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Abstract
Incremental gradient (IG) methods, such as
stochastic gradient descent and its variants are
commonly used for large scale optimization in
machine learning. Despite the sustained effort to
make IG methods more data-efficient, it remains
an open question how to select a training data sub-
set that can theoretically and practically perform
on par with the full dataset. Here we develop
CRAIG, a method to select a weighted subset (or
coreset) of training data that closely estimates the
full gradient by maximizing a submodular func-
tion. We prove that applying IG to this subset is
guaranteed to converge to the (near)optimal so-
lution with the same convergence rate as that of
IG for convex optimization. As a result, CRAIG
achieves a speedup that is inversely proportional
to the size of the subset. To our knowledge, this is
the first rigorous method for data-efficient training
of general machine learning models. Our exten-
sive set of experiments show that CRAIG, while
achieving practically the same solution, speeds up
various IG methods by up to 6x for logistic regres-
sion and 3x for training deep neural networks†.

1. Introduction
Mathematical optimization lies at the core of training large-
scale machine learning systems, and is now widely used over
massive data sets with great practical success, assuming suf-
ficient data resources are available. Achieving this success,
however, also requires large amounts of (often GPU) com-
puting, as well as concomitant financial expenditures and
energy usage (Strubell et al., 2019). Significantly decreasing
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these costs without decreasing the learnt system’s resulting
accuracy is one of the grand challenges of machine learning
and artificial intelligence today (Asi & Duchi, 2019).

Training machine learning models often reduces to optimiz-
ing a regularized empirical risk function. Given a convex
loss l, and a µ-strongly convex regularizer r, one aims to
find model parameter vector w∗ over the parameter space
W that minimizes the loss f over the training data V :

w∗ ∈ arg minw∈Wf(w), f(w) :=
∑
i∈V

fi(w) + r(w),

fi(w) = l(w, (xi, yi)), (1)

where V = {1, . . . , n} is an index set of the training data,
and functions fi : Rd → R are associated with training
examples (xi, yi), where xi ∈ Rd is the feature vector, and
yi is the point i’s label.

Standard Gradient Descent can find the minimizer of this
problem, but requires repeated computations of the full gra-
dient ∇f(w)—sum of the gradients over all training data
points/functions i—and is therefore prohibitive for massive
data sets. This issue is further exacerbated in case of deep
neural networks where gradient computations (backpropa-
gation) are expensive. Incremental Gradient (IG) methods,
such as Stochastic Gradient Descent (SGD) and its acceler-
ated variants, including SGD with momentum (Qian, 1999),
Adagrad (Duchi et al., 2011), Adam (Kingma & Ba, 2014),
SAGA (Defazio et al., 2014), and SVRG (Johnson & Zhang,
2013) iteratively estimate the gradient on random subsets/-
batches of training data. While this provides an unbiased es-
timate of the full gradient, the randomized batches introduce
variance in the gradient estimate (Hofmann et al., 2015), and
therefore stochastic gradient methods are in general slow
to converge (Johnson & Zhang, 2013; Defazio et al., 2014).
The majority of the work speeding up IG methods has thus
primarily focused on reducing the variance of the gradient
estimate (SAGA (Defazio et al., 2014), SVRG (Johnson &
Zhang, 2013), Katysha (Allen-Zhu, 2017)) or more carefully
selecting the gradient stepsize (Adagrad (Duchi et al., 2011),
Adadelta (Zeiler, 2012), Adam (Kingma & Ba, 2014)).

However, the direction that remains largely unexplored is
how to carefully select a small subset S ⊆ V of the full
training data V , so that the model is trained only on the
subset S while still (approximately) converging to the glob-
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ally optimal solution (i.e., the model parameters that would
be obtained if training/optimizing on the full V ). If such
a subset S can be quickly found, then this would directly
lead to a speedup of |V |/|S| (which can be very large if
|S| � |V |) per epoch of IG.

There are four main challenges in finding such a subset S.
First is that a guiding principle for selecting S is unclear.
For example, selecting training points close to the decision
boundary might allow the model to fine tune the decision
boundary, while picking the most diverse set of data points
would allow the model to get a better sense of the training
data distribution. Second is that finding S must be fast, as
otherwise identifying the set S may take longer than the
actual optimization, and so no overall speed-up would be
achieved. Third is that finding a subset S is not enough. One
also has to decide on a gradient stepsize for each data point
in S, as they affect the convergence. And last, while the
method might work well empirically on some data sets, one
also requires theoretical understanding and mathematical
convergence guarantees.

Here we develop Coresets for Accelerating Incremental Gra-
dient descent (CRAIG), for selecting a subset of training
data points to speed up training of large machine learning
models. Our key idea is to select a weighted subset S of
training data V that best approximates the full gradient of
V . We prove that the subset S that minimizes an upper-
bound on the error of estimating the full gradient maximizes
a submodular facility location function. Hence, S can be
efficiently found using a fast greedy algorithm.

We also provide theoretical analysis of CRAIG and prove
its convergence. Most importantly, we show that any incre-
mental gradient method (IG) on S converges in the same
number epochs as the same IG would on the full V , which
means that we obtain a speed-up inversely proportional to
the size of S. In particular, for a µ-strongly convex risk
function and a subset S selected by CRAIG that estimates
the full gradient by an error of at most ε, we prove that IG
on S with diminishing stepsize αk = α/kτ at epoch k (with
0 < τ < 1 and 0 < α), converges to an 2Rε/µ2 neigh-
borhood of the optimal solution at rate O(1/

√
k). Here,

R = min{d0, (rγmaxC + ε)/µ} where d0 is the initial dis-
tance to the optimum, C is an upper-bound on the norm of
the gradients, r = |S|, and γmax is the largest weight for the
elements in the subset obtained by CRAIG. Moreover, we
prove that if in addition to the strong convexity, component
functions have smooth gradients, IG with the same diminish-
ing step size on subset S converges to a 2ε/µ neighborhood
of the optimum solution at rate O(1/kτ ).

The above implies that IG on S converges to the same solu-
tion and in the same number of epochs as IG on the full V .
But because every epoch only uses a subset S of the data,
it requires fewer gradient computations and thus leads to

a |V |/|S| speedup over traditional IG methods, while still
(approximately) converging to the optimal solution. We also
note that CRAIG is complementary to various incremen-
tal gradient (IG) methods (SGD, SAGA, SVRG, Adam),
and such methods can be used on the subset S found by
CRAIG.

We also demonstrate the effectiveness of CRAIG via an
extensive set of experiments using logistic regression (a con-
vex optimization problem) as well as training deep neural
networks (non-convex optimization problems). We show
that CRAIG speeds up incremental gradient methods, in-
cluding SGD, SAGA, and SVRG. In particular, CRAIG
while achieving practically the same loss and accuracy as the
underlying incremental gradient descent methods, speeds
up gradient methods by up to 6x for convex and 3x for
non-convex loss functions.

2. Related Work
Convergence of IG methods has been long studied under
various conditions (Zhi-Quan & Paul, 1994; Mangasari-
any & Solodovy, 1994; Bertsekas, 1996; Solodov, 1998;
Tseng, 1998), however IG’s convergence rate has been char-
acterized only more recently (see (Bertsekas, 2015b) for a
survey). In particular, (Nedić & Bertsekas, 2001) provides
a O(1/

√
k) convergence rate for diminishing stepsizes αk

per epoch k under a strong convexity assumption, and (Gür-
büzbalaban et al., 2015) proves aO(1/kτ ) convergence rate
with diminishing stepsizes αk = Θ(1/kτ ) for τ ∈ (0, 1]
under an additional smoothness assumption for the compo-
nents. While these works provide convergence on the full
dataset, our analysis provides the same convergence rates
on subsets obtained by CRAIG.

