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ABSTRACT

Speech has a property that the speech unit preceding a speech pause
tends to lengthen. This work presents the use of a dynamic Bayesian
network to model the prepausal lengthening effect for robust speech
recognition. Specifically, we introduce two distributions to model
inter-state transitions in prepausal and non-prepausal words, respec-
tively. The selection of the transition distributions depends on a ran-
dom variable whose value is influenced by whether a pause will ap-
pear between the current and the following word. Two experiments
are presented here. The first one considers pauses hypothesised dur-
ing speech decoding. The second one employs an extra component
for speech/non-speech determination. By modelling the prepausal
lengthening effect we achieve a 5.5% relative reduction in word er-
ror rate on the 500-word task of the SVitchboard corpus.

Index Terms— Prepausal lengthening, duration, prosody, ro-
bust speech recognition, dynamic Bayesian networks

1. INTRODUCTION

Automatic speech recognition (ASR) employing segmental features
(e.g. MFCC) has achieved great success, but performance oftende-
grades dramatically in the presence of noise. One reason is that most
ASR systems do not explicitly represent prosodic properties such
as duration. Modelling their interaction with words is important as
prosodic properties can be relatively insensitive to moderate noise
and channel distortions [1]. Their resistance to noise conditions also
allows prosody analysis on the training data to be valid for ASR in
a condition that is unknown to match the training condition. In this
study we propose to model one prosodic property – the prepausal
lengthening effect on word durations.

The prepausal lengthening effect is the property that before a
speech pause, the preceding speech unit tends to lengthen. The na-
ture and effects of this property has been well studied in [2, 3, 4]
through a series of experiments analysing segmental durations in
continuous speech. These studies have given evidence that the syn-
tactic pause is one of the primary factors that influence vowel dura-
tions for an individual speaker. The lengthening property is thought
to be correlated with high-level linguistic structures such as sentence
boundaries, syntax and semantics, but it can also be observed in con-
nected digits where most linguistic cues are minimised [5].

Since this duration property occurs in speech units such as
phones, syllables and words, most research has focused on the use
of phone-/word-level models for ASR. In [6] ASR improvements
were reported by penalising word hypotheses that are inconsistent
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with prosodic duration. This idea was extended in [7] and [1]
where explicit word-duration models were estimated and employed
to re-score word hypotheses in N-best lists. To model prepausal
lengthening, separate duration models for words preceding a pause
were employed, which significantly reduced word errors. [8, 5]
also reported ASR improvements by employing separate duration
models for sentence-final words. Prepausal lengthening was also
investigated in [9] within a hierarchical duration model framework,
although the property was not explicitly modelled.

This paper proposes the use of a dynamic Bayesian network
(DBN) to model the prepausal lengthening effect for speech recog-
nition. Specifically, we introduce two state transition matrices for
prepausal and non-prepausal words, respectively. The selectionof
the transition matrix depends on a random variable whose value is in-
fluenced by whether a pause will appear between the current and the
following word. In this study the 500-word task of the SVitchboard
corpus [10] is used, which is a small subset of Switchboard I [11]
with closed vocabulary. In Section 2 we will explore the prepausal
lengthening effect further using this corpus. Section 3 presents tech-
niques to incorporate this property into ASR. Experiments and re-
sults will be described in Section 4. Section 5 concludes and presents
future directions.

2. PREPAUSAL LENGTHENING IN SVITCHBOARD

[sil] you know different ways a family [sil]

0.4 0.8 1.2 1.6 2  

[sil] and we didn’t know [sil]

Time [sec]
0.4 0.8 1.2 1.6 2  

Fig. 1. An example from the SVitchboard corpus to illustrate the
prepausal lengthening effect. The transcription is shown at the top
of the spectrogram of each audio signal with segmentation indicated
by dashed lines. The wordknow lasts 141 ms in (a) and 436 ms in
(b) where it precedes a speech pause ([sil]).



The prepausal lengthening effect is very strong in the SVitch-
board corpus. Although there is an intro/inter-speaker difference in
the speaking rate, the duration of words (mainly vowels) is heavily
influenced by the following pause. Fig. 1 illustrates this effect. Two
sentences both containing the wordknow are used here. In sentence
(a) know occurs before another word and its duration lasts 141 ms.
In sentence (b) whereknow precedes a speech pause, its duration is
significantly longer (436 ms).

