
Consensus ranking under the exponential model∗

Marina Meilă

Department of Statistics
University of Washington

Seattle, WA 98195

Kapil Phadnis Arthur Patterson

University of Washington
Seattle, WA 98195

Jeff Bilmes

Department of Electrical Engineering
University of Washington

Seattle, WA 98195

Abstract

We analyze the generalized Mallows model,
a popular exponential model over rankings.
Estimating the central (or consensus) rank-
ing from data is NP-hard. We obtain the fol-
lowing new results: (1) We show that search
methods can estimate both the central rank-
ing π0 and the model parameters θ exactly.
The search is n! in the worst case, but is
tractable when the true distribution is con-
centrated around its mode; (2) We show that
the generalized Mallows model is jointly ex-
ponential in (π0, θ), and introduce the con-
jugate prior for this model class; (3) The
sufficient statistics are the pairwise marginal
probabilities that item i is preferred to item
j. Preliminary experiments confirm the the-
oretical predictions and compare the new al-
gorithm and existing heuristics.

1 Introduction

We are given a set of N rankings, or permutations1

on n objects. These rankings might represent individ-
ual preferences of a panel of N judges, each presented
with the same set of n candidates. Alternatively, they
may represent the ranking votes of a population of N
voters. The problem of rank aggregation, or of finding
a consensus ranking, is to find a single ranking π0 that
best “agrees” with all the N rankings. This process
can also be seen as a voting rule, where the N voters’
preferences are aggregated in an election to produce
a consensus order over the candidates, the top ranked
being the winner.

∗ This material is based upon work supported by the
National Science Foundation under grant IIS-0535100 and
by an ONR MURI grant N000140510388.

1We use permutation and ranking interchangeably.

Various measures of “agreement” have been proposed
(for a good overview, see [Critchlow, 1985]). Of
these, Kendall’s metric [Fligner and Verducci, 1986]
has been the measure of choice in many re-
cent applications centered on the analysis of
ranked data [Ailon et al., 2005, Cohen et al., 1999,
Lebanon and Lafferty, 2002]. The Kendall distance is
defined as:

dK(π, π0) =
∑

l≺πj

1[j≺π0
l] (1)

In the above, π, π0 represent permutations and l ≺π

j (l ≺π0
j) mean that l precedes j (i.e is preferred to j)

in permutation π (π0). Hence dK is the total number
of pairwise disagreements between π and π0.

This distance was further generalized to a family
of parametrized distances dθ(π, π0) depending on a
parameter vector θ by [Fligner and Verducci, 1986].
Based on these distances, defining probabilistic models
of the form P (π) ∝ e−dθ(π,π0) is immediate. Estimat-
ing π0 by e.g Maximum Likelihood (ML) is equivalent
to finding the consensus ranking. In fact, various vot-
ing rules have been studied in the context of statis-
tical estimation [Conitzer and Sandholm, 2005]. Such
estimation problems for generalizations of the Kendall
distance are the focus of the present paper.

2 Background: Generalized Mallows

models

This section follows the excellent paper of
[Fligner and Verducci, 1986] which should be con-
sulted for more details. Let π denote a permutation
over the set [n] = {1, 2, 3 . . . n}, where π(l) is the rank
of element l in π and π−1(j) is the element at rank
j. One can uniquely determine any π by the n − 1
integers V1(π), V2(π), . . . Vn−1(π) defined as

Vj(π) =
∑

l>j

1[l≺πj] (2)

In other words, Vj is the number of elements in j+1 : n
which are ranked before j by π. It follows from the
above that Vj takes values in {0, . . . n − j}. We note
that while the values π(l) are dependent, the values
Vj may be chosen independently in specifying a π. In
[Feller, 1968] it is moreover shown that the numbers
Vj are uniformly distributed if π is sampled uniformly.

We say that a distance between permutations d(π, π0)
is right-invariant if d(ππ, π0π) = d(π, π0) for any per-
mutation π, where ππ(l) = π(π(l)). Requiring that a
distance is right invariant means that we want it to be
indifferent to the relabeling of the n objects, which is
a standard assumption. For any right-invariant d, we
have d(π, π0) = d(ππ−1

0 , id) ≡ D(ππ−1
0) and therefore

the distance is completely determined by the function

D(π)
def
= d(π, id) where id denotes the identity per-

mutation id = (1, 2, . . . n).

2.1 Generalized Kendall distance

From (1) and (2) it is easy to see that the Kendall dis-

tance has a simple expression DK(π) =
∑n−1

j=1 Vj(π).
Therefore, [Fligner and Verducci, 1986] proposed the
parametrized generalization of the Kendall distance
defined by

Dθ(π) =

n−1
∑

j=1

θjVj(π), θj ≥ 0 (3)

where θ = (θ1:n−1) is a parameter vector. The Kendall
distance is a metric [Mallows, 1957]. The generaliza-
tion (3) may be asymmetric unless θj is constant for
all j. Therefore, dθ is not in general a metric.

Dθ is a versatile and convenient measure of divergence
between rankings. By choosing the θ parameters to e.g
decrease with j we can emphasize the greater impor-
tance of ranking the first items in π0 correctly relative
to the correct ranking of items with low ranks in π0.
Variations of this model where the “emphasized ranks”
j can be selected at will are also possible.