Techniques for speeding up SGD, are mostly focused on
variance reduction techniques (Roux et al., 2012; Shalev-
Shwartz & Zhang, 2013; Johnson & Zhang, 2013; Hofmann
et al., 2015; Allen-Zhu et al., 2016), and accelerated gra-
dient methods when the regularization parameter is small
(Frostig et al., 2015; Lin et al., 2015; Xiao & Zhang, 2014).
Very recently, (Hofmann et al., 2015; Allen-Zhu et al., 2016)
exploited neighborhood structure to further reduce the vari-
ance of stochastic gradient descent and improve its running
time. Our CRAIG method and analysis are complementary
to variance reduction and accelerated methods. CRAIG can
be applied to all these methods as well to speed them up.

Coresets are weighted subsets of the data, which guarantee
that models fitting the coreset also provide a good fit for
the original data. Coreset construction methods tradition-
ally perform importance sampling with respect to sensitivity
score, to provide high-probability solutions (Har-Peled &
Mazumdar, 2004; Lucic et al., 2017; Cohen et al., 2017)
for a particular problem, such as k-means and k-median
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clustering (Har-Peled & Mazumdar, 2004), naïve Bayes
and nearest-neighbors (Wei et al., 2015), mixture mod-
els (Lucic et al., 2017), low rank approximation (Cohen
et al., 2017), spectral approximation (Agarwal et al., 2004;
Li et al., 2013), Nystrom methods (Agarwal et al., 2004;
Musco & Musco, 2017), and Bayesian inference (Campbell
& Broderick, 2018). Unlike existing coreset construction
algorithms, our method is not problem specific and can be
applied for training general machine learning models.

3. Coresets for Accelerating Incremental
Gradient Descent (CRAIG)

We proceed as follows: First, we define an objective func-
tion L for selecting an optimal set S of size r that best
approximates the gradient of the full training dataset V of
size n. Then, we show that L can be turned into a submod-
ular function F and thus S can be efficiently found using
a fast greedy algorithm. Crucially, we also show that for
convex loss functions the approximation error between the
estimated and the true gradient can be efficiently minimized
in a way that is independent of the actual optimization proce-
dure. Thus, CRAIG can simply be used as a preprocessing
step before the actual optimization starts.

Incremental gradient methods aim at estimating the full
gradient ∇f(w) over V by iteratively making a step based
on the gradient of every function fi. Our key idea in CRAIG
is that if we can find a small subset S such that the weighted
sum of the gradients of its elements closely approximates
the full gradient over V , we can apply IG only to the set S
(with stepsizes equal to the weight of the elements in S),
and we should still converge to the (approximately) optimal
solution, but much faster.

Specifically, our goal in CRAIG is to find the smallest
subset S ⊆ V and corresponding per-element stepsizes
γj > 0 that approximate the full gradient with an error at
most ε > 0 for all the possible values of the optimization
parameters w ∈ W .*

S∗ =arg minS⊆V,γj≥0 ∀j |S|, s.t.

max
w∈W

‖
∑
i∈V
∇fi(w)−

∑
j∈S

γj∇fj(w)‖ ≤ ε. (2)

Given such an S∗ and associated weights {γ}j , we are
guaranteed that gradient updates on S∗ will be similar to
the gradient updates on V regardless of the value of w.

Unfortunately, directly solving the above optimization prob-
lem is not feasible, due to two problems. Problem 1: Eq. (2)
requires us to calculate the gradient of all the functions fi
*Note that in the worst case we may need |S∗| ≈ |V | to approx-
imate the gradient. However, as we show in experiments, in
practice we find that a small subset is sufficient to accurately
approximate the gradient.

over the entire spaceW , which is too expensive and would
not lead to overall speedup. In other words, it would ap-
pear that solving for S∗ is as difficult as solving Eq. (1), as
it involves calculating

∑
i∈V ∇fi(w) for various w ∈ W .

And Problem 2: even if calculating the normed difference
between the gradients in Eq. (2) would be fast, as we dis-
cuss later finding the optimal subset S∗ in NP-hard. In the
following, we address the above two challenges and discuss
how we can quickly find a near-optimal subset S.

3.1. Upper-bound on the Estimation Error

We first address Problem 1, i.e., how to quickly estimate
the error/discrepancy of the weighted sum of gradients of
functions fj associate with data points j ∈ S, vs the full
gradient, for every w ∈ W .

Let S be a subset of r data points. Furthermore, assume
that there is a mapping ςw : V → S that for every w ∈ W
assigns every data point i ∈ V to one of the elements j
in S, i.e., ςw(i) = j ∈ S. Let Cj = {i ∈ [n]|ς(i) =
j} ⊆ V be the set of data points that are assigned to j ∈ S,
and γj = |Cj | be the number of such data points. Hence,
{Cj}rj=1 form a partition of V . Then, for any arbitrary
(single) w ∈ W we can write∑
i∈V
∇fi(w)=

∑
i∈V

(
∇fi(w)−∇fςw(i)(w)+∇fςw(i)(w)

)
(3)

=
∑
i∈V

(
∇fi(w)−∇fςw(i)(w)

)
+
∑
j∈S

γj∇fj(w). (4)

Subtracting and then taking the norm of the both sides, we
get an upper bound on the error of estimating the full gradi-
ent with the weighted sum of the gradients of the functions
fj forj∈S. I.e.,

‖
∑
i∈V
∇fi(w)−

∑
j∈S

γj∇fj(w)‖ ≤

∑
i∈V
‖∇fi(w)−∇fςw(i)(w)‖, (5)

where the inequality follows from the triangle inequality.
The upper-bound in Eq. (5) is minimized when ςw assigns
every i ∈ V to an element in S with most gradient similarity
at w, or minimum Euclidean distance between the gradi-
ent vectors at w. That is: ςw(i) ∈ arg minj∈S‖∇fi(w) −
∇fj(w)‖. Hence,

min
S⊆V
‖
∑
i∈V
∇fi(w)−

∑
j∈S

γj∇fj(w)‖ ≤

∑
i∈V

min
j∈S
‖∇fi(w)−∇fj(w)‖. (6)

The right hand side of Eq. (6) is minimized when S is the
set of r medoids (exemplars) (Kaufman et al., 1987) for all
the components in the gradient space.



Coresets for Data-efficient Training of Machine Learning Models PAGE 4

So far, we considered upper-bounding the gradient estima-
tion error at a particular w ∈ W . To bound the estimation
error for all w ∈ W , we consider a worst-case approxima-
tion of the estimation error over the entire parameter space
W . Formally, we define a distance metric dij between
gradients of fi and fj as the maximum normed difference
between ∇fi(w) and∇fj(w) over all w ∈ W:

dij , max
w∈W

‖∇fi(w)−∇fj(w)‖. (7)

Thus, by solving the following minimization problem, we
obtain the smallest weighted subset S∗ that approximates
the full gradient by an error of at most ε for all w ∈ W:

S∗=arg minS⊆V |S|, s.t. L(S) ,
∑
i∈V

min
j∈S

dij≤ε. (8)

Note that Eq. (8) requires that the gradient error is bounded
overW . However, we show (Appendix B.1) for several
classes of convex problems, including linear regression,
ridge regression, logistic regression, and regularized support
vector machines (SVMs), the normed gradient difference
between data points can be efficiently boundedly approxi-
mated by (Allen-Zhu et al., 2016; Hofmann et al., 2015):

∀w, i,j ‖∇fi(w)−∇fj(w)‖ ≤ dij ≤
max
w∈W

O(‖w‖) · ‖xi − xj‖ = const. ‖xi − xj‖. (9)

Note when ‖w‖ is bounded for all w ∈ W , i.e.,
maxw∈W O(‖w‖) < ∞, upper-bounds on the Euclidean
distances between the gradients can be pre-computed. This
is crucial, because it means that estimation error of the full
gradient can be efficiently bounded independent of the ac-
tual optimization problem (i.e., point w). Thus, these upper-
bounds can be computed only once as a pre-processing step
before any training takes place, and then used to find the sub-
set S by solving the optimization problem (8). We address
upper-bounding the normed difference between gradients
for deep models in Section 3.4.

