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Abstract

Can we automatically compose a large set
of Wiktionaries and translation dictionar-
ies to yield a massive, multilingual dic-
tionary whose coverage is substantially
greater than that of any of its constituent
dictionaries?

The composition of multiple translation
dictionaries leads to a transitive inference
problem: if word A translates to word
B which in turn translates to word C,
what is the probability that C is a trans-
lation of A? The paper introduces a
novel algorithm that solves this problem
for 10,000,000 words in more than 1,000
languages. The algorithm yields PANDIC-
TIONARY, a novel multilingual dictionary.
PANDICTIONARY contains more than four
times as many translations than in the
largest Wiktionary at precision 0.90 and
over 200,000,000 pairwise translations in
over 200,000 language pairs at precision
0.8.

1 Introduction and Motivation

In the era of globalization, inter-lingual com-
munication is becoming increasingly important.
Although nearly 7,000 languages are in use to-
day (Gordon, 2005), most language resources are
mono-lingual, or bi-lingual.1 This paper investi-
gates whether Wiktionaries and other translation
dictionaries available over the Web can be auto-
matically composed to yield a massive, multilin-
gual dictionary with superior coverage at compa-
rable precision.

We describe the automatic construction of a
massive multilingual translation dictionary, called

1The English Wiktionary, a lexical resource developed by
volunteers over the Internet is one notable exception that con-
tains translations of English words in about 500 languages.

Figure 1: A fragment of the translation graph for two senses
of the English word ‘spring’. Edges labeled ‘1’ and ‘3’ are
for spring in the sense of a season, and ‘2’ and ‘4’ are for
the flexible coil sense. The graph shows translation entries
from an English dictionary merged with ones from a French
dictionary.

PANDICTIONARY, that could serve as a resource
for translation systems operating over a very
broad set of language pairs. The most immedi-
ate application of PANDICTIONARY is to lexical
translation—the translation of individual words or
simple phrases (e.g., “sweet potato”). Because
lexical translation does not require aligned cor-
pora as input, it is feasible for a much broader
set of languages than statistical Machine Transla-
tion (SMT). Of course, lexical translation cannot
replace SMT, but it is useful for several applica-
tions including translating search-engine queries,
library classifications, meta-data tags,2 and recent
applications like cross-lingual image search (Et-
zioni et al., 2007), and enhancing multi-lingual
Wikipedias (Adar et al., 2009). Furthermore,
lexical translation is a valuable component in
knowledge-based Machine Translation systems,
e.g., (Bond et al., 2005; Carbonell et al., 2006).

PANDICTIONARY currently contains over 200
million pairwise translations in over 200,000 lan-
guage pairs at precision 0.8. It is constructed from
information harvested from 631 online dictionar-
ies and Wiktionaries. This necessitates match-

2Meta-data tags appear in community Web sites such as
flickr.com and del.icio.us.



ing word senses across multiple, independently-
authored dictionaries. Because of the millions of
translations in the dictionaries, a feasible solution
to this sense matching problem has to be scalable;
because sense matches are imperfect and uncer-
tain, the solution has to be probabilistic.

The core contribution of this paper is a princi-
pled method for probabilistic sense matching to in-
fer lexical translations between two languages that
do not share a translation dictionary. For exam-
ple, our algorithm can conclude that Basque word
‘udaherri’ is a translation of Maori word ‘koanga’
in Figure 1. Our contributions are as follows:

1. We describe the design and construction of
PANDICTIONARY—a novel lexical resource
that spans over 200 million pairwise transla-
tions in over 200,000 language pairs at 0.8
precision, a four-fold increase when com-
pared to the union of its input translation dic-
tionaries.

2. We introduce SenseUniformPaths, a scal-
able probabilistic method, based on graph
sampling, for inferring lexical translations,
which finds 3.5 times more inferred transla-
tions at precison 0.9 than the previous best
method.

3. We experimentally contrast PANDIC-
TIONARY with the English Wiktionary and
show that PANDICTIONARY is from 4.5 to
24 times larger depending on the desired
precision.

The remainder of this paper is organized as fol-
lows. Section 2 describes our earlier work on
sense matching (Etzioni et al., 2007). Section 3
describes how the PANDICTIONARY builds on and
improves on their approach. Section 4 reports on
our experimental results. Section 5 considers re-
lated work on lexical translation. The paper con-
cludes in Section 6 with directions for future work.