2.2 Generalized Mallows models

The following family of exponential models based on
the divergence (3) is called the generalized Mallows
model [Fligner and Verducci, 1986]

Pθ,π0
(π) =

e−dθ(π,π0)

ψ(θ)
=

e−Dθ(ππ−1

0
)

ψ(θ)
(4)

In the above, ψ(θ) is a normalization constant
that does not depend on π0. It was shown in
[Fligner and Verducci, 1986] that the model (4) fac-
tors into a product of independent univariate expo-

nential models, one for each Vj and that

ψ(θ) =

n−1
∏

j=1

ψj(θj) =

n−1
∏

j=1

1 − e−(n−j+1)θj

1 − e−θj
(5)

P [Vj(ππ
−1
0) = r] =

e−θjr

ψj(θj)
(6)

The above models are well defined for any real val-
ues of the parameters θ. However, we are interested
only in the values θj ≥ 0, for which the probability
distribution has a maximum at V ≡ 0. This case cor-
responds to a distribution over orderings where all the
high probability instances are small perturbations of
the central permutation. For θ ≡ 0, Pθ ≡ P0 is the
uniform distribution. For θ1 = θ2 = . . . = θn−1 (4) is
the Mallows model [Mallows, 1957]. The size of the θ
parameters controls the concentration of the distribu-
tion around its mode π0; smaller values make the dis-
tribution closer to uniform, while larger values make
it more concentrated.

3 The ML estimation problem

3.1 Parameter estimation.

Assume an independent sample π1:N of sizeN has been
obtained from model (4). Then the data log-likelihood
can be written as

l(θ, π0) = lnP (π1:N ; θ, π0) (7)

= −N

n−1
∑

j=1

[

θj

∑N
i=1 Vj(πiπ

−1
0)

N
− lnψj(θj)

]

(8)

= −N

n−1
∑

j=1

[

θj V̄j − lnψj(θj)
]

(9)

In the above V̄ is the sample expectation of Vj(ππ
−1
0).

It is easy to see that for any fixed π0, the model (4)
is an exponential family [DeGroot, 1975] with param-
eters θ. Moreover, because the random variables Vj
are independent, each Vj is distributed according to
an exponential model with one parameter θj . This is
reflected in equation (9) where the log-likelihood l de-
composes into a sum of terms, each depending on a
single θj .

Maximizing the log-likelihood to estimate θ when π0 is
known is therefore immediate. It amounts to solving
the implicit equation in one variable obtained by tak-
ing the partial derivative w.r.t. θj in equation (9). As
in [Fligner and Verducci, 1986] this equation is rewrit-
ten

V̄j =
1

eθj − 1
−

n− j + 1

e(n−j+1)θj − 1
, j = 1 : n− 1 (10)

Note that l(θ, π0) is log-concave in θ. Hence equa-
tion (10) has a unique solution for any j and any
V̄j ∈ [0, n − j] (see e.g [Fligner and Verducci, 1986]).
This solution has in general no closed form expres-
sion, but can be obtained numerically by standard
iterative algorithms for convex/concave optimization
[Bertsekas, 1999].

3.2 The centroid estimation problem

In the following we study the combinatorial problem of
estimating the unknown mode π0. Before addressing
this, however, we introduce a summary statistic that
will prove pivotal to our findings. This is the matrix
Q(π1:N) defined as

Qjl(π1:N) =
1

N

N
∑

i=1

1[j≺πi
l] for j, l = 1 : n (11)

In other words, Qjl(π1:N) is the probability that j pre-
cedes l in the sample. In the rest of the paper, when
no confusion is possible, we will denote Q(π1:N) simply
by Q. Also, Q(π) denotes the Q matrix corresponding
to a single permutation π. The elements of Q(π) are
{0, 1} valued while the elements of Q ≡ Q(π1:N) are
rational numbers for any finite N .

One of the most effective mode estimation procedures
is the FV heuristic [Fligner and Verducci, 1988] and
can be described in terms of Q. Let q̄l =

∑n
j=1 Qjl.

Note that q̄l is one less than the average rank of l
in the data. Let π̄0 denote the permutation given
by sorting the q̄l values in increasing order. In
[Fligner and Verducci, 1988] it is argued that this per-
mutation is an unbiased estimator of π0.

The FV heuristic starts with this permutation, plus
the set of all its neighbors at dK = 1; for each of these
candidates, the parameters θ are estimated and the
data likelihood computed. The most likely π0 of the
set is then chosen.

For θ1 = θ2 = . . . = θn−1 ≥ 0 (the Mallows model)
the optimal π0 does not depend on θ and the problem
becomes one of finding

π0 ∈ argmin
π′

N
∑

i=1

dK(πi, π
′) (12)

This is precisely the consensus ranking prob-
lem. It is known that this problem is NP-hard
[Bartholdi et al., 1989], and solving it approximately
has been addressed in the literature. The approxima-
tion algorithm that guarantees best theoretical bounds
is that of [Ailon et al., 2005]; this is a randomized al-
gorithm that achieves a factor 11/7 approximation in
minimizing the r.h.s of (12).

In [Cohen et al., 1999] a greedy heuristic (the CSS
greedy algorithm) based on graph operations is intro-
duced and tested. The heuristic works under slightly
more general conditions, as it assumes that not all
of the n items are ranked under all permutations πi.
A good discussion of the sources of difficulty for this
problem is also given. This greedy heuristic achieves
a factor 2 approximation. We will return to the CSS
heuristic in sections 7 and 8.