3.2. The CRAIG Algorithm

Optimization problem (8) produces a subset S of elements
with their associated weights {γ}j∈S or per-element step-
sizes that closely approximates the full gradient. Here, we
show how to efficiently approximately solve the above opti-
mization problem to find a near-optimal subset S.

The optimization problem (8) is NP-hard as it involves calcu-
lating the value of L(S) for all the 2|V | subsets S ⊆ V . We
show, however, that we can transform it into a submodular
set cover problem, that can be efficiently approximated.

Formally, F is submodular if F (S∪{e})−F (S) ≥ F (T ∪
{e}) − F (T ), for any S ⊆ T ⊆ V and e ∈ V \ T . We
denote the marginal utility of an element e w.r.t. a subset

S as F (e|S) = F (S ∪ {e})− F (S). Function F is called
monotone if F (e|S) ≥ 0 for any e∈V \S and S ⊆ V . The
submodular cover problem is defined as finding the smallest
set S that achieves utility ρ. Precisely,

S∗ = arg minS⊆V |S|, s. t. F (S) ≥ ρ. (10)

Although finding S∗ is NP-hard since it captures such well-
known NP-hard problems such as Minimum Vertex Cover,
for many classes of submodular functions, a simple greedy
algorithm is known to be very effective (Nemhauser et al.,
1978; Wolsey, 1982). The greedy algorithm starts with the
empty set S0 = ∅, and at each iteration i, it chooses an ele-
ment e ∈ V that maximizes F (e|Si−1), i.e., Si = Si−1 ∪
{arg maxe∈V F (e|Si−1)}. Greedy gives us a logarithmic
approximation, i.e. |S| ≤

(
1 + ln(maxe F (e|∅))

)
|S∗|

(Wolsey, 1982). The computational complexity of the
greedy algorithm is O(|V | · |S|). However, its running
time can be reduced to O(|V |) using stochastic algorithms
(Mirzasoleiman et al., 2015a) and further improved using
lazy evaluation (Minoux, 1978), and distributed implemen-
tations (Mirzasoleiman et al., 2015b; 2016). Given a sub-
set S ⊆ V , the facility location function quantifies the
coverage of the whole data set V by the subset S by sum-
ming the similarities between every i ∈ V and its closest
element j ∈ S. Formally, facility location is defined as
Ffl(S) =

∑
i∈V maxj∈S si,j , where si,j is the similarity

between i, j ∈ V . The facility location function has been
used in various summarization applications (Lin et al., 2009;
Lin & Bilmes, 2012). By introducing an auxiliary element
s0 we can turn L(S) in Eq. (8) into a monotone submodular
facility location function,

F (S) = L({s0})− L(S ∪ {s0}), (11)

where L({s0}) is a constant. In words, F measures the
decrease in the estimation error associated with the set S
versus the estimation error associated with just the auxiliary
element. For a suitable choice of s0, maximizing F is
equivalent to minimizing L. Therefore, we apply the greedy
algorithm to approximately solve the following problem to
get the subset S defined in Eq. (8):

S∗ = arg minS⊆V |S|, s.t. F (S) ≥ L({s0})−ε. (12)

At every step, the greedy algorithm selects an element that
reduces the upper bound on the estimation error the most. In
fact, the size of the smallest subset S that estimates the full
gradient by an error of at most ε depends on the structural
properties of the data. Intuitively, as long as the marginal
gains of facility location are considerably large, we need
more elements to improve our estimation of the full gradient.
Having found S, the weight γj of every element j ∈ S is the
number of components that are closest to it in the gradient
space, and are used as stepsize of element j ∈ S during IG.
The pseudocode for CRAIG is outlined in Algorithm 1.
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Algorithm 1 CRAIG (CoResets for Accelerating Incremen-
tal Gradient descent)
Input: Set of component functions fi for i ∈ V = [n]}.
Output: Subset S ⊆ V with corresponding per-element

stepsizes {γ}j∈S .
1: S0 ← ∅, s0 = 0, i = 0.
2: while F (S) < L({s0})− ε do
3: j ∈ arg maxe∈V \Si−1

F (e|Si−1)
4: Si = Si−1 ∪ {j}
5: i = i+ 1
6: end while
7: for j = 1 to |S| do
8: γj =

∑
i∈V I

[
j = arg mins∈Smaxw∈W‖∇fi(w)−

∇fs(w)‖
]

9: end for

Notice that CRAIG creates subset S incrementally one
element at a time, which produces a natural order to the
elements in S. Adding the element with largest marginal
gain j ∈ arg maxe∈V F (e|Si−1) improves our estimation
from the full gradient by an amount bounded by the marginal
gain. At every step i, we have F (Si) ≥ (1−e−i/|S|)F (S∗).
Hence, for a greedily ordered subset S = {s1, · · · , sk}, we
have

‖
∑
i∈V
∇fi(w)−

k∑
j=1

γsj∇fsj (w)‖ ≤ c−(1−e−j/k)L(S∗),

(13)
where c is a constant. Intuitively, the first elements of the
ordering contribute the most to provide a close approxima-
tion of the full gradient and the rest of the elements further
refine the approximation. Hence, the first incremental gradi-
ent updates gets us close to w∗, and the rest of the updates
further refine the solution.

3.3. CRAIG with Limited Budget

In practice, we often have a limited budget in terms of time
or computational resources, and we are interested to find a
near-optimal subset of size r that best approximates the full
gradient. This problem can be formulated as a submodular
maximization problem which is dual to the submodular
cover problem (12):

S∗ ∈ arg maxS⊆V F (S), s.t. |S| ≤ r. (14)

For the above submodular maximization problem, the
greedy algorithm discussed in Section 3.2 provides a (1−
1/e)-approximation to the optimal solution. For a subset S
of size at most r obtained by the greedy algorithm, we can
calculate the value of ε as follows:

ε ≤ F (S)− L({s0}). (15)

We use this formulation in our experiments in Section 5.

3.4. Application of CRAIG to Deep Networks

As discussed, CRAIG selects a subset that closely approx-
imates the full gradient, and hence can be also applied for
speeding up training deep networks. The challenge here
is that we cannot use inequality (9) to bound the normed
difference between gradients for all w ∈ W and find the
subset as a preprocessing step.

However, for deep neural networks, the variation of the gra-
dient norms is mostly captured by the gradient of the loss
w.r.t. the input to the last layer [Section 3.2 of (Katharopou-
los & Fleuret, 2018)]. We show (Appendix B.1) that the
normed gradient difference between data points can be effi-
ciently bounded approximately by

‖∇fi(w)−∇fj(w)‖ ≤ (16)

c1‖Σ′L(z
(L)
i )∇f (L)i (w)− Σ′L(z

(L)
j )∇f (L)j (w)‖+ c2,

where Σ′L(z
(L)
i )∇f (L)i (w) is gradient of the loss w.r.t. the

input to the last layer for data point i, and c1, c2 are con-
stants. The above upper-bound depends on parameter vector
w which changes during the training process. Thus, we
need to use CRAIG to update the subset S after a number
of parameter updates.

