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Abstract
We present a novel approach for training a multi-layered per-
ceptron (MLP) in a semi-supervised fashion. Our objective
function, when optimized, balances training set accuracy with
fidelity to a graph-based manifold over all points. Addition-
ally, the objective favors smoothness via an entropy regularizer
over classifier outputs as well as straightforward `2 regulariza-
tion. Our approach also scales well enough to enable large-scale
training. The results demonstrate significant improvement on
several phone classification tasks over baseline MLPs.
Index Terms: semi-supervised learning, neural networks,
phone classification

1. Introduction
Multi-layer perceptrons (MLPs) [3] have amassed a solid record
in speech recognition as conceptually simple but consistently
effective discriminative classifiers. And in addition to static
classification, MLPs can play an important role in time series
classification when used to generate a nonlinear feature trans-
formation for Tandem acoustic modeling [21, 5]. Such features
are then used as inputs to a hidden Markov model (HMM) for
time series modeling.

Although machine learning methods such as support vector
machines (SVMs) [18] have been in vogue more recently, MLPs
still demonstrate their strength by handling large data sets where
many kernelized non-parametric methods such as SVMs scale
poorly if one wants to use a nonlinear kernel. Despite the utility
of MLPs, however, there has been surprisingly little work ex-
tending them to semi-supervised learning (SSL). Especially for
speech, where training data is very cheap to acquire but expen-
sive to label (especially at the frame level), extending MLPs to
take advantage of unlabeled data holds much promise.

In this paper, we propose a new graph-based SSL training
objective that is suitable for training parametric classifiers via
stochastic gradient descent [11]. We apply this objective to the
training of MLPs, making them suitable to the case where there
are unlabeled as well as labeled training samples. This gives us
a simple and tractable algorithm.

As with most graph-based SSL methods, we assume that
the data, both labeled and unlabeled, are embedded within a
low-dimensional manifold expressed by the graph. Despite this
we do not need to learn either an explicit representation of
a low-dimensional manifold (unlike, e.g., [19]) or an explicit
mapping between any manifold space and our feature space.

In this work, our experiments focus exclusively on frame-
by-frame phone classification. We expect, however, that our
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method will generalize to other uess of MLPs as multi-class
classifiers and may provide improvements to Tandem acoustic
modeling or other forms of hybrid MLP/HMM systems.

Although we have examined only MLPs in this work, our
proposed objective can be applied to models other than MLPs,
for instance the Ratio Semi-Definite Classifier (RSC) fam-
ily [15, 16] or even Gaussian mixture classifiers. In doing so,
we have created an elegant and natural way to turn almost any
differentiable model into a semi-supervised learner.

2. A Novel Objective for SSL MLP Training
Let D` = {(xi, yi)}`i=1 be labeled training data and
Du = {xi}`+ui=`+1 be unlabeled points, where n = u+ ` so we
have n points in total. Additionally, we use pθ(xi) to denote
the vector of posterior probabilities output by a classifier gov-
erned by parameters θ given point xi — thus, the kth entry of
pθ(xi) is the value pθ(k|xi) for a conditional model governed
by parameters θ. We use ti, 1 ≤ i ≤ l, to denote a probabilistic
label vector for the ith training sample. When the input xi has
a single output yi, ti is a vector with zeros except for a one in
position yi (“hard-labels”). We also assume that {xi}ni=1 are
embedded in a weighted undirected graph G = (V,E) where
V = {1, . . . , n} and E = V × V are the set of edges between
vertices. We use ωij ∈ W to denote the weight of the edge
between vertices i and j. For information on how to construct
the graph, see section 4.1.