Interestingly enough, none of the above tie the con-
centration of the distribution to the hardness of the
problem (recent work that explores the effect of a
form of concentration includes [Conitzer et al., 2006,
Davenport and Kalagnanam, 2004]). Intuitively, how-
ever, the problem should not be difficult if Pθ,π0

is
concentrated around π0. It is also intuitive that if the
distribution is uniform, then any permutation will be
equally qualified to be the mode. The next section
exploits exactly this observation.

4 Exact ML estimation for π0

4.1 Estimation of π0 for θ known.

Maximizing the log-likelihood (9) w.r.t π0 is the same

as minimizing
∑n−1

j=1 θj V̄j . The following key obser-
vation allows us to do so. Let us denote for sim-
plicity Ṽj(π) = Vj(ππ

−1
0). It can be verified that

if π−1
0 (1) = r, then Ṽ1(π) is the number of elements

which come before r in π. V̄1, the expectation of Ṽ1 un-
der the sampling distribution, is the expected number
of elements before r. Therefore we have:

V̄1 =
∑

j 6=r

Qjr whenever π−1
0 (1) = r (13)

Hence, to estimate the first element of π0, we can com-
pute all column sums of Q and then choose π−1

0 (1) ∈

argmin
r

∑

l6=r Qlr.

This idea can be generalized by induction to all sub-
sequent j’s. Assume π−1

0 = r1 fixed and denote by
π|−r1 the permutation over n − 1 elements resulting
from π if r1 was removed. Again, a simple verification
shows that Ṽ2(π) represents the number of items that
precede π−1

0 (2) in π|−r1 . By averaging, it follows that

V̄2 =
∑

l6=r1,r2

Qlr2 when π−1
0 (1 : 2) = (r1, r2). (14)

By induction, we obtain

V̄j =
∑

l6=r1,r2,...rj

Qlrj
when π−1

0 (1 : j) = (r1, r2, . . . , rj).

(15)

Therefore, we have in Q the information necessary
to find the π0 maximizing the likelihood and that

an exhaustive search over all the possible permuta-
tions can obtain it. One can represent this as a
search tree, whose nodes represent partial orderings
ρ = (r1, . . . rj). Denote by |ρ| the length of the se-
quence ρ. A node ρ with |ρ| = j has n − j children,
represented by the sequences ρ′ = ρ|rj+1 where the
symbol | stands for concatenation of sequences and
rj+1 ranges in [n] \ ρ the set complement of ρ in [n].
Any path of length n through the search tree start-
ing from the root represents a permutation. A node
(r1, . . . rj) at level j < n can be thought of as the set
of all permutations that start with r1, . . . , rj .

We define the variables of a search algorithm. First,

Vj(r1, r2, . . . rj) =
∑

l6∈{r1,r2,...rj}

Qlrj
. (16)

The cost at node ρ = (r1, . . . rj) is given by

C(r1, . . . rj) =

j
∑

l=1

θlVl(r1, . . . rl) (17)

This cost can be computed recursively on the tree by

C(r1, . . . rj) = C(r1, . . . rj−1) + θjVj(r1, . . . rj) (18)

The tree nodes can be expanded according to any
standard search procedure, such as A∗. To direct the
search, one also needs a lower bound A(r1, . . . rj) on
the cost to go from the current partial solution. We
will describe possible bounds in the next section. The
sum L(ρ) = C(ρ) +A(ρ) represents a lower bound for
any permutation in the set prefixed by ρ. In such a
tree, search can finish with the optimal solution be-
fore the whole tree is expanded. Table 1 provides an
A∗ Best-First (BF) search algorithm.

4.2 Simultaneous estimation of π0 and θ.

Algorithm SearchPi can immediately be extended
to the more interesting case when both the centroid
π0 and the parameters θ are unknown. Recall, for
any fixed π0 the model (4) is an exponential family
model and thus the parameter estimates depend only
on the sufficient statistics V̄1:n−1. Moreover, the esti-
mate θML

j depends only on V̄j . Hence, any time a node

ρ in the search tree is created, θML
|ρ| can be readily com-

puted at the node by solving (10) with V̄j = V|ρ|(ρ).

As mentioned before, this equation does not generally
have a closed form solution. However, the values θ
can be tabulated as a function of V̄ . The value of
θML
j in (10) depends only on V̄j and n− j. Therefore,

the curve V̄n−j(θ), and consequently its inverse which
we denote tn−j(V̄) depend only on n − j and not on
n. This set of curves, one for each value of n− j can

Table 1: The SearchPi algorithm with an admissi-
ble heuristic A. Node ρ stores: ρ = r1, . . . , rj , j =
|ρ|, Vj(ρ), θj , C(ρ), L(ρ); S is the priority queue holding
the nodes to be expanded.