The above upper-bound is often only slightly more expen-
sive than calculating the loss. For example, in cases where
we have cross entropy loss with soft-max as the last layer,
the gradient of the loss w.r.t. the i-th input to the soft-max
is simply pi − yi, where pi are logits (dimension p−1 for
p classes) and y is the one-hot encoded label. In this case,
CRAIG does not need any backward pass or extra storage.
Note that, although CRAIG needs an additionalO(|V | · |S|)
complexity (or O(|V |) using stochastic greedy) to find the
subset S at the beginning of every epoch, this complexity
does not involve any (exact) gradient calculations and is neg-
ligible compared to the cost of backpropagations performed
during the epoch. Hence, as we show in the experiments
CRAIG is practical and scalable.

4. Convergence Rate Analysis of CRAIG
The idea of CRAIG is to selects a subset that closely ap-
proximates the full gradient, and hence can be applied to
speed up most IG variants as we show in our experiments.
Here, we briefly introduce the original IG method, and then
prove the convergence rate of IG applied to CRAIG subsets.

4.1. Incremental Gradient Methods (IG)

Incremental gradient (IG) methods are core algorithms for
solving Problem (1) and are widely used and studied. IG
aims at approximating the standard gradient method by
sequentially stepping along the gradient of the component
functions fi in a cyclic order. Starting from an initial point
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w1
0 ∈ Rd, it makes k passes over all the n components. At

every epoch k ≥ 1, it iteratively updates wki−1 based on the
gradient of fi for i = 1, · · · , n using stepsize αk > 0. I.e.,

wki = wki−1 − αk∇fi(wki−1), i = 1, 2, · · · , n, (17)

with the convention thatwk+1
0 = wkn. Note that for a closed

and convex subset W of Rd, the results can be projected
ontoW , and the update rule becomes

wki = PW(wki−1 − αk∇fi(wki−1)), i = 1, 2, · · · , n,
(18)

where PW denotes projection on the setW ⊂ Rd.

IG with diminishing stepsizes converges at rate O(1/
√
k)

for strongly convex sum function (Nedić & Bertsekas, 2001).
If in addition to the strong convexity of the sum function,
every component function fi is smooth, IG with diminish-
ing stepsizes αk = Θ(1/ks), s ∈ (0, 1] converges at rate
O(1/ks) (Gürbüzbalaban et al., 2015).

The convergence rate analysis of IG is valid regardless of
order of processing the elements. However, in practice, the
convergence rate of IG is known to be quite sensitive to the
order of processing the functions (Bertsekas, 2015a; Gur-
buzbalaban et al., 2017). If problem-specific knowledge can
be used to find a favorable order σ (defined as a permutation
{σ1, · · · , σn} of {1, 2, ..., n}), IG can be updated to process
the functions according to this order, i.e.,

wki = wki−1 − αk∇fσi(wki−1), i = 1, 2, · · · , n. (19)

In general a favorable order is not known in advance. A
common approach is sampling the function indices with
replacement from the set {1, 2, · · · , n}, which is called the
Stochastic Gradient Descent (SGD) method.

4.2. Convergence Rate of IG on CRAIG Subsets

Next we analyze the convergence rate of IG applied to the
weighted subset S found by CRAIG. Note that CRAIG
finds S by greedily minimizing (12) (or maximizing (14)).
Therefore, S is a near-optimal solution of problem (2) and
estimates the full gradient by an error of at most ε, i.e.,
maxw∈W ‖

∑
i∈V ∇fi(w)−

∑
j∈S γj∇fj(w)‖ ≤ ε.

Here, we show that (1) applying IG to S converges to a
close neighborhood of the optimal solution and that (2) this
convergence happens at the same rate (same number of
epochs) as IG on the full data. Formally, every step of IG
on the subset becomes

wki = wki−1 − αkγsσi∇fsσi (w
k
i−1), i = 1, 2, · · · , r,

si ∈ S, |S| = r. (20)

Here, σ is a permutation of {1, 2, · · · , r}, and the per-
element stepsize γsi for every function fsi is the weight
of the element si ∈ S and is fixed for all epochs.

4.3. Convergence for Strongly Convex f

We first provide the convergence analysis for the case
where the function f in Problem (1) is strongly convex,
i.e. ∀w,w′ ∈ Rd we have f(w) ≥ f(w′) + 〈∇f(w′), w −
w′〉+ µ

2 ‖w
′ − w‖2.

Theorem 1. Assume that f is strongly convex, and S is
a weighted subset of size r obtained by CRAIG that es-
timates the full gradient by an error of at most ε, i.e.,
maxw∈W ‖

∑
i∈V ∇fi(w)−

∑
j∈S γj∇fj(w)‖ ≤ ε. Then

for the iterates {wk = wk0} generated by applying IG to
S with per-epoch stepsize αk = α/kτ with α > 0 and
τ ∈ [0, 1], we have

(i) if τ = 1, then ‖wk−w∗‖2≤2εR/µ2+αr2γ2maxC
2/kµ,

(ii) if 0 < τ < 1, then ‖wk−w∗‖2≤2εR/µ2, for k →∞

(iii) if τ = 0, then ‖wk − w∗‖2 ≤ (1 − αµ)k+1‖w0 −
w∗‖2 + 2εR/µ2 + αr2γ2maxC

2/µ,

where C is an upper-bound on the norm of the component
function gradients, i.e. maxi∈V supw∈W ‖∇fi(w)‖ ≤ C,
γmax = maxj∈S γj is the largest per-element step size, and
R = min{d0, (rγmaxC + ε)/µ}, where d0 = ‖w0 − w∗‖
is the initial distance to the optimum w∗.

All the proofs can be found in the Appendix. The above
theorem shows that IG on S converges at the same rate
O(1/

√
k) of IG on the entire data set V . However, com-

pared to IG on V , the |V |/|S| speedup of IG on S comes at
the price of getting an extra error term, 2εR/µ2.

4.4. Convergence for Smooth and Strongly Convex f

If in addition to strong convexity of the expected risk, each
component function has a Lipschitz gradient, i.e. ∀w ∈
W, i ∈ [n] we have ‖∇fi(w) − ∇fi(w′)‖ ≤βi‖w − w′‖,
then we get the following results about the iterates gener-
ated by applying IG to the weighted subset S returned by
CRAIG.

Theorem 2. Assume that f is strongly convex and let
fi(w), i = 1, 2, · · · , n be convex and twice continuously
differentiable component functions with Lipschitz gradients
on W . Supposed that S is a weighted subset of size r
obtained by CRAIG that estimates the full gradient by
an error of at most ε, i.e., maxw∈W ‖

∑
i∈V ∇fi(w) −∑

j∈S γj∇fj(w)‖ ≤ ε. Then for the iterates {wk = wk0}
generated by applying IG to S with per-epoch stepsize
αk = α/kτ with α > 0 and τ ∈ [0, 1], we have

(i) if τ = 1, then ‖wk − w∗‖ ≤ 2ε/µ+ αβCrγ2max/kµ,

(ii) if 0 < τ < 1, then ‖wk − w∗‖ ≤ 2ε/µ, for k →∞
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(c) SVRG
Figure 1. Loss residual and error rate of SGD, SVRG, SAGA for Logistic Regression on Covtype data set with 581,012 data points. We
compare CRAIG (10% selected subset) (blue) vs. 10% random subset (green) vs. entire data set (orange). CRAIG gives the average
speedup of 3x for achieving similar loss residual and error rate across the three optimization methods.