We propose a novel objective function J(θ) to be mini-
mized for semi-supervised training of MLPs:

J(θ) =
∑̀
i=1

D(ti ‖ pθ(xi)) + γ

n∑
i,j=1

ωijD(pθ(xi) ‖ pθ(xj))

+ κ

n∑
i=1

D(pθ(xi) ‖ u) + λ ‖θ‖ . (1)

Here, u is the uniform distribution, D(p ‖ q) is the Kullback-
Leibler (KL) divergence between probability distributions p and
q, and ‖θ‖ is an `2 parameter regularizer (e.g., Frobenius norms
in the matrix case). The choice of trade-off parameters, which
include γ, κ, λ ≥ 0, is discussed in section 5. Here, we describe
each of the terms in J(θ) in detail.

The first term in Equation 1 optimizes towards producing
distributions close to the target distributions. If γ, κ = 0,
J(θ) is a standard fully-supervised MLP training criterion.
In the case of hard labels we have that DKL(ti ‖ pi) =
− log pθ(yi|xi) which is the standard conditional maximum
likelihood criterion.

The second term in Equation 1, often called a graph regu-
larizer, favors smooth solutions over the graph. That is, nearby
points in the graph — those with large weightsωij , or more gen-
erally geodesically close — should have similar posterior distri-



butions. This term captures the manifold assumption mentioned
earlier. Note that the graph regularizer applies to all points, both
labeled and unlabeled, which allows pθ(xi) to potentially di-
verge from ti in the presence of noisy labels.

The third term in Equation 1 is an entropy regularizer en-
couraging higher entropy output distributions. We use the KL
divergence between the posterior distribution and a uniform dis-
tribution for consistency in our objective and so the optimiza-
tion always has a lower bound of 0. To discourage degenerate
solutions where all unlabeled points are given the same label,
and because MLPs are often very confident in their predictions,
favoring higher entropy can be important, especially near de-
cision boundaries. This is especially true if the graph contains
separate connected components, some of which may have few
or no labeled samples.

The last term in Equation 1 is a standard `2 regularizer on
the model parameters (often called weight decay in the tradi-
tional MLP literature). Along with the entropy regularizer, we
include this term in our objective as it gives some insurance
against the case when too many parameters are available for a
given amount of training data. This is especially important at
the first layer of the MLP.

2.1. Relationship to other work

While our objective function is novel, this is not the first pa-
per to provide a SSL extension for MLPs. In [20], the authors
propose a squared-loss objective, which is not as well suited to
probabilistic classification [9]. Our objective, by contrast, starts
with a cross-entropy loss function on softmax outputs (equiv-
alent to using the Kullback-Leibler (KL) divergence) and also
uses a KL divergence-based graph term to incorporate informa-
tion about nearby points. Another key difference is the amount
of data used: while [20] makes use of one or two unlabeled
points for each labeled point, our method always uses all the
unlabeled data. [20] can, however, apply its graph regulariza-
tion to hidden weight layers instead of only to the output layer.

The idea of using a graph regularizer while training super-
vised algorithms was first proposed in [1] and referred to as
Manifold Regularization (MR). The Harmonic Mixtures algo-
rithm [22] and also [20] fall into this category.

If xi ∈ X is the input space and yi ∈ Y the output space,
a classifier is a mapping f : X → Y . Given D` and Du, MR
defines the optimal mapping as:

f∗ = argmin
f∈Hk

(
1

l

l∑
i=1

L(xi, yi, f) + γA ‖ f ‖2k

+
γI
n2

n∑
i=1

ωij
(
f(xi)− f(xj)

)2)
. (2)

Here, L is a loss function, k : X × X → R is a Mercer kernel,
and HK the associated reproducing kernel Hilbert space with
norm ‖ · ‖K . When L is convex, the overall objective is also
convex. The representer theorem may be extended to show that
f∗(x) =

∑n
i=1 αik(x,xi). Thus, solving for f∗ corresponds

to computing the optimal α∗i ’s. When L is squared-loss, the
above approach is referred to as Laplacian Regularized Least
Squares (LapRLS), and when hinge-loss is used, we get Lapla-
cian Support Vector Machines (LapSVM). LapRLS admits a
closed form solution, i.e., the αi’s may be obtained in a single
step that involves inverting a matrix of size n× n.