Algorithm SearchPi

Initialize

S = {ρ∅}, ρ∅ =the empty sequence, j =
0, C(ρ∅) = V (ρ∅) = L(ρ∅) = 0

Repeat

remove ρ ∈ argmin
ρ∈S

L(ρ) from S

if |ρ| = n (Return)

Output ρ, L(ρ) = C(ρ) and Stop.

else (Expand ρ)

for rj+1 ∈ [n] \ ρ

create node ρ′ = ρ|rj+1

Vj+1(ρ
′) = Vj(r1:j−1, rj+1) − Qrjrj+1

compute V min = min
rj+1∈[n]\ρ

Vj+1(ρ|rj+1)

calculate A(ρ)

for rj+1 ∈ [n] \ ρ

θj+1 = tn−j−1(Vj+1(ρ
′))

C(ρ′) = C(ρ) + θj+1Vj+1(ρ
′)

L(ρ′) = C(ρ′) + A(ρ)
store node (ρ′, j + 1, Vj+1, θj+1, C(ρ′),
L(ρ′)) in S

be computed off-line once and then used for any data
with n up to a preset maximum value.

5 Computational aspects

5.1 Admissible heuristics

We now describe possible functions A(ρ) to be used in
place of the cost to go. Such a function needs to satisfy
two conditions: to be easily computable, and to lower
bound the true cost to go. The simplest heuristic is
evidently A(ρ) = 0.

Admissible heuristic for V with known θ. If the
parameters θ are known, then we only need to find
lower bounds on Vj′ for j′ > j. When node ρ is ex-
panded, after computing Vj+1 for all children, we find
the minimum over these values as

V min = min
r∈[n]\ρ

Vj+1(ρ|r). (19)

For j + 1 < j′ < n − 1, the best Vj′ on the current
branch are column sums of sub-matrices of Q. Letting
(rj+1, rj+2, . . . , rj′) be any length j′ − j continuation,

we get:

Vj′ (ρ|(rj+1, . . . , rj′))

=
∑

i∈[n]\ρ

Qirj′
−

∑

i∈{rj+1...rj′}

Qirj′

≥ max[V min− (j′ − j)Qmax, 0] = aj′(ρ)

where Qmax = maxjlQjl is computed off line. Then

A can be computed as A(ρ) =
∑n−1

j′=j+1 θj′aj′(ρ).

Admissible heuristic for V with constant θ. For
the special case of consensus ranking, when θj ≡ 1, an
even better heuristic can be used. Sort the off-diagonal
values ofQlr in increasing order, denoting the resulting
sequence by

q(1) ≤ q(2) ≤ . . . ≤ q(n(n−1)/2) (20)

The cost to go in consensus ranking is independent of θ
and equal to Vj+1(ρ

′
j+1)+Vj+2(ρ

′
j+2)+ . . . Vn−1(ρ

′
n−1)

on some (unknown) path from the current node to the
bottom of the tree. Since each Vj is the sum of n− j
off-diagonal Qlr’s, this cost to go is equal to the sum of
(n−j−1)(n−j−1+1)/2 distinct off-diagonal elements

of Q. Hence A(ρ) =
∑(n−j−1)(n−j)/2
l=1 q(l) is always lower

bounding the cost to go. This heuristic depends only
on the level j and can be entirely computed before the
search.

Admissible heuristics for unknown θ. If the pa-
rameters θj are estimated simultaneously with the cen-
tral permutation π0, then lower bounding the cost to
go requires us to find lower bounds on the parameters
θj′ , with j′ > j = |ρ| the current level.

Any non-zero lower bound on θj′ can then be combined
with the lower bounds on Vj′ described above pro-
duce an admissible A. The derivation of possible lower
bounds for the parameters is in [Meilă et al., 2007]. In
this case too, the bounds will be computed off-line and
will depend only on the tree level j.

5.2 Number of node expansions

Let us further analyze the algorithm SearchPi from
a computational point of view. BF algorithms with
admissible heuristics are guaranteed to find the opti-
mal solution given enough time. The stopping condi-
tion is met when the most promising node is a terminal
node. This condition can be met before all nodes in the
search tree are expanded. Hence, an important perfor-
mance parameter for a BF algorithm is the number of
nodes that it visits before it finds the optimum. This
number clearly depends on the quality of the heuristic
– the better a lower bound is A on the cost to go, the
more nodes can be pruned from the search tree.

In our case, the worst case running time will be n!.
The lower limit on the number of nodes created, given

by the path of the greedy search strategy, is n+ (n−
1) + . . . + 2 = n(n + 1)/2 − 1. The number of nodes
expanded by the greedy strategy is one node in each
level, i.e a total of n− 1 nodes.

A qualitative examination of the cost (17) shows that
the larger the value of θj , the greater the advantage of
the best rj w.r.t the second best. Hence, large values
of θj imply that the chance of a non-optimal subtree
at level j to contain the optimal solution is small. In
other words, when the values of the parameters are
large, which corresponds to a distribution Pθ that de-
cays fast away from the mode π0, then the number
of nodes explored will be small. For any admissible
heuristic A, there are parameters θML for which the
BF algorithm will explore exactly the same nodes as
the greedy algorithm and no more.

At the other end of the spectrum, if θj ≈ 0 for all j,
the search is likely to be intractable. In this case are
data sets sampled from an almost uniform distribution,
which will have all values Qlr ≈ 0.5. Data sampled
from multi-modal distributions can also fall under this
category2. For multi-modal distributions, individual
Qlr values can take extreme values near 0 or 1, but
because no consensus exists, the average Qlr along a
column or sub-column will be near 0.5 as well.

In this latter case, the algorithm can be stopped any
time, and it will provide the best solution it was able
to find so far. For this case, practical optimization
usually involves inadmissible heuristics (e.g. beam
search). We leave this avenue open for further re-
search.