(iii) if τ = 0, then ‖wk − w∗‖ ≤ (1− αµ)k‖w0 − w∗‖+
2ε/µ+ αβCrγ2max/µ,

where β =
∑n
i=1 βi is the sum of gradient Lipschitz con-

stants of the component functions.

The above theorem shows that for τ > 0, IG applied to S
converges to a 2ε/µ neighborhood of the optimal solution,
with a rate of O(1/kτ ) which is the same convergence rate
for IG on the entire data set V . As shown in our experi-
ments, in real data sets small weighted subsets constructed
by CRAIG provide a close approximation to the full gradi-
ent. Hence, applying IG to the weighted subsets returned by
CRAIG provides a solution of the same or higher quality
compared to the solution obtained by applying IG to the
whole data set, in a considerably shorter amount of time.

5. Experiments
In our experimental evaluation we wish to address the fol-
lowing questions: (1) How do loss and accuracy of IG
applied to the subsets returned by CRAIG compare to loss
and accuracy of IG applied to the entire data? (2) How small
is the size of the subsets that we can select with CRAIG
and still get a comparable performance to IG applied to the
entire data? And (3) How well does CRAIG scale to large
data sets, and extends to non-convex problems? In our ex-
periments, we report the run-time as the wall-clock time for
subset selection with CRAIG, plus minimizing the loss us-
ing IG or other optimizers with the specified learning rates.
For the classification problems, we separately select subsets
from each class while maintaining the class ratios in the
whole data, and apply IG to the union of the subsets. Note
that the upper bounds on the gradient differences derived in

Appendix B.1 only hold for points with similar labels. Thus,
theoretically we need to select subsets separately. For neu-
ral networks, we observed that separately selecting subsets
from each class helps the performance. We separately tune
each method so that it performs at its best.

5.1. Convex Experiments
In our convex experiments, we apply CRAIG to SGD, as
well as SVRG (Johnson & Zhang, 2013), and SAGA (De-
fazio et al., 2014). We apply L2-regularized logistic re-
gression: fi(x) = ln(1 + exp(−wTxiyi)) + 0.5λwTw to
classify the following two datasets from LIBSVM: (1) cov-
type.binary including 581,012 data points of 54 dimensions,
and (2) Ijcnn1 including 49,990 training and 91,701 test
data points of 22 dimensions. As covtype does not come
with labeled test data, we randomly split the training data
into halves to make the training/test split (training and set
sets are consistent for different methods).

For the convex experiments, we tuned the learning rate for
each method (including the random baseline) by preferring
smaller training loss from a large number of parameter com-
binations for two types of learning scheduling: exponential
decay αk = α0b

k and k-inverse αk = α0(1 + bk)−1 with
parameters α0 and b to adjust. For convergence of IG to
2ε/µ neighborhood of the optimal solution, we require that∑∞

k=0 αk = ∞, and
∑∞
k=0 α

2
k = 0 (Nedić & Bertsekas,

2001). Hence, while the convergence of exponentially de-
caying learning rate is not theoretically guaranteed, it often
worked better in our experiments. Furthermore, following
(Johnson & Zhang, 2013) we set λ to 10−5.

CRAIG effectively minimizes the loss. Figure 1(top)
compares training loss residual of SGD, SVRG, and SAGA
on the 10% CRAIG set (blue), 10% random set (green),
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Figure 2. Normed difference between the full gradient, the gradient
of the subset found by CRAIG (Eq. 2), and the theoretical upper-
bound ε (Eq. 8). The values are normalized by the largest full
gradient norm. The transparent green lines demonstrate various
random subsets, and the opaque green line shows their average.
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Figure 3. Training loss residual for SGD applied to subsets of size
10%, 20%, · · · , 90% found by CRAIG vs. random subsets of the
same size from Ijcnn1. We get 5.6x speedup from applying SGD
to subset of size 30% compared to the entire dataset.

and the full dataset (orange). CRAIG effectively minimizes
the training data loss (blue line) and achieves the same min-
imum as the entire dataset training (orange line) but much
faster. Also notice that training on the random 10% subset
of the data does not effectively minimize the training loss.

CRAIG has a good generalization performance. Fig-
ure 1(bottom) shows the test error rate of models trained
on CRAIG vs. random vs. the full data. Notice that train-
ing on CRAIG subsets achieves the same generalization
performance (test error rate) as training on the full data.

CRAIG achieves significant speedup. Figure 1 also
shows that CRAIG achieves a similar training loss (top) and
test error rate (bottom) as training on the entire set, but much
faster. In particular, we obtain a speedup of 2.75x, 4.5x, 2.5x
from applying IG, SVRG and SAGA on the subsets of size
10% from covtype obtained by CRAIG. Furthermore, Fig-
ure 3 compares the speedup achieved by CRAIG to reach
a similar loss residual as that of SGD for subsets of size
10%, 20%, · · · , 90% of Ijcnn1. We get a 5.6x speedup by
applying SGD to subsets of size 30% obtained by CRAIG.

CRAIG gradient approximation is accurate. Figure 2
demonstrates the norm of the difference between the
weighted gradient of the subset found by CRAIG and the
full gradient compared to the theoretical upper-bound ε spec-
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Figure 4. Test accuracy and training loss of SGD applied to subsets
found by CRAIG vs. random subsets on MNIST with a 2-layer
neural network. CRAIG provides 2x to 3x speedup and a better
generalization performance.

ified in Eq. (8). The gradient difference is calculated by
sampling the full gradient at various points in the parame-
ter space. Gradient differences are then normalized by the
largest norm of the sampled full gradients. The figure also
compares the normed gradient difference between gradi-
ents of several random subsets S where each data point is
weighted by |V |/|S|. Notice that CRAIG’s gradient esti-
mate is more accurate than the gradient estimate obtained
by the same-size random subset of points (which is how
methods like SGD approximate the gradient). This demon-
strates that our gradient approximation in Eq. (8) is reliable
in practice.

5.2. Non-convex Experiments
Our non-convex experiments involve applying CRAIG to
train the following two neural networks: (1) Our smaller
network is a fully-connected hidden layer of 100 nodes
and ten softmax output nodes; sigmoid activation and L2
regularization with λ = 10−4 and mini-batches of size 10
on MNIST dataset of handwritten digits containing 60,000
training and 10,000 test images. (2) Our large neural net-
work is ResNet-20 for CIFAR10 with convolution, average
pooling and dense layers with softmax outputs and L2 reg-
ularization with λ = 10−4. CIFAR 10 includes 50,000
training and 10,000 test images from 10 classes, and we
used mini-batches of size 128. Both MNIST and CIFAR10
data sets are normalized into [0, 1] by division with 255.
In all these experiments, we report average test accuracy
across 10 trials.

CRAIG achieves considerable speedup. Figure 4 shows
training loss and test accuracy for training a 2-layer neu-
ral net on MNIST. For this problem, we used a constant
learning rate of 10−2. Here, we apply CRAIG to select a
subset of 50% of the data at the beginning of every epoch
and train only on the selected subset with the corresponding
per-element stepsizes. Interestingly, in addition to achieving
a speedup of 2x to 3x for training the network, the subsets
selected by CRAIG provide a better generalization perfor-
mance compared to models trained on the entire dataset.
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Figure 5. Test accuracy vs. fraction of data selected during training
of ResNet-20 on CIFAR10. (a) At the beginning of ever epoch,
a new subset of size 1%, 2%, 3%, 4%, 5%, 10%, or 20% is
selected by CRAIG. (b) Every 5 epochs a new subset of similar
size is selected by CRAIG. SGD is then applied to training on the
selected subsets. The x-axis shows the fraction of training data
points that are used by SGD during the training process. Note
that for a given subset size, backpropagation is done on the same
number of data points for CRAIG and random. However, CRAIG
selects a smaller number of distinct data points during the training.
Therefore, CRAIG is data-efficient for training neural networks.

