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Abstract
In this paper, we investigate the use of dynamic Bayesian net-
works (DBNs) to explicitly represent models of hidden features,
such as articulatory or other phonological features, for auto-
matic speech recognition. In previous work using the idea of
hidden features, the representation has typically been implicit,
relying on a single hidden state to represent a combination of
features. We present a class of DBN-based hidden feature mod-
els, and show that such a representation can be not only more
expressive but also more parsimonious. We also describe a way
of representing the acoustic observation model with fewer pa-
rameters using a product of smaller models, each corresponding
to a subset of the features. Finally, we describe our recent exper-
iments using hidden feature models on the Aurora 2.0 corpus.

1. Introduction
The majority of current speech recognition research assumes a
model of speech consisting of a stream of contiguous segments
(phones) derived from an underlying stream of basic linguis-
tic units (phonemes), conforming with the theory of generative
phonology of the 1960s and 1970s [1]. In more recent theo-
ries such as nonlinear phonology, speech is considered to be the
output of multiple streams, or tiers, containing various features
(e.g., [2]). These features, which are hidden from the listener
(as opposed to observed acoustic features), can evolve asyn-
chronously and may not line up to form phonetic segments. We
refer to models of speech that use multiple streams of such fea-
tures as hidden feature models.

There is also mounting evidence that the phone-based
model is inadequate for speech recognition, especially in the
case of spontaneous, conversational speech [3]. It has been
noted, for example, that spontaneous speech is extremely dif-
ficult to transcribe phonetically, with both phone identities and
phone boundaries being difficult to pinpoint [4]. Furthermore,
while it has been hypothesized that pronunciation variability ac-
counts for a large part of the performance degradation on con-
versational speech [5, 6], efforts to model this variability with
phone-based rules or expanded lexica have had only limited
success [6, 7]. One possible explanation is that phonemes af-
fected by pronunciation rules can take on a surface form “inter-
mediate” to the underlying phonemes and the predicted surface
phones [8]. Such intermediate forms may be better represented
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as resulting from changes or spreading in one or more features
rather than as entire phone changes.

There have been a few efforts to use feature-based models
for speech recognition, typically using articulatory features. For
example, Deng et al. (e.g. [9]) and Richardson et al. [10] repre-
sent multiple features in one hidden state variable, whose evo-
lution follows certain allowed trajectories. Kirchhoff (e.g. [11])
estimates the values of the hidden features, then treats them as
observed variables and maps them to words.

A difficulty in using hidden feature models is that the most
commonly used computational structures (e.g. hidden Markov
models) allow for only one state variable at a time, whereas
feature-based models are more naturally represented using sev-
eral state variables, one for each feature stream. One framework
that addresses this issue is that of graphical models (GMs) [12].
GMs, and in particular dynamic Bayesian networks (DBNs),
have been gaining popularity as a modeling tool for speech
recognition [13, 14, 15]. GMs allow for arbitrary sets of vari-
ables with arbitrary dependencies, making the specification of
hidden feature models straightforward. In addition, if certain
independencies can be assumed to hold among the variables,
GMs can provide a more parsimonious representation.

In the following sections, we describe our initial experi-
ences with DBNs for hidden feature modeling. Section 2 briefly
introduces DBNs and describes a class of hidden feature mod-
els. Section 2.3 discusses the possibility of factoring the acous-
tic observation model into multiple small factors, each corre-
sponding to a subset of the features. Section 3 describes exper-
iments on the Aurora 2.0 corpus. Finally, Section 4 concludes
with a discussion of our work thus far and possible extensions.

2. DBN-based hidden feature models
2.1. Dynamic Bayesian networks

A Bayesian network (BN) is a way of representing the con-
ditional independence properties of a set of random variables
(RVs) via a directed acyclic graph, each of whose nodes cor-
responds to one of the RVs. Independencies are encoded via
missing edges in the graph. Specifically, for a graph over the
variables X1, . . . , XN , the joint distribution is given by

p(x1, . . . , xN ) =

N
∏

i=1

p(xi|xπi
), (1)

where Xπi
are the parents of Xi in the graph.