2 Building a Translation Graph

In previous work (Etzioni et al., 2007) we intro-
duced an approach to sense matching that is based
on translation graphs (see Figure 1 for an exam-
ple). Each vertex v ∈ V in the graph is an or-
dered pair (w, l) where w is a word in a language
l. Undirected edges in the graph denote transla-
tions between words: an edge e ∈ E between (w1,
l1) and (w2, l2) represents the belief that w1 and
w2 share at least one word sense.

Construction: The Web hosts a large num-
ber of bilingual dictionaries in different languages
and several Wiktionaries. Bilingual dictionaries
translate words from one language to another, of-
ten without distinguishing the intended sense. For
example, an Indonesian-English dictionary gives
‘light’ as a translation of the Indonesian word ‘en-
teng’, but does not indicate whether this means il-
lumination, light weight, light color, or the action
of lighting fire.

The Wiktionaries (wiktionary.org) are sense-
distinguished, multilingual dictionaries created by
volunteers collaborating over the Web. A transla-
tion graph is constructed by locating these dictio-
naries, parsing them into a common XML format,
and adding the nodes and edges to the graph.

Figure 1 shows a fragment of a translation
graph, which was constructed from two sets of
translations for the word ‘spring’ from an English
Wiktionary, and two corresponding entries from
a French Wiktionary for ‘printemps’ (spring sea-
son) and ‘ressort’ (flexible spring). Translations of
the season ‘spring’ have edges labeled with sense
ID=1, the flexible coil sense has ID=2, translations
of ‘printemps’ have ID=3, and so forth.3

For clarity, we show only a few of the actual
vertices and edges; e.g., the figure doesn’t show
the edge (ID=1) between ‘udaherri’ and ‘primav-
era’.

Inference: In our previous system we had
a simple inference procedure over translation
graphs, called TRANSGRAPH, to find translations
beyond those provided by any source dictionary.
TRANSGRAPH searched for paths in the graph be-
tween two vertices and estimated the probability
that the path maintains the same word sense along
all edges in the path, even when the edges come
from different dictionaries. For example, there are
several paths between ‘udaherri’ and ‘koanga’ in
Figure 1, but all shift from sense ID 1 to 3. The
probability that the two words are translations is
equivalent to the probability that IDs 1 and 3 rep-
resent the same sense.

TRANSGRAPH used two formulae to estimate
these probabilities. One formula estimates the
probability that two multi-lingual dictionary en-
tries represent the same word sense, based on the
proportion of overlapping translations for the two
entries. For example, most of the translations of

3Sense-distinguished multi-lingual entries give rise to
cliques all of which share a common sense ID.



French ‘printemps’ are also translations of the sea-
son sense of ‘spring’. A second formula is based
on triangles in the graph (useful for bilingual dic-
tionaries): a clique of 3 nodes with an edge be-
tween each pair of nodes. In such cases, there is
a high probability that all 3 nodes share a word
sense.

Critique: While TRANSGRAPH was the first
to present a scalable inference method for lexical
translation, it suffers from several drawbacks. Its
formulae operate only on local information: pairs
of senses that are adjacent in the graph or triangles.
It does not incorporate evidence from longer paths
when an explicit triangle is not present. Moreover,
the probabilities from different paths are com-
bined conservatively (either taking the max over
all paths, or using “noisy or” on paths that are
completely disjoint, except end points), thus lead-
ing to suboptimal precision/recall.

In response to this critique, the next section
presents an inference algorithm, called SenseUni-
formPaths (SP), with substantially improved recall
at equivalent precision.

3 Translation Inference Algorithms

In essence, inference over a translation graph
amounts to transitive sense matching: if word A
translates to word B, which translates in turn to
word C, what is the probability that C is a trans-
lation of A? If B is polysemous then C may not
share a sense with A. For example, in Figure 2(a)
if A is the French word ‘ressort’ (the flexible-
coil sense of spring) and B is the English word
‘spring’, then Slovenian word ‘vzmet’ may or may
not be a correct translation of ‘ressort’ depending
on whether the edge (B,C) denotes the flexible-
coil sense of spring, the season sense, or another
sense. Indeed, given only the knowledge of the
path A − B − C we cannot claim anything with
certainty regarding A to C.