5.3 Number of operations per node.

Upon creating node ρ′ = ρ|rj+1 = r1, . . . , rj+1, the
SearchPi algorithm needs to compute the value of
V̄ρ′ =

∑

l∈[n]\ρQlrj+1
. Computing this sum explicitly

takes O(n − j) operations, which makes the time of
exploring one vertical path to the terminal of a tree be
O(n(n−1)+(n−1)(n−2)+ . . .+2 = O(n3). However,
by better organizing the data we can obtain a constant
computation time per node.

Vj+1(r1, . . . , rj+1) =
∑

l 6=r1:j−1,rj+1

Qlrj+1
−Qrjrj+1

= Vj(r1, . . . , rj−1, rj+1) −Qrjrj+1
(21)

The node (r1, . . . , rj−1, rj+1) is a sibling of
(r1, . . . , rj+1)’s parent (hence an “uncle”). In
our algorithm, and in any search algorithm that
creates all children of a node at once, this node will

2In this case, since there is no true parameter θ, we refer
to the estimated θML

have been created and its V value available by the
time we need to compute Vj+1(r1, . . . , rj+1).

To use this value, we must only make sure that no
nodes are deleted from memory while their V values
are still needed. This can be achieved with a counter
variable associated with each Vj(ρ) which signals when
the value is no longer needed. Another possible solu-
tion is to pass the V values alone, as tables, down the
tree. This way any node can be deleted independently
of the rest of the tree. Keeping a table at a node adds
a storage of n− j per node.

Selecting the next node can be done efficiently if all
the nodes are kept in a priority queue sorted by L(ρ).
Fibonacci heaps can attain constant access time, while
our STL based implementation uses a binomial heap
with access time logarithmic in the length of the queue.

6 Identifiability and conjugate prior

6.1 Identifiability

The matrix Q represents the sufficient statistics for the
parameters π0, θ. Because by definition

Qlj +Qjl = 1 for l 6= j, Qjj = 0 (22)

the number r of free parameters in Q is at most n(n−
1)/2.

The set Q = {Q} of matrices satisfying (22) is a
convex polytope, with n! extreme points given by
Q(π) = [1[l≺πj]]lj . By the Caratheodory theorem
[Rockafellar, 1970], any Q in the polytope can be rep-
resented by a convex combination of at most n(n −
1)/2+1 extreme points. This implies that Q can be ap-
proximated arbitrarily closely by finite data sets with
N large enough. So, asymptotically, any Q ∈ Q can
represent a set of sufficient statistics.

Note also that for any Q ∈ Q and for any permuta-
tion π0, there is a unique parameter vector θML(π0) ∈
argmax

θ
Pθ,π0

(Q) (because equation (10) has a unique

solution). The following result says that for any data
set there is a non-negative θ estimate.

Proposition 1 For any Q ∈ Q there exists a permu-
tation π0, so that θML

j (π0) ≥ 0.

Proof. Since Qjl = 1 − Qlj we have
∑

jlQjl =
n(n−1)/2; therefore there is at least one column r for
which

∑

lQlr ≤ (n − 1)/2. For this column, equation
(10) with j = 1 will have a non-negative solution θ1.
We now delete column and row r from Q and proceed
recursively for j = 2 : n− 1. 2

This proposition justifies our focusing on the domain
of non-negative θ. It shows that such a restriction

is not only convenient, it is also necessary to ensure
that the model is identifiable. A model Pθ,π0

with
θ > 0 is strongly unimodal; in such a model the
probability of any inversion w.r.t π0 is less than 0.5
[Fligner and Verducci, 1988].

While almost3 each Q ∈ Q defines uniquely a pair
θML, π0

ML, the converse is not true. There are
an infinity of matrices Q which produce the same
θML, π0

ML.

6.2 The conjugate prior

The existence of finite sufficient statistics implies that
Pθ,π0

(π) is an exponential family model jointly in
(θ, π0). As such, it will have a conjugate prior, whose
form is given below.

Proposition 2 Let Γ ∈ Q, ν > 0; denote Γ∞ =
Q(id) ∈ Q, Θ = diag(θ, 0) ∈ R

n×n and Π0 the per-
mutation matrix associated to permutation π0. Then

P (π0, θ ; ν, Γ) ∝ e−ν[traceΓ∞Π0ΓΠT
0 Θ+lnψ(θ)] (23)

is a conjugate prior for the parameters (θ, π0) of model
(4).

Proof. Vj(ππ
−1
0) can be written as element (j, j)

of Γ∞Π0Q(π)ΠT
0 and consequently lnPθ,π0

(π) =
traceΓ∞Π0Q(π)ΠT

0 Θ + lnψ(θ). Moreover, NQ =
∑N

i=1Q(πi). Hence,

P (π0, θ |π1:N) ∝ P (π1:N |π0, θ)P (π0, θ ; ν, Γ)

∝ e−(N+ν)[traceΓ∞Π0
NQ+νΓ

N+ν
ΠT

0 Θ+lnψ(θ)]

= P (π0, θ; N + ν,
NQ+ νΓ

N + ν
) (24)

We have shown that the distribution in (23) is closed
under sampling, in other words it is a conjugate prior
[DeGroot, 1975]. It remains to show that the prior is
integrable on θj ≥ 0, j = 1 : n− 1. This is straightfor-
ward and left to the reader. 2

We note that the general form of a con-
jugate prior family is P (π0, θ ; ν, Γ) ∝

h(θ, π0)e
−ν[traceΓ∞Π0ΓΠT

0 Θ+lnψ(θ)]a where h(θ, π0)
is a function that renders the prior integrable and
doesn’t depend on ν, Γ. Our proposition extends
immediately to this case as well.