CRAIG is data-efficient for training neural networks.
Figure 5 shows test accuracy vs. the fraction of data points
selected for training ResNet-20 on CIFAR10. We trained
the network for 200 epochs, and used the standard learning
rate schedule for training ResNet-20 on CIFAR10. I.e.,
we start with initial learning rate of 0.1, and exponentially
decay the learning rate by a factor of 0.1 at epochs 100 and
150. To prevent weights from diverging when training with
subsets of all sizes, we used linear learning rate warm-up
for 20 epochs from 0. For optimization we used SGD with
a momentum of 0.9.

Figure 5a shows the test accuracy when at the beginning of
every epoch a subset of size 1%, 2%, 3%, 4%, 5%, 10%, or
20% is chosen at random or by CRAIG from the training
data. The network is trained only on the selected subset
of a given size for that epoch. For every subset size, the
x-axis shows the fraction of training data points that are
used during the entire training process. Figure 5b shows the
test accuracy when a subset of size 1%, 2%, 3%, 4%, 5%,
10%, or 20% is chosen at random or by CRAIG every 5
epochs. The network is trained only on the selected subset
for 5 epochs. Generally, larger subsets or more frequent
updates lead to more data exposure and hence better perfor-
mance. However, since in deep networks the gradients may
change rapidly after a small number of parameter updates
(Defazio & Bottou, 2019), selecting smaller subsets and
more frequent updates result in a larger improvement over
the random baseline. Note that for a given subset size, back-
propagation is done on the same number of data points for
CRAIG and random. However, it can be seen that CRAIG
can identify the data points that are effective for training the
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Figure 6. A subset of images selected by CRAIG from CIFAR10.
Subsets are selected at the (a) beginning of training (epoch 1),
(b) middle of training (epoch 100), and (c) end of training (epoch
200). We notice that during the training, the semantic redundancies
decrease considerably, and coreset images better represent various
types of images (that are more difficult to learn) in every class.

neural network, and hence achieves a superior test accuracy
by training on a smaller fraction of the training data.

Insights from CRAIG subsets. Figure 6 shows a subset
of images selected by CRAIG for training CIFAR10 at the
beginning (6a), middle (6b), and end (6a) of training. Since
gradients are more uniformly distributed at initialization,
subsets contain semantic redundancies at the beginning of
the training (6a). We notice that during the training, seman-
tic redundancies decrease considerably. In particular, as
training proceeds coreset images represent groups of images
that are more difficult to learn, e.g., contain parts of an ob-
ject (6b), or have a different foreground/background color
than the rest of the images in a class (6c).

6. Conclusion
We developed a method, CRAIG, for selecting a subset
(coreset) of data points with their corresponding per-element
stepsizes to speed up iterative gradient (IG) methods. In
particular, we showed that weighted subsets that minimize
the upper-bound on the estimation error of the full gradient,
maximize a submodular facility location function. Hence,
the subset can be found using a fast greedy algorithm. We
proved that IG on subsets S found by CRAIG converges at
the same rate as IG on the entire dataset V , while providing
a |V |/|S| speedup. In our experiments, we showed that
various IG methods, including SGD, SAGA, and SVRG
runs up to 6x faster on convex and up to 3x on non-convex
problems on subsets found by CRAIG while achieving
practically the same training loss and test error.
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A. Convergence Rate Analysis
We firs proof the following Lemma which is an extension of the [(Chung et al., 1954), Lemma 4].
Lemma 3. Let uk ≥ 0 be a sequence of real numbers. Assume there exist k0 such that

uk+1 ≤ (1− c

k
)uk +

e

kp
+

d

kp+1
, ∀k ≥ k0,

where e > 0, d > 0, c > 0 are given real numbers. Then

uk ≤ (dk−1 + e)(c− p+ 1)−1k−p+1 + o(k−p+1) for c > p− 1, p ≥ 1 (21)

uk = O(k−c log k) for c = p− 1, p > 1 (22)

uk = O(k−c) for c < p− 1, p > 1 (23)
(24)

Proof. Let c > p−1 and vk = kp−1uk− d
k(c−p+1) −

e
c−p+1 . Then, using Taylor approximation (1+ 1

k )p = (1+ p
k )+o( 1

k )
we can write

vk+1 = (k + 1)p−1uk+1 −
d

(k + 1)(c− p+ 1)
− e

c− p+ 1
(25)

≤ kp−1(1 +
1

k
)p−1

(
(1− c

k
)uk +

e

kp
+

d

kp+1

)
− d

(k + 1)(c− p+ 1)
− e

c− p+ 1
(26)

= kp−1uk

(
1− c− p+ 1

k
+ o(

1

k
)
)

+
e

k

(
1 +

p− 1

k
+ o(

1

k
)
)

(27)

+
d

k2

(
1 +

p− 1

k
+ o(

1

k
)
)
− d

(k + 1)(c− p+ 1)
− e

c− p+ 1
(28)

=
(
vk +

d

k(c− p+ 1)
+

e

c− p+ 1

)(
1− c− p+ 1

k
+ o(

1

k
)
)

(29)

+
e

k

(
1 +

p− 1

k
+ o(

1

k
)
)

+
d

k2

(
1 +

p− 1

k
+ o(

1

k
)
)

(30)

− d

(k + 1)(c− p+ 1)
− e

c− p+ 1
(31)

= vk

(
1− c− p+ 1

k
+ o(

1

k
)
)

+
d/(c− p+ 1)

k(k + 1)
+
e(p− 1)

k2
+
d(p− 1)

k3
+ o(

1

k2
) (32)

Note that for vk, we have
∞∑
k=0

(
1− c− p+ 1

k
+ o(

1

k
)
)

=∞

and (d/(c− p+ 1)

k(k + 1)
+
e(p− 1)

k2
+
d(p− 1)

k3
+ o(

1

k2
)
)(

1− c− p+ 1

k
+ o(

1

k
)
)−1
→ 0.

Therefore, limk→∞ vk ≤ 0, and we get Eq. 21. For p = 1, we have uk ≤ e
c . Hence, uk converges into the region u ≤ e

c ,
with ratio 1− c

k .

Moreover, for p− 1 ≥ c we have

vk+1 = uk+1(k + 1)c ≤
[
(1− c

k
)uk +

e

kp
+

d

kp+1

]
kc
(

1 +
c

k
+

c2

2k2
+ o(

1

k2
)
)

(33)

=
(

1− c2

2k2
+ o(

1

k2
)
)
vk +

d

kp−c+1

(
1 +O(

1

k
)
)

+
e

kp−c

(
1 +

c

k
+O(

1

k2
)
)

(34)

≤ vk +
e′

kp−c
(35)

for sufficiently large k. Summing over k, we obtain that vk is bounded for p − 1 > c (since the series
∑∞
k=1(1/kα)

converges for α > 1) and vk = O(log k) for p = c+ 1 (since
∑k
i=1(1/i) = O(log k)).
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In addition, based on [(Chung et al., 1954), Lemma 5] for uk ≥ 0, we can write

uk+1 ≤ (1− c

ks
)uk +

e

kp
+

d

kt
, 0 < s < 1, s ≤ p < t. (36)

Then, we have

uk ≤
e

c

1

kp−s
+ o(

1

kp−s
). (37)

A.1. Convergence Rate for Strongly Convex Functions

Proof of Theorem 1

We now provide the convergence rate for strongly convex functions building on the analysis of (Nedić & Bertsekas, 2001).
For non-smooth functions, gradients can be replaced by sub-gradients.