However, if A, B, and C are on a circuit that
starts at A, passes through B and C and re-
turns to A, there is a high probability that all
nodes on that circuit share a common word sense,
given certain restrictions that we enumerate later.
Where TRANSGRAPH used evidence from circuits
of length 3, we extend this to paths of arbitrary
lengths.

To see how this works, let us begin with the sim-
plest circuit, a triangle of three nodes as shown in
Figure 2(b). We can be quite certain that ‘vzmet’

shares the sense of coil with both ‘spring’ and
‘ressort’. Our reasoning is as follows: even
though both ‘ressort’ and ‘spring’ are polysemous
they share only one sense. For a triangle to form
we have two choices – (1) either ‘vzmet’ means
spring coil, or (2) ‘vzmet’ means both the spring
season and jurisdiction, but not spring coil. The
latter is possible but such a coincidence is very un-
likely, which is why a triangle is strong evidence
for the three words to share a sense.

As an example of longer paths, our inference
algorithms can conclude that in Figure 2(c), both
‘molla’ and ‘vzmet’ have the sense coil, even
though no explicit triangle is present. To show
this, let us define a translation circuit as follows:

Definition 1 A translation circuit from v∗1 with
sense s∗ is a cycle that starts and ends at v∗1 with
no repeated vertices (other than v∗1 at end points).
Moreover, the path includes an edge between v∗1
and another vertex v∗2 that also has sense s∗.

All vertices on a translation circuit are mutual
translations with high probability, as in Figure
2(c). The edge from ‘spring’ indicates that ‘vzmet’
means either coil or season, while the edge from
‘ressort’ indicates that ‘molla’ means either coil
or jurisdiction. The edge from ‘vzmet’ to ‘molla’
indicates that they share a sense, which will hap-
pen if all nodes share the sense season or if either
‘vzmet’ has the unlikely combination of coil and
jurisdiction (or ‘molla’ has coil and season).

We also develop a mathematical model of
sense-assignment to words that lets us formally
prove these insights. For more details on the the-
ory please refer to our extended version. This pa-
per reports on our novel algorithm and experimen-
tal results.

These insights suggest a basic version of our al-
gorithm: “given two vertices, v∗1 and v∗2 , that share
a sense (say s∗) compute all translation circuits
from v∗1 in the sense s∗; mark all vertices in the
circuits as translations of the sense s∗”.

To implement this algorithm we need to decide
whether a vertex lies on a translation circuit, which
is trickier than it seems. Notice that knowing
that v is connected independently to v∗1 and v∗2
doesn’t imply that there exists a translation circuit
through v, because both paths may go through a
common node, thus violating of the definition of
translation circuit. For example, in Figure 2(d) the
Catalan word ‘ploma’ has paths to both spring and
ressort, but there is no translation circuit through
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Figure 2: Snippets of translation graphs illustrating various inference scenarios. The nodes in question mark represent the
nodes in focus for each illustration. For all cases we are trying to infer translations of the flexible coil sense of spring.

it. Hence, it will not be considered a transla-
tion. This example also illustrates potential errors
avoided by our algorithm – here, German word
‘Feder’ mean feather and spring coil, but ‘ploma’
means feather and not the coil.

An exhaustive search to find translation circuits
would be too slow, so we approximate the solution
by a random walk scheme. We start the random
walk from v∗1 (or v∗2) and choose random edges
without repeating any vertices in the current path.
At each step we check if the current node has an
edge to v∗2 (or v∗1). If it does, then all the ver-
tices in the current path form a translation circuit
and, thus, are valid translations. We repeat this
random walk many times and keep marking the
nodes. In our experiments for each inference task
we performed a total of 2,000 random walks (NR

in pseudo-code) of max circuit length 7. We chose
these parameters based on a development set of 50
inference tasks.

Our first experiments with this basic algorithm
resulted in a much higher recall than TRANS-
GRAPH, albeit, at a significantly lower precision.
A closer examination of the results revealed two
sources of error – (1) errors in source dictionary
data, and (2) correlated sense shifts in translation
circuits. Below we add two new features to our
algorithm to deal with each of these error sources,
respectively.

3.1 Errors in Source Dictionaries
In practice, source dictionaries contain mistakes
and errors occur in processing the dictionaries to
create the translation graph. Thus, existence of a
single translation circuit is only limited evidence
for a vertex as a translation. We wish to exploit
the insight that more translation circuits constitute
stronger evidence. However, the different circuits
may share some edges, and thus the evidence can-
not be simply the number of translation circuits.