The prior above is defined up to a normalization con-
stant. At present we do not have a closed form formula
for this constant. We also stress that the sufficient
statistics Q for the model (4) are not minimal and the
model itself, in the above parametrization, is not a
minimal exponential model.

3Except for those Q for which there are ties in π0.

It is interesting, nevertheless, to interpret the prior’s
parameters. The ν parameter’s role as “equivalent
sample size” is obvious; let us now look at the matrix
parameter Γ. If Γ represents an expectation matrix
Eθ∗,π∗ [Q(π)] under model (4) the conjugate prior is
equivalent to having seen ν samples from a distribu-
tion centered at π∗ with spread θ∗. If one uses another
Γ in the prior, that corresponds to having seen ν sam-
ples from a distribution not in the class represented by
(4).

The matrix Γ0 obtained from θ∗ ≡ 0 has (Γ0)ij = 0.5
in each off-diagonal entry. This matrix corresponds
to an non-informative prior w.r.t π0, as θ∗ ≡ 0 rep-
resents the uniform distribution. Using a conjugate
prior with Γ0 implements a smoothing over the pa-
rameters while being non-informative w.r.t the central
permutation. It can be easily verified that any other
Γ ∈ Q is informative w.r.t both θ and π0. Hence, in
the conjugate prior framework it is impossible to ex-
press ignorance w.r.t to the central distribution, while
expressing knowledge about the parameters θ.

From an algorithmic standpoint, working with the con-
jugate prior is, as expected, straightforward. The full
posterior, up to the normalization constant, is ob-
tained as a summation of sufficient statistics and prior
parameters. This allows one to compare the posteriors
of any two models. If one is interested in the Maxi-
mum A-Posteriori (MAP) estimate, this can be readily
obtained by algorithm SearchPi with Q replaced by
(NQ+ νΓ)/(N + ν).

7 Experiments

The experiments in this section evaluate various ex-
isting algorithms on the consensus ranking problem of
estimating π0. Since estimating θ adds only a small
constant time per search step, we consider that this
case embodies the core difficulties of the estimation
problem. Exception would make the cases when θj has
comparatively large values at large j’s, signifying that
the most important stages of the ranking are among
the last ones, while getting the highly ranked elements
of π0 is less important. This case is rather unrealistic
in practice.

We implemented the SearchPi in C++ with the
heuristics mentioned in section 5. This algorithm
is denoted in the experiments as BF. We also im-
plemented a sub-optimal search algorithm that runs
the SearchPi for a predefined amount of time (5
minutes) then continues with greedy search from the
largest level j attained in the BF search. This algo-
rithm is denoted BF-CSS (the greedy search is denoted
by CSS as described below).

0 10 20 30 40 50 60
10

0

10
2

10
4

10
6

n

no
de

s
ex

pa
nd

ed

θ= 1
θ=1.5
θ= 2
θ= 3

 8 10 14 20 25

1

1.1

1.2

1.3

C
os

t/C
os

t(
B

B
−

C
S

S
)

n

a b

Figure 1: (a) The average number of nodes expanded by
the SearchPi with heuristic A = 0 for various values of n
and θ. The error bars mark the minimum and maximum
values over niter = 10 replications. (b) The cost of the
greedy CSS heuristics as a fraction of the BF-CSS cost.
The BF-CSS heuristic is in effect the exact BF algorithm for
n ≤ 14. The data are Q matrices with independent random
entries. The boxplots are over niter = 10 replications.

Although theoretically the search time should not de-
pend on the true π0 in all our experiments we select
a random π0 every time in order to average out any
artifacts of the implementation (for example, having
the first branch always be the optimal one could make
the algorithm faster). We also mention that our imple-
mentation of the SearchPi is a pilot implementation
not optimized w.r.t running time.

The other algorithms we compared were the FV heuris-
tic of [Fligner and Verducci, 1988], the Greedy-

Order algorithm of [Cohen et al., 1999] (here de-
noted CSS) and the algorithm of [Ailon et al., 2005]
(denoted ACN here). Our implementation of the FV
heuristic omits the search around π̄ and therefore has a
run-time complexity of O(n2). The ACN algorithm is
also O(n2) while the greedy algorithm is O(n3). In our
experiments, these algorithms ran very fast (fractions
of a second) in all the experiments performed.

Experiments with concentrated distributions

As mentioned in section 2, the consensus ranking prob-
lem has two regimes. In the asymptotic regime the
distribution is concentrated around its mode (θML is
large), and N is large enough that πML coincides with
the true π0. This is an easy case for the BF search,
but it is also an easy case for all heuristic algorithms
mentioned in section 2.

We have confirmed this experimentally, on samples
withN = 5000 from distribution Pθ,π0

with random π0

and with θ ≡ 1, 1.5, 2, 3. Each experiment was repli-
cated niter = 10 times. In all cases, all the heuristics
returned the optimal permutation. For this experi-
ment, Figure 1,a shows the number of nodes expanded
by the BF algorithm as a function of θ and n.