Table 1. Mean durations (Mn.) and standard deviations (s.d.), in
ms, of the 10 most frequently occurring words in the 500-word task
of SVitchboard. N = number of cases. Mn.Inc. = Increase in mean
duration. Inc.% = Percent increase in mean duration.

Non-prepausal Prepausal
word N Mn. s.d. N Mn. s.d. Mn.Inc. Inc.%
I 7633 129 74 748 260 127 131 101%
and 4348 272 157 1055 398 170 126 46%
you 4456 126 57 589 251 105 124 98%
oh 2915 249 146 1305 527 234 278 112%
that 2935 209 95 1153 287 108 78 37%
right 677 366 159 2987 407 126 41 11%
it 2428 137 69 907 186 81 49 36%
know 2065 172 86 1091 290 114 118 68%
to 2500 124 79 412 298 131 174 140%
that’s 2488 258 76 198 354 124 96 37%

Mn. 121 68%
s.d. 68 41%

Table 2. Word duration statistics of the 10 words in SVitchboard
which caused the baseline recogniser the most substitution errors.

Non-prepausal Prepausal
word N Mn. s.d. N Mn. s.d. Mn.Inc. Inc.%
it 2428 137 69 907 186 81 49 36%
I 7633 129 74 748 260 127 131 101%
that 2935 209 95 1153 287 108 78 37%
to 2500 124 79 412 298 131 174 140%
you 4456 126 57 589 251 105 124 98%
is 1066 189 105 276 368 152 178 94%
a 2145 82 67 431 229 118 147 178%
oh 2915 249 146 1305 527 234 278 112%
know 2065 172 86 1091 290 114 118 68%
the 2042 119 81 546 277 135 158 133%

Mn. 143 100%
s.d. 62 45%

We analysed word duration using 55,504 sentences (about 33
hours long) from the SVitchboard corpus. The duration samples
were obtained from Viterbi forced-alignments and were divided into
two parts. Words followed by a pause longer than 200 ms are con-
sidered as prepausal, and the rest are considered as non-prepausal.
The threshold was used to remove pauses required for articulation
(i.e. the filled pause [12]). Since the typical duration of a syllable in
English speech is around 200 ms, pauses are more easily perceived
if their duration is longer than 200 ms [13]. Experiments reported in
[9] also showed that pauses shorter than 200 ms do not significantly
affect the duration of the preceding speech unit.

Table 1 presents word duration statistics of the 10 most fre-
quently occurring words in the 500-word task of SVitchboard. The

average increase in prepausal word duration is 121 ms, or 68% of
the average non-prepausal duration. The lengthening property is
strongly affected, however, by the presence/absence of a final con-
sonant. Words ending with a consonant (e.g.that), which have an
average duration increase of 78 ms, are much less lengthened by the
following pause than words ending with a vowel (e.g.to), which
have an average duration increase of 165 ms. This observation is
consistent with studies reported in [3].

A strong lengthening effect is also observed with the words that
caused the baseline recogniser (see Fig. 2) the most errors. Table 2
shows the duration statistics of the 10 words that caused the most
substitutions. The average increase in prepausal word duration is 143
ms, or 100% of non-prepausal duration. A similar duration increase
is found with the words that caused the most insertions and deletions.
Identical duration analysis (not included here) that was run on the
complete Switchboard I corpus also demonstrates a strong prepausal
lengthening effect.

3. MODEL

The baseline system is a conventional hidden Markov model (HMM)
implemented using the DBN shown in Fig. 2. This graph uses state-
clustered within-word triphones and implements a three-state left-
to-right topology. See [14] for more treatment on DBNs in speech
recognition.
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Fig. 2. The baseline model [14] is a standard speech HMM repre-
sented as a DBN. Hidden variables are white while observed vari-
ables are shaded. Straight arrows represent deterministic relation-
ships, curvy arrows represent probabilistic relationships, and dashed
arrows are switching relationships.