Despite some similarities between our proposed approach
and MR, there are several important differences. First, by us-
ing an MLP to learn f , our approach is inherently parametric

in nature. In contrast, MR is inherently non-parametric, poten-
tially requiring the data to be stored for evaluation. While any
samples for which αi = 0 are not necessary, in practice a large
number of αi are often non-zero, although this is at least some-
what kernel-dependent.

Next, the graph regularization term in the case of MR, as
with [20], is based on squared-loss which is theoretically opti-
mal under only a Gaussian assumption over differences in clas-
sifier outputs. KL divergence is a more natural measure of sim-
ilarity between posteriors as it is based on relative rather than
absolute error. KL divergence is also asymptotically consistent
w.r.t. the underlying probability measures.

A third difference is that, as stated above in the case of MR,
a convex L implies convexity of the overall objective. Because
the MLP loss function is not convex, neither is J(θ). Yet MLPs
are still used for many tasks and, as shown in section 5, our
model still trains effectively.

Finally, and this is an important goal of this work, MR does
not scale to the large data sets commonly seen in speech ap-
plications. The closed form solution of MR requires inverting
a very large dense (n × n) matrix, rendering it impractical for
many problems.

The Harmonic Mixtures algorithm [22] is similar to the pro-
posed approach in that they use a graph regularizer while train-
ing a Gaussian mixture model (GMM). As in MR, the graph
regularizer here is squared-loss based but their objective is not
convex. However, GMMs are generative models, and they use
maximum likelihood to learn the parameters while our objective
is inherently discriminative.

Finally, we note that, while in this work we use the KL-
divergence between distributions, any valid measure of similar-
ity between probability distributions can be used. And to rein-
force a point made earlier, the first term in J(θ) may be replaced
by a loss function corresponding to any supervised learner lead-
ing to a semi-supervised version of that learner.

3. Model Optimization
Lacking a closed form optimal solution, we use stochastic gra-
dient descent to optimize our MLPs in all cases. Combined with
efficient derivatives, this allows the model to easily generalize
to large problems. In all cases, θ = (who, wih), a pair of matri-
ces corresponding respectively to the hidden-to-output weights
and the input-to-hidden weights of the MLP. We use the symbol
w to refer to MLP weights, contrasted with ω to refer to graph
edge weights.

Analyzing Equation 1, we can break terms into entropy and
cross entropy components as D(a ‖ b) = Hc(a, b) − H(a)
where we define cross entropy as Hc(a, b) = −

∑
i ai ln bi.

For a problem with K classes, doing so gives1:

J = D(ti ‖ pi) + γ

n∑
j=1

ωijH
c(pi,pj)

− (κ+ γ

n∑
j=1

ωij)H(pi) + κ logK + λ ‖θ‖ . (3)

For hard labels and γ = κ = 0, differentiating with respect to
MLP weights gives standard back propagation. When γ, κ > 0,
the cross entropy term in Equation 3 unsurprisingly requires that
we propagate errors not only for the current sample point but for

1For notational simplicity, we henceforth use the notation pi =
pθ(xi) where the dependence on the parameters θ and on the ith input
sample is implicit.



each of its graph neighbors as well. The use of “error” in this
case may be misleading relative to standard MLP training: the
value used at each node is not simply the distance to the target
value, as shown next. Note that for these derivatives, we assume
an extra 1 is appended to both the input vector as well as the
hidden layer to accommodate bias shifts.

We start by considering the derivative of the entropy term
H(pi) with respect to the hidden-to-output weights whokm and
input-to-hidden weights wihm`. Because only xi is involved in
this term, we will drop the subscript i.

