented as the intersection of four matroids.
In this experiment, the targets have an equal probability of
detection of P = 0.8 in each buoy’s coverage region and
P = 0 everywhere else. We assume here that there is no sensor
drift during the experiment. Two targets with random initial
location, constrained to be within the buoy array’s detection
area, and constant velocities are present for each trial. The
second experiment consists of two hundred trials with each
trial lasted sixty-four time-steps or until a target moved out of
the array’s detection area.

For each trial, we initialize the target location and velocity
and pass the initial state estimates into the SFO algorithm.
Based on the objective function output for each target, we
sample the probability that each target has a successful de-
tection at the next time step and pass in the updated state
estimates for the detected targets. Over the course of the trial,
we accumulate the objective function values which form a

Fig. 4: Coverage pattern for the nine buoys in a three by three
grid and target locations.
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(a) Interference pattern for the nine buoys in a three by
three grid.

(b) Independence graph for the nine buoys in a three
by three grid.

Fig. 5: Interference regions and independence graph for a nine buoy experiment.

cumulative probability of detection (CPD) score for the two
algorithms.

The results of the second experiment can be found in Fig.
??. Both MatSat and SFO-Greedy have significantly higher
fractional worst-case probability of detection than the lower
bound across all fractions of the eight targets bγMc. Even
when the lower-bound provides a trivial guarantee, bγMc ≥ 3,
both MatSat and SFO-Greedy match the optimal performance.
In fact, the performance of MatSat and SFO-Greedy are
practically indistinguishable from exhaustive search for any
fraction of the targets. Fig. ?? zooms in on Fig. ?? to show the
minute differences between the approximate solutions of the
proposed algorithms and the true optimal. The only differences
are at bγMc < 3, where MatSat and SFO-Greedy have slightly
lower minimum probabilities of detection. While Fig. ?? also
shows that MatSat and SFO-Greedy have equivalent minimum
probabilities of detection, MatSat provides a better theoretical
guarantee than SFO-Greedy. The lower bound is shown by the
red line in Fig. ??. The bound reflects the submodular guaran-
tee of the forward greedy algorithm used in the experimental
code, which is 1

k+1 [16]. Since the clique complex can be
represented as the intersection of four matroids, the guarantee
is 0.2.

VI. CONCLUSION

In this paper, we propose a new optimization algorithm
MatSat to solve a relaxed worst-case subset selection problem
subject to a matroid constraint and derive lower bounds on the
average performance as well as fractional worst-case perfor-
mance. In applying independence graphs to a sensor selection
problem, we demonstrate the utility of submodular function
optimization (SFO) to the problem domain. Specifically for
ping sequence optimization (PSO), SFO allows us go beyond

the standard approach for buoy selection by allowing for
simultaneous pinging. By posing the PSO as a submodular op-
timization problem or as a discrete problem with submodular
structure, we are able to derive near-optimal solutions for com-
binatorial problems. We can select buoys based on target state
that significantly improve the probability of detecting targets
over a standard approach and achieve equivalent performance
to an optimal exhaustive search approach. Moreover, our
approach allows for simultaneous search and track objectives
within the system.
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