We also ran a comparison of the heuristics FV, ACN,
CSS on samples of size N = 5000 from a distribution

 8 10 20 25 30 35 40 45 50 100

0.98

0.99

1

1.01

1.02

1.03

1.04
C

os
t/C

os
t(

C
S

S
)

n

Figure 2: The cost (from left to right) of the true π0, the
FV and the ACN heuristics, as fractions of the CSS cost.
The data are N = 100 permutations from P0.03,π0

with
random π0. The boxplots are over niter = 500 replications.

with θ = 0.3 (only moderately concentrated) and with
n = 10, . . .50. Each experiment was replicated niter =
100 times. For up to n = 40, all the heuristics returned
the true permutation π0. For these experiments, the
optimal permutation was not known except for n ≤ 15
but the large N ensures that with high probability the
optimum coincides with the true π0.

Experiments with almost uniform distributions

At the other end of the spectrum is the combinato-
rial regime, where the observed permutations are dis-
tributed almost uniformly (θ ≈ 0) and N is relatively
small so that the true π0 is different from π0

ML. We
have simulated this case by generating N = 100 sam-
ples from a model with θ = 0.003. The distribution
being practically indistinguishable from uniform, and
the Qij values being very close to 0.5, the differences
in cost between various solutions are minute, and they
are presented only as surrogates of a quality of the
search, since the optimal π0 is not known. For the
same reason, all algorithms except SearchPi have
been compared on niter = 500 replicated experiments.

The comparison between the heuristic algorithms is
presented in Figure 2. The greedy CSS heuristic is
consistently the best at all scales. Its advantage over
the randomized algorithm of ACN is increasing with
larger n. The true model π0 is never optimal for this
data distribution, while its estimate by the FV heuris-
tic is better but loses to the other algorithms. The
“shrinking towards” 1 effect observed for larger n re-
flects the fact that a the larger number of values in Q
are near 0.5 when n is large. This in turn shrinks the
range between the maximum and minimum cost.

Figure 3 shows comparisons between the three heuris-

 8 10 14 20 25
0.99

1

1.01

1.02

1.03

1.04

C
os

t/C
os

t(
B

B
−

C
S

S
)

n

Figure 3: The cost (from left to right) of the FV, ACN,
CSS, and SearchPi (only for n = 8, 10) algorithms, as
fractions of the BF-CSS cost. The data are as in Figure 2.
The boxplots are over niter = 50 replications.

tics, the optimal BF (for n = 8, 10 only) and the ap-
proximate search BF-CSS. The costs are plotted as
fractions of the cost BF-CSS. Therefore, the optimal
BF cost always appears below or equal to 1. The ex-
periments also show that in a large number of cases,
the suboptimal BF-CSS outperforms all the other algo-
rithms and improves on the closely related CSS greedy
algorithm.

We do not claim the BF-CSS to be the ultimate ap-
proximate search heuristic. Better and faster sub-
optimal searches (e.g beam-search) could be imple-
mented. We only demonstrate by BF-CSS that the
search tree approach is effective in improving the cost,
or alternatively, in getting closer to a consensus, over
the traditional heuristics.

Experiments with no consensus and large range

of Q. In this set of experiments, the data consists
of a matrix Q with elements randomly sampled from
[0, 1] subject to the constraint Qij + Qji = 1 and 0
diagonal. This simulates the case of a multi-modal
distribution, where the permutations exhibit no con-
sensus, but are also non-uniform. Such a setting was
examined experimentally by [Cohen et al., 1999]. In
this problem, because the cost C can vary significantly
with the choice of π0, finding a central permutation π0

minimizing this cost is a legitimate practical question.
For instance, this task is a subtask of learning to rank
in [Cohen et al., 1999].

The experimental setting is identical to the previ-
ous, except that the experiments are now replicated
niter = 10 times. Figure 1,b shows the costs, as a frac-
tion of the cost of BF-CSS. Similarly to 3, the BF al-
gorithm improves on all heuristics for small n and the
suboptimal BF-CSS improves by a few percent over
the greedy algorithm (the best contender of the other
heuristics) for larger values of n.

In the interest of fairness, we stress once more
that the FV algorithm could be improved by local
search like in [Fligner and Verducci, 1988] and that
the CSS algorithm can also be improved by first find-
ing the strongly connected components as described in
[Cohen et al., 1999].

8 Related work and Discussion

This work builds on [Fligner and Verducci, 1986] and
[Fligner and Verducci, 1990] who introduced the gen-
eralized Mallows model and exploited the fact that it
is an exponential family model in θ alone. As such,
they use a conjugate prior on θ with a uniform prior
on π0. We have shown in section 6 such a prior is
not the conjugate prior for θ, π0 jointly. The normal-
ization constant for their posterior is not computable
in closed form, and it has strong similarities with the
normalization constant of (23), suggesting that the lat-
ter may not be computable in closed for either. An-
other notable spin-off of [Fligner and Verducci, 1990]
is [Lebanon and Lafferty, 2002] where the posterior
of [Fligner and Verducci, 1990] is used as a con-
ditional probability model over permutations, to
be estimated from data by a MCMC algorithm.
Other exhaustive procedures for computing consen-
sus rankings have been developed as well. In
[Davenport and Kalagnanam, 2004], a greedy heuris-
tic and branch-and-bound procedure is developed for
computing the consensus ranking based on the pair-
wise winner-looser graph. This procedure was ex-
tended in [Conitzer et al., 2006], which utilizes not
only graphs but also linear programming approxima-
tions leading to better bounds. These papers empir-
ically explore the effect of concentration based on a
single probability of a deviation from pairwise pref-
erences in π0. They also find that as concentration
increases, compute-time decreases.