∂H(p)

∂whokm
= −zm(pk log pk + pkH(p))

∂H(p)

∂wihm`
= −zm(1− zm)x`

∑
k

whokm(pk log pk + pkH(p))

where zm is the hidden layer output after applying a sigmoid.
Next we have cross entropy, H(pi,pj). This derivative it-

self decomposes into two terms: One depends on the current
point xi and its hidden layer activations and the other on neigh-
bor xj and its hidden layer activations. The updates are:

∂Hc(pi,pj)

∂whokm
= (pjk − pik)zjm+

− (pik log pjk + pikH
c(pi,pj))zim (4)

∂Hc(pi,pj)

∂wihm`
= zjm(1− zjm)xj`

∑
k

whokm(pjk − pik)

− zim(1− zim)xi`
∑
k

whokm(pik log pjk + pikH
c(pi,pj)).

Note that the first term in Equation 4 is like the standard back-
propagation error term, except that there is a difference between
the posteriors for each output rather than between a posterior
and its target vector, an intuitively appealing result considering
the goal of the graph term. The second term comes about since
both pi and pj are functions of the weights, unlike the target
vector in MLP training.

4. Experimental Framework
We performed experiments on two data sets. The first was a por-
tion of the Vocal Joystick (VJ) vowel corpus [8], a database of
speakers uttering vowel sounds2. The data was collected for The
Vocal Joystick project [2], an assistive device to allow individ-
uals with motor impairments to use their voice for continuous
control of devices such as a mouse pointer or robotic arm. The
other corpus was TIMIT [6], a well-known corpus for phone
classification consisting of phonetically balanced read English
sentences. In contrast to the VJ corpus, TIMIT has many more
classes; we used the standard 39-class variant [12].

The majority of the VJ recordings are monophthongs, a
speaker uttering a single vowel in isolation; there is no sur-
rounding linguistic context. Utterances were made with rising,
level and falling pitch contours, crossed with quiet, normal and
loud amplitudes, and also amplitude sweeps which start loud
and become quiet or vice versa. The VJ corpus seems ideal for
SSL as it samples points in the vowel triangle [10, 7], defined
primarily by the first two formants, which are very hard to esti-
mate accurately. As a result, it is reasonable to expect that the
data come from a low-dimensional manifold [1, 19] embedded

2The corpus is freely available online: web search for “Vocal Joy-
stick vowel corpus”

in the feature space. We use the same training, development and
test sets specified in [14, 13].

For VJ, the training, development and test sets had roughly
220k, 41k and 90k samples, respectively. For TIMIT, those
numbers were 1.4M, 124k and 515k, respectively. For TIMIT,
the development set was included (with all points unlabeled) in
the training set. MLPs on VJ data were trained to 0.1% conver-
gence, and to 1% convergence on TIMIT.

Results on additional corpora and more mathematical back-
ground can be found in [17].

4.1. Features and Graph Affinity Values

Features were 26-d Mel frequency cepstral coefficients [14]: 13
coefficients and single deltas. We performed mean and vari-
ance normalization assuming a diagonal covariance matrix, and
used a sliding window over 7 adjacent frames as the input to the
classifiers based on results on the VJ corpus in [13], yielding
182-d input vectors. For consistency, we used the same feature
extraction for TIMIT, although we applied per-utterance mean
and variance normalization.

Graphs were constructed over the training data using K-
nearest neighbors (K-NN) based on Euclidean distance. We
then applied a radial basis function (RBF) kernel with width
σ so that our affinity matrix is constructed with values ωij =

e
−
‖xi−xj‖

2σ2 . Here K and σ are hyperparameters; we used K =
20 for VJ and K = 10 for TIMIT. The value of σ was tuned on
the development set over the set di/3, i ∈ {1, 2, 3, 4, 5} where
di is the average distance between each node and its ith nearest
neighbor. The values for γ (in Equation 1) were obtained by a
search over

[
10−6, 101

]
in multiplicative steps of 101; κ var-

ied over 0 and the range
[
10−6, 100

]
in multiplicative steps of

102. To limit the size of the hyperparameter search while tuning
models, we used `2 regularization coefficients and hidden layer
sizes tuned on the fully supervised training set with no graph.
For the VJ corpus, we used an MLP hidden layer of size 50,
also based on tuning experiments. For TIMIT, the hidden layer
was of size 500, chosen to give reasonable performance but still
allow for reasonable training time.