The basic approach to modelling the prepausal lengthening ef-
fect is to lengthen a word by slowing down its inter-state transitions
if a pause is considered to occur after. This model, as shown in Fig. 3,
adds several additional components to the baseline model. The lower
portion of the graph is mostly identical to the baseline model except
that the variableState Transition can utilise different state transi-
tion matrices depending on context. The two transition matrices are
used respectively for prepausal words and non-prepausal words, and
they are learnt from the training data. LetApp represent the one for
prepausal words andAnp represent the one for non-prepausal words.
Since prepausal words are normally lengthened, self-transition prob-
abilities inApp will be higher than inAnp.

The selection of the state transition matrix depends on the
switching parent ofState Transition, a new variableRelativeShort-
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Fig. 3. A DBN graph modelling the prepausal lengthening effect (see
Fig. 2 for key). The full model is calledPrepausal+PauseDetector.
The model without the variablePauseDetectObs at the top (dashed)
is calledPrepausal. See text for more details.

Long, notatedR. This random variableR can take a binary value:
short indicates that the current word is not being lengthened and
transition matrixAnp should be used;long indicates that the current
word is being lengthened andApp should be used. VariableR itself
has a switching parent,Word Transition. When there is no word
transition, it simply copies its value in the last frame. If there is
a word transition,R is governed by a distribution conditional on
the variableWord, W. The distributionp(R|W) is learnt from the
training data.

The variablePrepause Constraint is a constraint that is active
only when there is a word transition. It has conditional parents of
RelativeShortLong of the last frame (notatedR(−1)) andWord of
the current frame (notatedW(0). When there is a word transition,
this constraint enforces two rules:

1. R(−1) = short andW(0) 6= silence, or

2. R(−1) = long andW(0) = silence.

The constraint variable is always observed to be value1. This will
cause any decoding hypotheses that do not follow these rules to be
eliminated (i.e. to ensure prepausal lengthening). When the con-
straint is inactive, it has no effect on the model.

The model with the components described so far is called
Prepausal(i.e. the graph without the dashed variable at the top in
Fig. 3). It considers word hypotheses formed during decoding for
pause/non-pause determination. We also test a model that employs
pause detecting features. These features are represented by an ob-
served variable,PauseDetectObs, using two mixtures – one for all
speech words and the other for the silence word. This model (i.e.
the full graph in Fig. 3) is calledPrepausal+PauseDetector. In
this model, the variablePauseDetectObs directly affects the vari-
able Word, and its weight influences the final results. The pause
detecting features are modelled by using Gaussian mixtures with
diagonal-covariance and details will be given in Section 4.

The Gaussian parameters trained for the baseline model were

imported directly into the two new models. While training pa-
rameters of the new models, these baseline-model Gaussian pa-
rameters were held fixed. Three distributions that need to be
trained for the ‘Prepausal’ model are:Anp, App, and p(R|W).
In the ‘Prepausal+PauseDetector’ model the extra Gaussian mix-
tures needed to model pause detecting features were also trained.
The language model scale and word insertion penalty was deter-
mined by evaluating the recognition performance over a range of
settings on the development set. The new models have an addi-
tional scaling factor on the transition distributionsAnp andApp.
The ‘Prepausal+PauseDetector’ model also has a scaling factor on
the pause detecting features. These scales along with the language
model scale and word insertion penalty were optimised on the de-
velopment set separately from the baseline.

4. EXPERIMENTS AND RESULTS

All experiments were performed on the 500-word task of the SVitch-
board corpus [10]. The A, B, and C folds were used for training, the
D short fold was used as the development set, and the E fold was
used as the evaluation set. The acoustic observation vectors con-
sist of 13-dimensional perceptual linear prediction (PLP) features
normalised on a per-conversation-side basis along with their deltas
(D) and accelerations (A). The features are modelled by using 32-
component Gaussian mixtures with diagonal-covariance. All mod-
els were trained and decoded using the Graphical Models Toolkit
(GMTK) [15].

We tested various voice activity detection (VAD) features for the
‘Prepausal+PauseDetector’ model. This was done using a separate
HMM-based pause detector similar to the one used in [16], which
consists of an ergodic HMM with two states –speech andpause.
Table 3 lists the detection accuracy rates. The ‘Energy’ feature con-
sists of energy and delta energy smoothed over a 9-frame Hamming
window. ‘VAD5’ consists of 5 features commonly used for VAD:
Energy, Energy Entropy, Zero-Crossing Rate, Spectral Roll-off, and
Spectral Centroid. PLP features were also tested.