Let wk = wk0 . For every IG update on subset S we have

‖wkj − w∗‖2 = ‖wkj−1 − αkγj∇fj(wkj−1)− w∗‖2 (38)

= ‖wkj−1 − w∗‖2 − 2αkγj∇fj(wkj−1)(wkj−1 − w∗) + α2
k‖γj∇fj(wkj−1)‖2 (39)

≤ ‖wkj−1 − w∗‖2 − 2αk(fj(w
k
j−1)− fi(w∗)) + α2

k‖γi∇fj(wkj−1)‖2. (40)

Adding the above inequalities over elements of S we get

‖wk+1 − w∗‖2 ≤ ‖wk − w∗‖2 − 2αk
∑
j∈S

(fi(w
k
j−1)− fj(w∗)) + α2

k

∑
j∈S
‖γj∇fj(wkj−1)‖2 (41)

= ‖wk − w∗‖2 − 2αk
∑
j∈S

(fj(wk)− fi(w∗))

+ 2αk
∑
j∈S

(fj(w
k
j−1)− fj(wk)) + α2

k

∑
j∈S
‖γj∇fj(wkj−1)‖2 (42)

Using strong convexity we can write

‖wk+1 − w∗‖2 ≤ ‖wk − w∗‖2 − 2αk
(∑
j∈S

γj∇fj(w∗) · (wk − w∗) +
µ

2
‖wk − w∗‖2

)
+ 2αk

∑
j∈S

(fj(w
k
j−1)− fj(wk)) + α2

k

∑
j∈S
‖γj∇fj(wkj−1)‖2 (43)

Using Cauchy–Schwarz inequality, we know

|
∑
j∈S

γj∇fj(w∗) · (wk − w∗)| ≤ ‖
∑
j∈S

γj∇fj(w∗)‖ · ‖wk − w∗‖. (44)

Hence,

−
∑
j∈S

γj∇fj(w∗) · (wk − w∗) ≤ ‖
∑
j∈S

γj∇fj(w∗)‖ · ‖wk − w∗‖. (45)

From reverse triangle inequality, and the facts that S is chosen in a way that ‖
∑
i∈V ∇fi(w∗)−

∑
j∈S γj∇fj(w∗)‖ ≤ ε,

and that
∑
i∈V ∇fi(w∗) = 0 we have ‖

∑
j∈S γj∇fj(w∗)‖ ≤ ‖

∑
i∈V ∇fi(w∗)‖+ ε = ε. Therefore

‖
∑
j∈S

γj∇fj(w∗)‖ · ‖wk − w∗‖ ≤ ε · ‖wk − w∗‖ (46)

For a continuously differentiable function, the following condition is implied by strong convexity condition

‖wk − w∗‖ ≤
1

µ
‖
∑
j∈S

γj∇fj(wk)‖. (47)
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Assuming gradients have a bounded norm maxx∈X ,
j∈V
‖∇fj(w)‖ ≤ C, and the fact that

∑
j∈S γj = n we can write

‖
∑
j∈S

γj∇fj(wk)‖ ≤ n · C. (48)

Thus for initial distance ‖w0 − w∗‖ = d0, we have

‖wk − w∗‖ ≤ min(n · C, d0) = R (49)

Putting Eq. 45 to Eq. 49 together we get

‖wk+1 − w∗‖2 ≤ (1− αkµ)‖wk − w∗‖2 + 2αkεR/µ

+ 2αk
∑
j∈S

(fj(wj−1,k)− fj(wk)) + α2
krγ

2
maxC

2. (50)

Now, from convexity of every fj for j ∈ S we have that

fj(wk)− fj(wkj−1) ≤ ‖γj∇fj(wk)‖ · ‖wkj−1 − wk‖. (51)

In addition, incremental updates gives us

‖wkj−1 − wk‖ ≤ αk
j−1∑
i=1

‖γi∇fi(wki−1)‖ ≤ αk(j − 1)γmaxC. (52)

Therefore, we get

2αk
∑
j∈S

(fj(wk)− fj(wkj−1)) + α2
krγ

2
maxC

2

≤ 2αk

r∑
i=1

γmaxC · αk(j − 1)γmaxC + α2
krγ

2
maxC

2 (53)

= α2
kr

2γ2maxC
2 (54)

Hence,
‖wk+1 − w∗‖2 ≤ (1− αkµ)‖wk − w∗‖2 + 2αkεR/µ+ α2

kr
2γ2maxC

2. (55)

where γmax is the size of the largest cluster, and C is the upperbound on the gradients.

For 0 < τ ≤ 1, the theorem follows by applying Lemma 3 to Eq. 55, with c = αµ, e = 2αεR/µ, and d = α2r2γ2maxC
2.

For τ = 0, where we have a constant step size αk = α ≤ 1
µ , we get

‖wk+1 − w∗‖2 ≤ (1−αµ)k+1‖w0 − w∗‖2

+ 2αεR

k∑
j=0

(1− αµ)j/µ+ α2r2γ2maxC
2

k∑
j=0

(1− αµ)j (56)

Since
∑k
j=0(1− αµ)j ≤ 1

αµ , we get

‖wk+1 − w∗‖2 ≤ (1− αµ)k+1‖w0 − w∗‖2 + 2αεR/(αµ2) + α2r2γ2maxC
2/(αµ), (57)

and therefore,
‖wk+1 − w∗‖2 ≤ (1− αµ)k+1‖wk − w∗‖2 + 2εR/µ2 + αr2γ2maxC

2/µ. (58)
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A.2. Convergence Rate for Strongly Convex and Smooth Component Functions

Proof of Theorem 2

IG updates for cycle k on subset S can be written as

wk+1 = wk − αk(
∑
j∈S

γj∇fj(wk)− ek) (59)

ek =
∑
j∈S

γi(∇fj(wk)−∇fj(wkj−1)) (60)

Building on the analysis of (Gürbüzbalaban et al., 2015), for convex and twice continuously differentiable function, we can
write ∑

j∈S
γj∇fj(wk)−

∑
j∈S

γj∇fj(w∗) = Ark(wk − w∗) (61)

where Ark =
∫ 1

0
∇2f(w∗ + τ(wk − w∗))dτ is average of the Hessian matrices corresponding to the r (weighted) elements

of S on the interval [wk, w∗].

From Eq. 61 we have∑
i∈V

(∇fi(wk)−∇fi(w∗))−
∑
j∈S

γj(∇fj(wk)−∇fj(w∗)) = Ak(wk − w∗)−Ark(wk − w∗), (62)

where Ak is average of the Hessian matrices corresponding to all the n component functions on the interval [wk, w∗]. Taking
norm of both sides and noting that

∑
i∈V fi(w∗) = 0 and hence ‖

∑
j∈S γjfj(w∗)‖ ≤ ε, we get

‖(Ak −Ark)(wk − w∗)‖ = ‖
(∑
i∈V
∇fi(wk)−

∑
j∈S

γj∇fj(wk)
)

+
∑
j∈S

γjfj(w∗)‖ ≤ 2ε, (63)

where ε is the estimation error of the full gradient by the weighted gradients of the elements of the subset S, and we used
‖
∑
i∈V ∇fi(wk)−

∑
j∈S γj∇fj(wk)‖ ≤ ε.