Dynamic Bayesian networks (DBNs) are BNs that have a
repeating structure consisting of an indefinite number of frames,



so as to model stochastic processes over time or space. A hid-
den Markov model (HMM) can be represented with a DBN in
which each frame contains two variables (the state and the ob-
servation) and two edges (from the state to the observation, and
from the state in the previous frame to the current state).

2.2. Hidden feature models

Figure 1 shows the basic structure of one class of hidden fea-
ture model for two frames. In each frame, there are N features
A1, . . . , AN , each of which depends on the current phone state
S and on its own value in the previous frame. O is the vector
of observations (i.e. acoustic features), which depends on the
current features. The intuition for this structure is that, at any
instant, each feature would like to be at the target value for the
current phone, but is also affected by its own value in the previ-
ous frame because of inertia and continuity constraints. S and
A1, . . . , AN are discrete with discrete parents, so their proba-
bilities are given by (multidimensional) conditional probability
tables (CPTs). O is typically continuous; we refer to its proba-
bility, conditioned on its parents, as the observation model.

This model could be represented as an HMM, by combin-
ing S, A1, . . . , AN into a single variable whose state space is
the product space of the individual variables. However, the
size of the state variable’s CPT would be much larger than the
sum of the CPT sizes for the original variables. Specifically, if
the cardinalities of the original variables are cS , cA1

, . . . , cAN
,

then the equivalent HMM state variable would have cardinal-
ity cS

∏

cAl
; so while the original variables require about

c2
S + cS

∑

c2
Al

parameters, the new state variable would need
about (cS

∏

cAl
)2, quickly leading to data sparseness. There-

fore, if we can assume certain independencies among the vari-
ables, it is more parsimonious to represent this explicitly than
to collapse it into an HMM. Also, a representation that explic-
itly encodes independencies may result in computational sav-
ings for probabilistic inference (i.e. in training and decoding).

Depending on our assumptions, each al’s CPT may be (a)
dense, i.e. any value is possible with some non-zero probability;
(b) sparse, i.e. only certain trajectories are allowed; (c) dense or
sparse, but also independent of al’s previous value, in which
case the inter-frame edges can be removed; or (d) deterministic,
i.e. the value is completely determined by the parents. In the
case of (d), the model becomes an HMM (although, as we dis-
cuss below, we further factor the observation model, so that it is
not identical to a phone-based HMM even in this case).

This structure has been suggested previously [13, 16] but,
to the authors’ knowledge, no experimental investigations have
been reported with such a model. We also consider possible ex-
tensions, namely the inclusion of certain additional edges. For
example, edges can be added between different hidden features
to represent possible dependencies between them. Also, de-
pending on the feature set and the allowed dependencies be-
tween features, it may be unrealistic to assume that the observa-
tion is independent of the phone given the features. In that case,
an edge may be added from the phone state to the observation.

This structure defines a large class of models. We report on
experiments using a subset of these, consisting of options (c)
and (d) above, with or without a phone-to-observation edge.

2.3. Factoring the observation model

Another problem encountered in feature-based models is the
large number of possible feature states (whether factored into
multiple feature variables or represented as a single state vari-
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Figure 1: A hidden feature model.

able). The observation model, p(o|a1, . . . , aN ), requires a sep-
arate distribution for each allowed combination of feature val-
ues a1, . . . , aN , typically resulting in a very large number of
distributions. In order to avoid the resulting data sparseness and
complexity, we are exploring the possibility of factoring this
probability into terms corresponding to smaller subsets, or clus-
ters, of features. The number of distributions to be estimated
during training and evaluated during decoding is then given by
the sum of the cluster cardinalities, rather than by the product
of the feature cardinalities.

Let F be the set of features. Define (non-intersecting) fea-
ture clusters F1, . . . , FM , where M ≤ N , such that Fk ⊆ F

and
⋃

Fk = F . We consider replacing p(o|a1, . . . , aN ) with

∏M

k=1 p(o|fk)

Z(o)
, (2)

where fk is a vector of values of the features in Fk, and Z(o)
is a normalizing constant. There is a number of possible sets
of conditional independence assumptions that can be shown to
lead to this factorization. We are currently working on the par-
ticular assumptions that are needed and their implications.