Table 3 shows that energy-based features perform better than
those characterising speech (e.g. spectral centroid). This is because
in SVitchboard the leakage of speech from the other channel may
appear during silence periods. Many speech frames are falsely de-
tected as pause. The energy-based features, however, are less af-
fected by this problem. The lowest frame error rate is achieved us-
ing ‘PLP D’ (10.3 for the development set). We employ this feature
with the ‘Prepausal+PauseDetector’ model in ASR experiments.

Table 4 lists results of ASR experiments. Using the ‘Prepausal’
model we achieve a 5.5% relative reduction in word error rate
(WER), which is significant at the 0.001 level (matched-pairs test).

Table 3. Frame error rates of speech/pause detection.Dim is the
feature dimensionality andComp is the number of mixture compo-
nents used. All mixtures have diagonal covariance. The numbers in
() indicate percent error rates of respective speech/pause frames.

Frame Error Rate (%)
Feature Dim Comp Development Evaluation
Energy 2 2 14.3 (14.5/14.1) 13.7 (13.4/14.0)
VAD5 5 8 15.7 (19.8/12.4) 15.4 (20.1/11.2)
PLP 13 32 13.3 (17.3/9.9) 13.7 (17.6/10.3)
PLP D 26 32 10.3(9.3/11.1) 10.6(9.6/11.5)
PLP D A 39 32 12.0 (12.8/11.0) 12.5 (13.0/12.0)



Table 4. Speech recognition results on the 500-word task of SVitchboard.S, D, andI are counts of substitutions, deletions, and insertions.

Development Evaluation
Model S D I WER S D I WER
Baseline 602 190 197 53.9% 7069 2634 2336 60.1%
Prepausal 584 223 129 51.0% 6937 3035 140856.8%
Prepausal+PauseDetector 583 230 139 51.9% 6969 2983 1506 57.2%

The improvement is mainly from reducing insertions (by 830), due
to the fact that words preceding a pause are hypothesised as length-
ened in the model. It is also likely that lengthened prepausal words
match the acoustics better as substitutions are also reduced (by 100).
The model produces more deletions (by 349). Using the ‘Prepausal+
PauseDetector’ model we achieve a 4.8% relative reduction, and the
improvement is significant at the 0.001 level.

The difference between results of the two prepausal models is
not significant. We believe this is because there already is a state
for pause in the base model, and that information about this state
is effectively being communicated from the existing speech features
(PLPs) via the phone variable (which is set to the pause state) to the
silence word (the silence word should be the one that best explains
a set of phones being in the pause state for a duration> 200 ms).
The PLPs used for speech/non-speech detection might thus be re-
dundant with the normal speech features. It may be that the initial
speech/pause detection analysis selected the best features only for
this subtask rather than the ones that would work best in the final
combined model. Future work will investigate this hypothesis and
will employ secondary features in novel ways.

Table 5. Frame error rate (%) of speech/pause segmentation pro-
duced by various models on the development set.

Baseline Prepausal Prepausal+PauseDetector
12.7 (4.5/19.4) 8.5 (11.3/6.2) 8.5 (11.0/6.5)

Table 5 gives speech/pause segmentation error rates produced
by various decoders. This is done by comparing the decoder out-
put with reference pause segmentation (from forced-alignments)
on a frame-by-frame basis. It is clear that with the baseline model
many more pause frames are falsely recognised as speech, causing
many insertion errors. With the two proposed models the pause
segmentation error rate is greatly reduced. In fact, the results
are better than any pause detectors reported in Table 3. In the
‘Prepausal+PauseDetector’ model the extra pause detection com-
ponent does not bring much gain since the error rates of pause
segmentation output by both prepausal models are almost identical.

5. CONCLUSIONS

In this study we investigate the prepausal lengthening effect and
incorporate this property into speech recognition using a dynamic
Bayesian network. The lengthening effect is very strong in conver-
sational speech and by modelling the property we achieve a signif-
icant reduction in WER. It has been shown [3] that speech pauses
affect the preceding vowels more than consonants. Currently phones
are lengthened regardless of their categories. This could potentially
be improved upon by sharing transition probabilities for phones with
less lengthening effect. Another property that is not modelled here
is that speech acoustics also change due to the lengthening effect.
Future work will investigate if this has a significant impact on ASR.
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