We model the errors in dictionaries by assigning
a probability less than 1.0 to each edge4 (pe in the

4In our experiments we used a flat value of 0.6, chosen by

pseudo-code). We assume that the probability of
an edge being erroneous is independent of the rest
of the graph. Thus, a translation graph with pos-
sible data errors converts into a distribution over
accurate translation graphs.

Under this distribution, we can use the proba-
bility of existence of a translation circuit through a
vertex as the probability that the vertex is a trans-
lation. This value captures our insights, since a
larger number of translation circuits gives a higher
probability value.

We sample different graph topologies from our
given distribution. Some translation circuits will
exist in some of the sampled graphs, but not in
others. This, in turn, means that a given vertex v
will only be on a circuit for a fraction of the sam-
pled graphs. We take the proportion of samples in
which v is on a circuit to be the probability that v
is in the translation set. We refer to this algorithm
as Unpruned SenseUniformPaths (uSP).

3.2 Avoiding Correlated Sense-shifts

The second source of errors are circuits that in-
clude a pair of nodes sharing the same polysemy,
i.e., having the same pair of senses. A circuit
might maintain sense s∗ until it reaches a node that
has both s∗ and a distinct si. The next edge may
lead to a node with si, but not s∗, causing an ex-
traction error. The path later shifts back to sense
s∗ at a second node that also has s∗ and si. An ex-
ample for this is illustrated in Figure 2(e), where
both the German and Swedish words mean feather
and spring coil. Here, Italian ‘penna’ means only
the feather and not the coil.

Two nodes that share the same two senses oc-
cur frequently in practice. For example, many
languages use the same word for ‘heart’ (the or-
gan) and center; similarly, it is common for lan-
guages to use the same word for ‘silver’, the metal
and the color. These correlations stem from com-

parameter tuning on a development set of 50 inference tasks.
In future we can use different values for different dictionaries
based on our confidence in their accuracy.



Figure 3: The set {B, C} has a shared ambiguity - each
node has both sense 1 (from the lower clique) and sense 2
(from the upper clique). A circuit that contains two nodes
from the same ambiguity set with an intervening node not in
that set is likely to create translation errors.

mon metaphor and the shared evolutionary roots
of some languages.

We are able to avoid circuits with this type of
correlated sense-shift by automatically identifying
ambiguity sets, sets of nodes known to share mul-
tiple senses. For instance, in Figure 2(e) ‘Feder’
and ‘fjäder’ form an ambiguity set (shown within
dashed lines), as they both mean feather and coil.

Definition 2 An ambiguity set A is a set of ver-
tices that all share the same two senses. I.e.,
∃s1, s2, with s1 6= s2 s.t. ∀v ∈ A, sense(v, s1)∧
sense(v, s2), where sense(v, s) denotes that v has
sense s.

To increase the precision of our algorithm we
prune the circuits that contain two nodes in the
same ambiguity set and also have one or more in-
tervening nodes that are not in the ambiguity set.
There is a strong likelihood that the intervening
nodes will represent a translation error.

Ambiguity sets can be detected from the graph
topology as follows. Each clique in the graph rep-
resents a set of vertices that share a common word
sense. When two cliques intersect in two or more
vertices, the intersecting vertices share the word
sense of both cliques. This may either mean that
both cliques represent the same word sense, or that
the intersecting vertices form an ambiguity set. A
large overlap between two cliques makes the for-
mer case more likely; a small overlap makes it
more likely that we have found an ambiguity set.

Figure 3 illustrates one such computation.
All nodes of the clique V1, V2, A, B,C,D share
a word sense, and all nodes of the clique
B,C,E, F, G, H also share a word sense. The set
{B,C} has nodes that have both senses, forming
an ambiguity set. We denote the set of ambiguity
sets by A in the pseudo-code.

Having identified these ambiguity sets, we mod-
ify our random walk scheme by keeping track of

whether we are entering or leaving an ambiguity
set. We prune away all paths that enter the same
ambiguity set twice. We name the resulting algo-
rithm SenseUniformPaths (SP), summarized at a
high level in Algorithm 1.
Comparing Inference Algorithms Our evalua-
tion demonstrated that SP outperforms uSP. Both
these algorithms have significantly higher recall
than TRANSGRAPH algorithm. The detailed re-
sults are presented in Section 4.2. We choose SP
as our inference algorithm for all further research,
in particular to create PANDICTIONARY.