5. Results
In both cases, we created a SSL problem by randomly drop-
ping labels from samples in the training set. We always used
all samples; the only difference is the number of labels used.
Samples whose labels were dropped are simply treated as unla-
beled. This gives a better view of how our algorithm compares
to a baseline MLP at various labeled to unlabeled data ratios.

Although we would have preferred to test our model against
LapRLS or LapSVM, training and evaluation time of those
models was prohibitive for corpora of this size.

5.1. Vowel Classification

Results from the Vocal Joystick corpus appear in Figure 1. In
all cases here, error rates were calculated via a variant on 6-fold
cross validation. The SSL-MLP shows an improvement over
the baseline MLP for all values of l (all statistically significant
at the p < 0.0001 level). The margin between models increases
as more labels are removed on the development set. And despite
a significant degree of mismatch between development and test
sets, the gains still hold up on the test set. Also note that the
SSL-MLP provides a win even when all labels are used.
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Figure 1: Vocal Joystick vowel data (4-class).
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Figure 2: TIMIT data (39-class), differences are statistically
significant everywhere (p < 0.0001) except the fully labeled
case.

5.2. TIMIT Phone Classification

TIMIT results (frame-based) appear in Figure 2. We see a small
and significant improvement in accuracy over most of the range
on the development set. The gap becomes much larger when
using only 1% of the labels. Shifting to test results, we see that
the difference holds up except when using all labels. In the test
case, the difference is statistically significant at p < 0.0001
in all cases (owing to the large number of test examples even
though it is not obvious from the plot), except the fully labeled
case. The results show a clear benefit from the SSL-MLP, espe-
cially when we have a small number of labeled points, a typical
scenario for the SSL setting.

6. Conclusions and Discussion
We have introduced a novel objective function that expresses
the cost of the current state of a classifier over both labeled and
unlabeled data and have applied it to training multi-layered per-
ceptrons. Our results are encouraging especially when using
only a small percentage of the labels in the training set, and re-
sults on the VJ corpus shows how the graph can help provide
performance gains even on fully labeled data.

The results on TIMIT are a clear demonstration that the
model scales well — and when using little labeled data, and
even with widely varying class priors, the graph regularizer is
able to help the model learn more effectively. In that case, we
see the real power of this model: smoothing over the graph-
induced manifold helps the classifiers retain higher accuracy
with many fewer labels, the ultimate goal of SSL.

While our work here focused exclusively on MLPs, pre-
liminary experiments with a very different classifier, the Ratio

Semi-definite Classifier (RSC) mentioned earlier, show positive
results on the VJ corpus as well. Consequently, our objective
is general, and perhaps more importantly, it is convex in the
collection of distributions {pi}i. When applied to an MLP the
training procedure is not convex of course, but there are many
composition rules that preserve convexity [4], and in such cases
it would be relatively easy to apply the objective to a different
family of classifier so as to obtain a convex parametric SSL al-
gorithm. The objective could be applied to any classifier that
expresses its classification preference as a posterior probability
distribution, even if not convex.

In future work, we would like to explore the sensitivity of
the hyperparameters to the amount of labeled and unlabeled
data. Additionally, by allowing the use of unlabeled data, we
can perform a better analysis of the diphthongs included in the
Vocal Joystick vowel corpus, examining the path of a diphthong
through the vowel space. Finally, the potential improvement
to Tandem acoustic modeling with our SSL-MLP seems worth
pursuing. There are many options with which to experiment and
we expect improved performance as we become more familiar
with this new model.
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