Substituting Eq. 61 into Eq. 59 we obtain

wk+1 − w∗ = (I − αkArk)(wk − w∗) + αkek (64)

Taking norms of both sides, we get

‖wk+1 − w∗‖ ≤ ‖(I − αkArk)(wk − w∗‖) + αk‖ek‖ (65)

Now, we have

‖(I − αkArk)(wk − w∗)‖ = ‖I(wk − w∗)− αkArk(wk − w∗)‖ (66)
= ‖I(wk − w∗)− αk(Ark −Ak)(wk − w∗)− αkAk(wk − w∗)‖ (67)
≤ ‖(I − αkAk)(wk − w∗)‖+ αk‖(Ak −Ark)(wk − w∗)‖ (68)
≤ ‖(I − αkAk)(wk − w∗)‖+ 2αkε (69)

Substituting into Eq. 65, we obtain

‖wk+1 − w∗‖ ≤ ‖I − αkAk‖ · ‖wk − w∗‖+ 2αkε+ αk‖ek‖ (70)

From strong convexity of
∑
i∈V fi(w), and gradient smoothness of each component fi(w) we have

µIn �
∑
i∈V
∇2fi(w), Ak � βIn, x ∈ X , (71)
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where β =
∑
i∈V βi In addition, from the gradient smoothness of the components we can write

‖ek‖ ≤
∑
j∈S

γjβj‖wk − wkj ‖ (72)

≤
∑
j∈S

γjβj

j−1∑
i=1

‖wki−1 − wki ‖ (73)

≤
∑
j∈S

γjβjαk

j−1∑
i=1

‖γi∇fi(wki )‖ (74)

≤ αkβCrγ2max, (75)

where in the last line we used |S| = r. Therefore,

‖wk+1 − w∗‖ ≤ max(‖1− αkµ‖, ‖1− αkβ‖)‖wk − w∗‖+ 2αkε+ α2
kβCrγ

2
max (76)

≤ (1− αkµ)‖wk − w∗‖+ 2αkε+ α2
kβCrγ

2
max if αkβ ≤ 1. (77)

For 0 < τ ≤ 1, the theorem follows by applying Lemma 3 to Eq. 76 with c = αµ, e = 2αε, d = α2βCrγ2max. For τ = 0,
where we have a constant step size αk = α ≤ 1

β , we get

‖wk+1 − w∗‖ ≤ (1− αµ)k+1‖wk − w∗‖+ 2αε

k∑
i=0

(1− αµ)i + α2
k∑
i=0

(1− αµ)iβCrγ2max (78)

≤ (1− αµ)k+1‖wk − w∗‖+ 2ε/µ+ αβCrγ2max/µ, (79)

≤ (1− αµ)k+1‖wk − w∗‖+ 2ε/µ+ Crγ2max/µ, (80)

where the inequality in Eq. 79 follows since
∑k
i=0(1− αµ)i ≤ 1

αµ .

B. Norm of the Difference Between Gradients
B.1. Convex Loss Functions

For ridge regression fi(w) = 1
2 (〈xi, w〉 − yi)2 + λ

2 ‖w‖
2, we have ∇fi(w) = xi(〈xi, w〉 − yi) + λw. Therefore,

‖∇fi(w)−∇fj(w)‖ = (‖xi − xj‖.‖w‖+ ‖yi − yj‖)‖xj‖ (81)

For ‖xi‖ ≤ 1, and |yi − yj | ≈ 0 we get

‖∇fi(w)−∇fj(w)‖ ≤ ‖xi − xj‖O(‖w‖) (82)

For reguralized logistic regression with y ∈ {−1, 1}, we have ∇fi(w) = yi/(1 + eyi〈xi,w〉). For yi = yj we get

‖∇fi(w)−∇fj(w)‖ =
e‖xi−xj‖.‖w‖ − 1

1 + e−〈xi,x〉
‖xj‖. (83)

For ‖xi‖ ≤ 1, using Taylor approximation ex ≤ 1 + x, and noting that 1
1+e−〈xi,w〉

≤ 1 we get

‖∇fi(w)−∇fj(w)‖ ≤ ‖xi − xj‖.‖w‖
1 + e−〈xi,w〉

‖xj‖ ≤ ‖xi − xj‖O(‖w‖). (84)

For classification, we require yi = yj , hence we can select subsets from each class and then merge the results. On the other
hand, in ridge regression we also need |yi− yj | to be small. Similar results can be deduced for other loss functions including
square loss, smoothed hinge loss, etc.

Assuming ‖w‖ is bounded for all w ∈ W , upper-bounds on the euclidean distances between the gradients can be pre-
computed.
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B.2. Neural Networks

Formally, consider an L-layer perceptron, where w(l) ∈ RMl×Ml−1 is the weight matrix for layer l with Ml hidden units,
and σ(l)(.) be a Lipschitz continuous activation function. Then, let

x
(0)
i = xi, (85)

z
(l)
i = w(l)x

(l−1)
i , (86)

x
(l)
i = σ(l)(z

(l)
i ). (87)

With

Σ′l(z
(l)
i ) = diag

(
σ′(l)(z

(l)
i,1), · · ·σ′(l)(z(l)i,Ml

)
)
, (88)

∆
(l)
i = Σ′l(z

(l)
i )wTl+1 · · ·Σ′l(z

(L−1)
i )wTL , (89)

we have

‖∇fi(w)−∇fj(w)‖

=‖
(
∆

(l)
i Σ′L(z

(L)
i )∇f (L)i (w)

)(
x
(l−1)
i

)T − (∆(l)
j Σ′L(z

(L)
j )∇f (L)j (w)

)(
x
(l−1)
j

)T ‖ (90)

≤‖∆(l)
i ‖ · ‖x

(l−1)
i ‖ · ‖Σ′L(z

(L)
i )∇f (L)i (w)− Σ′L(z

(L)
j )∇f (L)j (w)‖

+ ‖Σ′L(z
(L)
j )∇f (L)i (w)‖ · ‖∆(l)

i

(
x
(l−1)
i

)T −∆
(l)
j

(
x
(l−1)
j

)T ‖ (91)

≤‖∆(l)
i ‖ · ‖x

(l−1)
i ‖ · ‖Σ′L(z

(L)
i )∇f (L)i (w)− Σ′L(z

(L)
j )∇f (L)j (w)‖

+ ‖Σ′L(z
(L)
j )∇f (L)i (w)‖ ·

(
‖∆(l)

i ‖ · ‖x
(l−1)
i ‖+ ‖∆(l)

j ‖ · ‖x
(l−1)
j ‖

)
(92)

≤max
l,i

(
‖∆(l)

i ‖ · ‖x
(l−1)
i ‖

)
︸ ︷︷ ︸

c1

·‖Σ′L(z
(L)
i )∇f (L)i (w)− Σ′L(z

(L)
j )∇f (L)j (w)‖

+ ‖Σ′L(z
(L)
i )∇f (L)i (w)‖ ·max

l,i,j

(
‖∆(l)

i ‖ · ‖x
(l−1)
i ‖+ ‖∆(l)

j ‖ · ‖x
(l−1)
j ‖

)
︸ ︷︷ ︸

c2

(93)

Various weight initialization (Glorot & Bengio, 2010) and activation normalization techniques (Ioffe & Szegedy, 2015; Ba
et al., 2016) uniformise the activations across samples. As a result, the variation of the gradient norm is mostly captured
by the gradient of the loss function with respect to the pre-activation outputs of the last layer of our neural network
(Katharopoulos & Fleuret, 2018). Assuming ‖Σ′L(z

(L)
i )∇f (L)i (w)‖ is bounded, we get

‖∇fi(w)−∇fj(w)‖ ≤ c1‖Σ′L(z
(L)
i )∇f (L)i (w)− Σ′L(z

(L)
j )∇f (L)j (w)‖+ c2, (94)

where c1, c2 are constants. The above analysis holds for any affine operation followed by a slope-bounded non-linearity
(|σ′(w)| ≤ K).