3.3 Compiling PanDictionary

Our goal is to automatically compile PANDIC-
TIONARY, a sense-distinguished lexical transla-
tion resource, where each entry is a distinct word
sense. Associated with each word sense is a list of
translations in multiple languages.

We use Wiktionary senses as the base senses
for PANDICTIONARY. Recall that SP requires two
nodes (v∗1 and v∗2) for inference. We use the Wik-
tionary source word as v∗1 and automatically pick
the second word from the set of Wiktionary trans-
lations of that sense by choosing a word that is
well connected, and, which does not appear in
other senses of v∗1 (i.e., is expected to share only
one sense with v∗1).

We first run SenseUniformPaths to expand the
approximately 50,000 senses in the English Wik-
tionary. We further expand any senses from the
other Wiktionaries that are not yet covered by
PANDICTIONARY, and add these to PANDIC-
TIONARY. This results in the creation of the
world’s largest multilingual, sense-distinguished
translation resource, PANDICTIONARY. It con-
tains a little over 80,000 senses. Its construction
takes about three weeks on a 3.4 GHz processor
with a 2 GB memory.

Algorithm 1 S.P.(G, v∗1, v
∗
2,A)

1: parameters NG: no. of graph samples, NR: no. of ran-
dom walks, pe: prob. of sampling an edge

2: create NG versions of G by sampling each edge indepen-
dently with probability pe

3: for all i = 1..NG do
4: for all vertices v : rp[v][i] = 0
5: perform NR random walks starting at v∗1 (or v∗2 ) and

pruning any walk that enters (or exits) an ambiguity
set in A twice. All walks that connect to v∗2 (or v∗1 )
form a translation circuit.

6: for all vertices v do
7: if(v is on a translation circuit) rp[v][i] = 1

8: return
∑

i
rp[v][i]

NG
as the prob. that v is a translation



4 Empirical Evaluation

In our experiments we investigate three key ques-
tions: (1) which of the three algorithms (TG, uSP
and SP) is superior for translation inference (Sec-
tion 4.2)? (2) how does the coverage of PANDIC-
TIONARY compare with the largest existing mul-
tilingual dictionary, the English Wiktionary (Sec-
tion 4.3)? (3) what is the benefit of inference over
the mere aggregation of 631 dictionaries (Section
4.4)? Additionally, we evaluate the inference algo-
rithm on two other dimensions – variation with the
degree of polysemy of source word, and variation
with original size of the seed translation set.

4.1 Experimental Methodology

Ideally, we would like to evaluate a random sam-
ple of the more than 1,000 languages represented
in PANDICTIONARY.5 However, a high-quality
evaluation of translation between two languages
requires a person who is fluent in both languages.
Such people are hard to find and may not even
exist for many language pairs (e.g., Basque and
Maori). Thus, our evaluation was guided by our
ability to recruit volunteer evaluators. Since we
are based in an English speaking country we were
able to recruit local volunteers who are fluent in
a range of languages and language families, and
who are also bilingual in English.6

The experiments in Sections 4.2 and 4.3 test
whether translations in a PANDICTIONARY have
accurate word senses. We provided our evalua-
tors with a random sample of translations into their
native language. For each translation we showed
the English source word and gloss of the intended
sense. For example, a Dutch evaluator was shown
the sense ‘free (not imprisoned)’ together with the
Dutch word ‘loslopende’. The instructions were
to mark a word as correct if it could be used to ex-
press the intended sense in a sentence in their na-
tive language. For experiments in Section 4.4 we
tested precision of pairwise translations, by having
informants in several pairs of languages discuss
whether the words in their respective languages
can be used for the same sense.

We use the tags of correct or incorrect to com-
pute the precision: the percentage of correct trans-

5The distribution of words in PANDICTIONARY is highly
non-uniform ranging from 182,988 words in English to 6,154
words in Luxembourgish and 189 words in Tuvalu.

6The languages used was based on the availability of na-
tive speakers. This varied between the different experiments,
which were conducted at different times.

Figure 4: The SenseUniformPaths algorithm (SP) more
than doubles the number of correct translations at precision
0.95, compared to a baseline of translations that can be found
without inference.

lations divided by correct plus incorrect transla-
tions. We then order the translations by probabil-
ity and compute the precision at various probabil-
ity thresholds.