3. Experiments
Our experiments have been performed on the Aurora 2.0 corpus
of noisy connected digits [17] using GMTK [14], a toolkit for
representation of and computation with DBNs. We compare
our hidden feature models to a baseline phone-based HMM, in
which the observation depends only on the current phone state.
Our actual training and decoding structures represent S using
several variables such as the current word, position within the
word, and phone and word transitions, as in [16].

The CPTs in the baseline model are constructed such that
they implement a 3-state left-to-right phone-based HMM, with
the exception of a one-state model for inter-word silence. Un-
like most Aurora systems, the baseline is not word-based as it
is unclear how word states would be mapped to feature values.

Our feature set consists of eight features: voicing (off,
on), velum (closed, open), manner (closure, sonorant, frica-
tive, burst), place (labial, labio-dental, dental, alveolar, post-
alveolar, velar, nil), retroflex (off, on), tongueBodyLowHigh
(low, mid-low, mid-high, high, nil), tongueBodyBackFront
(back, mid, front, nil), and rounding (off, on). “Nil” place is
used for vowels; “nil” tongue features are used for most con-
sonants. All phones except silence are mapped to vectors of
canonical feature values; silence has its own observation model.



We have experimented with model configurations (c) and
(d) (see Section 2.2), with or without a phone-to-observation
edge during decoding. For decoding with a phone-to-
observation edge, we trained separate baseline and feature-
based observation models and combined them during decoding
using exponential weights on both models; the phone transi-
tion probabilities in the combined models are taken from the
baseline. We also used exponential weights on all of the other
local probability models to control their relative contributions.
Specifically, the per-frame score used in decoding is given by

p(si|si−1)
ws

(

∏

l

p(al,i|si, al,i−1)
wa

)

p(o|si)
wpwo

×p(o|a1,i , . . . , aN,i)
(1−wp)wo ,

(3)

where wo is the total weight of the observation model, which is
varied to control the insertion and deletion rate, and wp is the
weight of the phone-based observation model relative to wo.

In the case of model (d), we used a factored observation
model, so that the last term in the above expression is further
factored into multiple terms corresponding to feature clusters..
To construct the feature clusters, we used an agglomerative clus-
tering procedure, with the average mutual information between
features in the clusters as the distance measure. The mutual
information estimates were obtained from forced alignments of
the training data. The resulting clustering has voicing and man-
ner in one cluster, the two tongue features in another cluster,
and the four remaining features in four separate clusters.

The observation vector consists of 13 Mel-frequency cep-
stral coefficients plus energy, along with their derivatives and
second derivatives. All observation models are implemented as
Gaussian mixtures. We set the number of Gaussians, as well as
the various weights, based on development set results.

3.1. Results

3.1.1. Deterministic models

Figure 2 shows the word error rates of the baseline phone-based
HMM recognizer and the deterministic hidden feature model
(model (d)) combined with the phone-based observation model
via a phone-to-observation edge (referred to as the “HFM +
phone” model) on three development sets with added subway
noise. This configuration is very similar to the model in [18].
We compare recognizers trained on the “multi-train” set with
multiple noise conditions and the “clean-train” set containing
only clean speech. Error rates for the hidden feature model
alone (without the additional phone-to-observation edge) are: in
the multi-train case, 1.9% on the clean test set, 10.0% at 10 dB,
and 60.0% at -5 dB; in the clean-train case, 2.1% on the clean
set, 57.3% at 10 dB, and 90.7% at -5 dB. Table 1 shows results
on several independent test sets with a different noise type (bab-
ble noise) and an additional noise level, using the weights found
to give the best results on the development sets.

In most cases, the HFM + phone models achieve lower er-
ror rates than the baseline for some range of wp; the best setting
of wp, however, can be quite different from one noise level to
another. The feature models by themselves are worse than the
baseline, except in the -5 dB condition where they improve on
the baseline appreciably. We also note that we found similar
results using just a small subset of the features on the develop-
ment sets; for example, a model using the tongue feature cluster
alone still performs better than baseline at -5 dB, and, when
combined with the phone-based observation model, achieves
improvements in both the clean and the -5 dB conditions.
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Figure 2: Results of HFM + phone models on Aurora set A
with added subway noise. wp = 1 corresponds to the baseline
(wp = 0 would not correspond to the feature model alone since
it uses the baseline phone transition probabilities). The 10 dB
results have been split into two plots for clearer viewing.