We have presented a new algorithm and a compari-
son of algorithms from various fields on the estimation
of the consensus ranking. Our approach to concen-
tration is based on the parameters of an exponential
model. While our algorithm is certainly optimal, it is
also by far the slowest. Experiments have highlighted
the existing trade-offs: in the asymptotic regime, all
heuristics work well; using SearchPi is also efficient.
In the combinatorial case, if we are interested in the
cost only, then the differences in cost are so minute
that almost any heuristic (even no optimization) will
be acceptable. In other words, while the problem of
consensus ranking is theoretically NP hard, minimiz-
ing the cost (approximately) is practically easy.

What is hard is finding the individual permutation
that achieves best consensus in the combinatorial

regime. If this is of interest, then our experiments have
shown that the existing heuristics differ and that the
SearchPi outperforms the other contenders when it’s
tractable. We are currently implementing faster and
non-admissible versions of SearchPi, with the expec-
tation that, even if exact optimization is not tractable,
using a search like in SearchPi for a pre-specified
time can improve over greedy search.

We can show (proof omitted) that the Greedy-

Order algorithm of [Cohen et al., 1999] is the greedy
counterpart of the SearchPi algorithm. In this sense,
the good results of the CSS heuristic for larger n sug-
gest that adding an amount of search to this already
good heuristic is worthwhile.

We conclude by pointing out that with real ranking
data we expect to encounter few unimodal distribu-
tions. We plan to continue this work toward the
more ambitious goal of estimating parametric and non-
parametric mixtures over the space of rankings.

References

[Ailon et al., 2005] Ailon, N., Charikar, M., and Newman,
A. (2005). Aggregating inconsistent information: Rank-
ing and clustering. In The 37-th ACM Symposium on the
Theory of Computing (STOC). Association for Comput-
ing Machinery.

[Bartholdi et al., 1989] Bartholdi, J., Tovey, C. A., and
Trick, M. (1989). Voting schemes for which it can be
difficult to tell who won. Social Choice and Welfare,
6(2):157–165.

[Bertsekas, 1999] Bertsekas, D. P. (1999). Nonlinear pro-
gramming. Athena Scientific, Cambridge, MA, 2 edition.

[Cohen et al., 1999] Cohen, W. C., Schapire, R. S., and
Singer, Y. (1999). Learning to order things. Journal of
Artificial Intelligence Research, 10:243–270.

[Conitzer et al., 2006] Conitzer, V., Davenport, A., and
Kalagnanam, J. (2006). Improved bounds for comput-
ing Kemeny rankings. In Proceedings of The 21st Na-
tional Conference on Artificial Intelligence, AAAI-2006,
Boston, MA.

[Conitzer and Sandholm, 2005] Conitzer, V. and Sand-
holm, T. (2005). Common voting rules as maximum
likelihood estimators. In Uncertainty in Artificial Intel-
ligence: Proceedings of the Twentieth Conference (UAI-
2005), pages 145–152, Edinburgh, Scotland, UK. Mor-
gan Kaufmann Publishers.

[Critchlow, 1985] Critchlow, D. E. (1985). Metric meth-
ods for analyzing partially ranked data. Number 34 in
Lecture notes in statistics. Springer-Verlag, Berlin Hei-
delberg New York Tokyo.

[Davenport and Kalagnanam, 2004] Davenport, A. and
Kalagnanam, J. (2004). A computational study of the
Kemeny rule for preference aggregation. In Proceedings
of The 19th National Conference on Artificial Intelli-
gence, AAAI-2004, pages 697–702, San Jose, CA.

[DeGroot, 1975] DeGroot, M. H. (1975). Probability and
Statistics. Addison–Wesley Pub. Co., Reading, MA.

[Feller, 1968] Feller, W. (1968). An introduction to proba-
bility theory and its applications, volume 1. Wiley, New
York, third edition.

[Fligner and Verducci, 1986] Fligner, M. A. and Verducci,
J. S. (1986). Distance based ranking models. Journal of
the Royal Statistical Society B, 48:359–369.

[Fligner and Verducci, 1988] Fligner, M. A. and Verducci,
J. S. (1988). Multistage ranking models. Journal of the
American Statistical Association, 88.

[Fligner and Verducci, 1990] Fligner, M. A. and Verducci,
J. S. (1990). Posterior probability for a consensus order-
ing. Psychometrika, 55:53–63.

[Lebanon and Lafferty, 2002] Lebanon, G. and Lafferty, J.
(2002). Cranking: combining rankings using conditional
probability models on permutations. In Proceedings of
the 19th International Conference on Machine Learning.

[Mallows, 1957] Mallows, C. L. (1957). Non-null ranking
models. Biometrika, 44:114–130.

[Meilă et al., 2007] Meilă, M., Phadnis, K., Patterson, A.,
and Bilmes, J. (2007). Consensus ranking under the ex-
ponential model. Technical Report 515, UW Statistics.

[Rockafellar, 1970] Rockafellar, R. T. (1970). Convex
Analysis. Princeton.