4.2 Comparing Inference Algorithms

Our first evaluation compares our SenseUniform-
Paths (SP) algorithm (before and after pruning)
with TRANSGRAPH on both precision and num-
ber of translations.

To carry out this comparison, we randomly sam-
pled 1,000 senses from English Wiktionary and
ran the three algorithms over them. We evalu-
ated the results on 7 languages – Chinese, Danish,
German, Hindi, Japanese, Russian, and Turkish.
Each informant tagged 60 random translations in-
ferred by each algorithm, which resulted in 360-
400 tags per algorithm7. The precision over these
was taken as a surrogate for the precision across
all the senses.

We compare the number of translations for each
algorithm at comparable precisions. The baseline
is the set of translations (for these 1000 senses)
found in the source dictionaries without inference,
which has a precision 0.95 (as evaluated by our
informants).8

Our results are shown in Figure 4. At this high
precision, SP more than doubles the number of
baseline translations, finding 5 times as many in-
ferred translations (in black) as TG.

Indeed, both uSP and SP massively outperform
TG. SP is consistently better than uSP, since it
performs better for polysemous words, due to its
pruning based on ambiguity sets. We conclude

7Some translations were marked as “Don’t know”.
8Our informants tended to underestimate precision, often

marking correct translations in minor senses of a word as in-
correct.
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TIONARY. It quadruples the size of the English Wiktionary at
precision 0.90, is more than 8 times larger at precision 0.85
and is almost 24 times the size at precision 0.7.

that SP is the best inference algorithm and employ
it for PANDICTIONARY construction.

4.3 Comparison with English Wiktionary

We now compare the coverage of PANDIC-
TIONARY with the English Wiktionary at varying
levels of precision. The English Wiktionary is the
largest Wiktionary with a total of 403,413 transla-
tions. It is also more reliable than some other Wik-
tionaries in making word sense distinctions. In this
study we use only the subset of PANDICTIONARY

that was computed starting from the English Wik-
tionary senses. Thus, this subsection under-reports
PANDICTIONARY’s coverage.

To evaluate a huge resource such as PANDIC-
TIONARY we recruited native speakers of 14 lan-
guages – Arabic, Bulgarian, Danish, Dutch, Ger-
man, Hebrew, Hindi, Indonesian, Japanese, Ko-
rean, Spanish, Turkish, Urdu, and Vietnamese. We
randomly sampled 200 translations per language,
which resulted in about 2,500 tags. Figure 5
shows the total number of translations in PANDIC-
TIONARY in senses from the English Wiktionary.
At precision 0.90, PANDICTIONARY has 1.8 mil-
lion translations, 4.5 times as many as the English
Wiktionary.

We also compare the coverage of PANDIC-
TIONARY with that of the English Wiktionary in
terms of languages covered. Table 1 reports, for
each resource, the number of languages that have
a minimum number of distinct words in the re-
source. PANDICTIONARY has 1.4 times as many
languages with at least 1,000 translations at pre-
cision 0.90 and more than twice at precision 0.7.
These observations reaffirm our faith in the pan-
lingual nature of the resource.

PANDICTIONARY’s ability to expand the lists
of translations provided by the English Wiktionary
is most pronounced for senses with a small num-
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Figure 6: Variation of precision with the degree of poly-
semy of the source English word. The precision decreases as
polysemy increases, still maintaining reasonably high values.

ber of translations. For example, at precision 0.90,
senses that originally had 3 to 6 translations are in-
creased 5.3 times in size. The increase is 2.2 times
when the original sense size is greater than 20.

For closer analysis we divided the English
source words (v∗1) into different bins based on the
number of senses that English Wiktionary lists for
them. Figure 6 plots the variation of precision with
this degree of polysemy. We find that translation
quality decreases as degree of polysemy increases,
but this decline is gradual, which suggests that SP
algorithm is able to hold its ground well in difficult
inference tasks.

4.4 Comparison with All Source Dictionaries
We have shown that PANDICTIONARY has much
broader coverage than the English Wiktionary, but
how much of this increase is due to the inference
algorithm versus the mere aggregation of hundreds
of translation dictionaries in PANDICTIONARY?

Since most bilingual dictionaries are not sense-
distinguished, we ignore the word senses and
count the number of distinct (word1, word2) trans-
lation pairs.