Train Test Baseline HFM+phone %
set set WER (%) WER (%) reduction

multi-train clean 0.4 0.3 25
10 dB 1.8 1.8 0
0 dB 46.0 43.7 5
-5 dB 115.7 101.1 13

clean-train clean 0.4 0.5 -25
10 dB 57.6 49.8 14
0 dB 94.4 85.4 10
-5 dB 94.8 89.5 6

Table 1: Test set word error rates (WERs) on Aurora set A with
added babble noise. The last column shows the relative WER
reduction of the HFM + phone model over the phone baseline.

3.1.2. Non-deterministic models

We have experimented with model (c) using an unfactored
observation model. Since this model is more computation-
intensive than the deterministic one, we have trained it on a
random 1000-utterance subset of the multi-train set, and used
additional random 1000-utterance training subsets as develop-
ment data. For comparison, we have also trained the baseline
recognizer on this training subset. In order to help constrain the
features to remain associated with their intended “meanings”,
we used a two-step training procedure: first, we fix the Gaus-
sians to be identical to a set of Gaussians trained with the de-
terministic model (using the same 1000-utterance training set),
and train only the CPTs of the feature variables; second, we
keep the CPTs fixed while training the Gaussians.

Development set results with varying wp show a similar
pattern to that obtained with the deterministic models. Table 2
shows test set results obtained using weight values that were
found to perform well on the development data.

An encouraging note is that many of the learned feature



Test set Baseline HFM+phone %
WER (%) WER (%) reduction

clean 1.3 1.2 8
10 dB 3.7 3.6 3
0 dB 47.4 47.2 0
-5 dB 116.1 108.6 6

Table 2: Test set word error rates (WERs) on Aurora set A
with added babble noise, using model (c) trained on a 1000-
utterance subset of the multi-train set.

CPTs behave as expected, suggesting that they have retained
their intended meanings. On a task with such a small vocabu-
lary and phone set, one can make some predictions, based solely
on phone identities, for how the feature probabilities should be-
have. For example, we expect the phone [ � ], and especially its
final state, to be retroflexed more often than other phones are,
as it only occurs before [r] (in the word “four”). We have, in
fact, found such patterns in the trained feature CPTs, including:
retroflexion of the final state of [ � ] as expected; nasalization
of the final states of [ � ] and [ � ], both of which occur just be-
fore [n] (in “seven” and “one”); rounding of the first state of
[ � ], which occurs after [w] in “one”; and the realization of the
middle states of [t] and [k] as both closures and fricatives (the
canonical realization being a burst).

4. Discussion
We have described a class of hidden feature models that is quite
rich, with special cases ranging from completely deterministic
features to features that can range over all possible values and
have dependencies on the previous frame and on other features.
We have found that certain models in this class can achieve
improved performance on a simple recognition task, indicating
that the hidden features contain information not present in the
phone-based representation. Anecdotal evidence suggests that
the trained models can retain the intended meanings of the fea-
tures even when they are given some freedom to stray from their
canonical realizations.

We have also seen that the feature model configurations we
have tested without the phone-to-observation edge usually per-
form worse than the phone-based model, suggesting that the
strong assumptions in these models may be unreasonable. Ad-
ditional model configurations using the same basic structure, in-
cluding ones with dependencies between the features, may ame-
liorate this. It is clear, from linguistic and physiological consid-
erations, that there are some inter-feature dependencies. Some
can be deduced from such considerations and added manually
to the model, but a more attractive approach may be to learn the
dependencies from data using structure-learning algorithms.

While the model class we have presented is very flexible,
it has the drawback that the features still depend on the phone.
We are currently exploring the possibility of an alternate class
of model with less or no dependence between the phone and
the features, which would more closely adhere to the ideas of
nonlinear phonology.

We are also currently further studying issues in the factor-
ization of the observation model. In particular, we are interested
in gaining a better understanding of the minimal assumptions
needed to obtain the factorization and their implications, as well
as developing clustering techniques that match the assumptions.

Finally, we plan to apply our techniques in domains with

greater phonological variation, which may stand to gain more
from the freedom of non-deterministic hidden feature models.
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