We evaluated the precision of word-word trans-
lations by a collaborative tagging scheme, with
two native speakers of different languages, who
are both bi-lingual in English. For each sug-
gested translation they discussed the various
senses of words in their respective languages
and tag a translation correct if they found some
sense that is shared by both words. For this
study we tagged 7 language pairs: Hindi-Hebrew,

# languages with distinct words
≥ 1000 ≥ 100 ≥ 1

English Wiktionary 49 107 505
PanDictionary (0.90) 67 146 608
PanDictionary (0.85) 75 175 794
PanDictionary (0.70) 107 607 1066

Table 1: PANDICTIONARY covers substantially more lan-
guages than the English Wiktionary.
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Japanese-Russian, Chinese-Turkish, Japanese-
German, Chinese-Russian, Bengali-German, and
Hindi-Turkish.

Figure 7 compares the number of word-word
translation pairs in the English Wiktionary (EW),
in all 631 source dictionaries (631 D), and in PAN-
DICTIONARY at precisions 0.90, 0.85, and 0.80.
PANDICTIONARY increases the number of word-
word translations by 73% over the source dictio-
nary translations at precision 0.90 and increases it
by 2.7 times at precision 0.85. PANDICTIONARY

also adds value by identifying the word sense of
the translation, which is not given in most of the
source dictionaries.

5 Related Work

Because we are considering a relatively new prob-
lem (automatically building a panlingual transla-
tion resource) there is little work that is directly re-
lated to our own. The closest research is our previ-
ous work on TRANSGRAPH algorithm (Etzioni et
al., 2007). Our current algorithm outperforms the
previous state of the art by 3.5 times at precision
0.9 (see Figure 4). Moreover, we compile this in a
dictionary format, thus considerably reducing the
response time compared to TRANSGRAPH, which
performed inference at query time.

There has been considerable research on meth-
ods to acquire translation lexicons from either
MRDs (Neff and McCord, 1990; Helmreich et
al., 1993; Copestake et al., 1994) or from par-
allel text (Gale and Church, 1991; Fung, 1995;
Melamed, 1997; Franz et al., 2001), but this has
generally been limited to a small number of lan-
guages. Manually engineered dictionaries such as
EuroWordNet (Vossen, 1998) are also limited to
a relatively small set of languages. There is some
recent work on compiling dictionaries from mono-

lingual corpora, which may scale to several lan-
guage pairs in future (Haghighi et al., 2008).

Little work has been done in combining mul-
tiple dictionaries in a way that maintains word
senses across dictionaries. Gollins and Sanderson
(2001) explored using triangulation between alter-
nate pivot languages in cross-lingual information
retrieval. Their triangulation essentially mixes
together circuits for all word senses, hence, is un-
able to achieve high precision.

Dyvik’s “semantic mirrors” uses translation
paths to tease apart distinct word senses from
inputs that are not sense-distinguished (Dyvik,
2004). However, its expensive processing and
reliance on parallel corpora would not scale to
large numbers of languages. Earlier (Knight and
Luk, 1994) discovered senses of Spanish words by
matching several English translations to a Word-
Net synset. This approach applies only to specific
kinds of bilingual dictionaries, and also requires a
taxonomy of synsets in the target language.

Random walks, graph sampling and Monte
Carlo simulations are popular in literature, though,
to our knowledge, none have applied these to our
specific problems (Henzinger et al., 1999; Andrieu
et al., 2003; Karger, 1999).

6 Conclusions
We have described the automatic construction of
a unique multilingual translation resource, called
PANDICTIONARY, by performing probabilistic in-
ference over the translation graph. Overall, the
construction process consists of large scale in-
formation extraction over the Web (parsing dic-
tionaries), combining it into a single resource (a
translation graph), and then performing automated
reasoning over the graph (SenseUniformPaths) to
yield a much more extensive and useful knowl-
edge base.

We have shown that PANDICTIONARY has
more coverage than any other existing bilingual
or multilingual dictionary. Even at the high preci-
sion of 0.90, PANDICTIONARY more than quadru-
ples the size of the English Wiktionary, the largest
available multilingual resource today.

We plan to make PANDICTIONARY available
to the research community, and also to the Wik-
tionary community in an effort to bolster their ef-
forts. PANDICTIONARY entries can suggest new
translations for volunteers to add to Wiktionary
entries, particularly if combined with an intelli-
gent editing tool (e.g., (Hoffmann et al., 2009)).
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