
SVitchboard II and FiSVer I: High-Quality Limited-Complexity Corpora of
Conversational English Speech

Yuzong Liu, Rishabh Iyer, Katrin Kirchhoff, Jeff Bilmes

University of Washington, Seattle
{yzliu,rkiyer,kk2,bilmes}@uw.edu

Abstract
In this paper, we introduce a set of benchmark corpora of con-
versational English speech derived from the Switchboard-I and
Fisher datasets. Traditional ASR research requires considerable
computational resources and has slow experimental turnaround
times. Our goal is to introduce these new datasets to researchers
in the ASR and machine learning communities (especially in
academia), in order to facilitate the development of novel acous-
tic modeling techniques on smaller but acoustically rich corpora.
We select these corpora to maximize an acoustic quality criterion
while limiting the vocabulary size (from 10 words up to 10,000
words) with different state-of-the-art submodular function op-
timization algorithms. We provide baseline word recognition
results for both GMM and DNN-based systems and release the
corpora definitions and Kaldi training recipes to the public.
Index Terms: speech recognition, acoustic modeling, submodu-
lar optimization

1. Introduction
Speech recognition is one of the most challenging tasks in ap-
plied machine learning, and one that requires enormous amounts
of rich training data. Among different aspects of a speech recog-
nition system, training acoustic models for conversational speech
recognition is one of the most challenging tasks. First, the acous-
tic characteristics of conversational speech are more diverse than
those of carefully read speech due to increased variability in pro-
nunciation, speaker, and environment. Second, conversational
speech recognition involves large vocabularies. Thus, a very
large amount of training data is required to train a conversational
speech recognition system. Finally, recently developed acoustic
modeling techniques using deep architectures [1, 2, 3, 4, 5, 6, 7],
require long training and, thus, system development times.

While conversational speech recognition is challenging, it is
even more difficult for researchers with limited computational
resources. The complexity of acoustic model training is usually
linear in n (i.e., O(n)), where n is the number of tokens in the
training data. For very large n and computationally demanding
models like DNNs, it can take weeks to train just one system even
on GPUs. Such long experimental turnaround times makes large-
scale speech recognition impractical, particularly in academia
where most researchers and students have limited computational
resources. Even outside of academia, this problem limits the
evaluation of many diverse models since fewer models can be
evaluated given a fixed time and compute budget.

Two of the most commonly used conversational speech cor-
pora are the Switchboard [8] and Fisher [9] datasets, both of
which are large in terms of vocabulary size and number of train-
ing samples. Our goal is (a) to produce useful but acoustically
rich subsets of Switchboard and Fisher, (b) to establish baselines

performance numbers, and (c) to release the corpora definitions
for free to the community. We refer to the resulting corpora as
SVitchboard-II (SVB-II), and FiSVer-I, where in each case “SV”
stands for “small vocabulary.” By doing so, we hope to provide
researchers with smaller but still challenging speech corpora,
thus facilitating faster experimental throughput for testing novel
acoustic modeling and machine learning methods.

2. Goals
The basic goal of high-quality limited-complexity corpus se-
lection is to choose a large subsetX of a ground set V of speech
utterances (e.g., the entire 309-hour Switchboard-I dataset) that
has limited complexity but is similar to the original dataset in
some way. That is, we wish to choose a subset X ⊆ V that have
the following two properties:
1. high quality: That is, X being high quality might mean the

utterancesX constitute a large amount of speech, a large num-
ber of tokens, or be acoustically diverse and/or confusable in
some way. We construct a function g(X) that measures the
quality ofX , and we chooseX such that g(X) is maximized.

2. low complexity: Complexity may correspond to computa-
tional cost, so an obvious complexity measure might be the
vocabulary size in X (i.e., the number of distinct types in X).
We define a function f(X) that measures the complexity of
X , and choose X such that f(X) is minimized.
In a previous study [10], a heuristic was proposed to se-

lect different subsets of Switchboard (with vocabulary size
of 10, 25, 50, 100, 250, and 500 words). The resulting cor-
pora, named “SVitchboard I”, are available online at http:
//tinyurl.com/svitchboardI. The heuristic greedily
selected the most frequent words in the transcripts until the vo-
cabulary size constraint were met, a procedure that can have
unboundedly poor performance [11] since it implicitly defines a
supermodular function that is maximized via the greedy method.
In our work, we investigate a principled approach to data selec-
tion using submodular function [12] optimization. Our approach
builds upon [11] where a subclass of the algorithms we present
here was considered in [11] for subselecting data. However,
[11] only proposed and tested subselection algorithms for this
problem, but it did not produce experimental speech recogni-
tion results or provide resulting corpora definitions. Here, we
consider a more general class of algorithms (that includes those
proposed in [11]) and use them to find the best corpus in terms
of various statistics. Furthermore, we run baseline GMM-HMM
and DNN based ASR systems on these corpora.

3. Submodular Optimization
We formulate the problem of selecting a high-quality, limited-
complexity corpus as a submodular function optimization

http://tinyurl.com/svitchboardI
http://tinyurl.com/svitchboardI

problem. Submodular functions are set functions that
have the ‘diminishing returns’ property. Given a finite set
V , a set function f : 2V → R is said to be submodular if
f(A∪{v})−f(A) ≥ f(B∪{v})−f(B) holds ∀A ⊆ B ⊆ V
and v /∈ B. I.e., the incremental value (or ‘gain’) of element
v decreases as the context in which v is considered grows from
A to B. We also define modular functions as those that satisfy
the above inequality everywhere with equality. Submodular
functions have shown strong performance in several real world
applications such as feature selection [13, 14, 15, 16], clustering
[17], structure learning [18], document summarization [19, 20],
image collection summarization [21], speech training data
selection [22, 23], sensor placement [24], and many others. In
this paper we show that several natural instantiations of the
quality function g and the complexity function f are submodular,
thereby providing a principled approach to data subselection by
simultaneously minimizing a submodular function (complexity)
while maximizing another (quality).

3.1. Constrained Submodular Optimization

[25] defined a number of algorithms to solve the following two
constrained submodular optimization problems, referred to as
“Submodular Cost Submodular Cover (SCSC)”, and “Submodu-
lar Cost Submodular Knapsack” (SCSK), respectively:

Problem 1 (SCSC): min{f(X) | g(X) ≥ c}, and
Problem 2 (SCSK): max{g(X) | f(X) ≤ b},

where both g : 2V → R+ and f : 2V → R+ are polymatroid
(non-negative monotone-nondecreasing submodular) functions.

This addresses exactly the problem we wish to solve. In
particular, we can use the formulation of Problem 2 and directly
enforce constraints on the vocabulary size while maximizing the
quality. Unlike submodular function minimization, however, this
problem is NP-hard [25]. Several of the algorithms proposed
in [25], however, are scalable and admit bounded approxima-
tion guarantees. In this paper, we use the iterative submodular
knapsack algorithm, outlined in Section 4.2 in [25].

3.2. Difference of Submodular Functions Optimization

The second approach we consider minimizes the difference be-
tween submodular functions [26, 27]:

Problem 3 (DS): min
X⊆V

v(X) (1)

where v(X) = λf(X)−g(X) is a difference of two submodular
functions. Similar to SCSC/SCSK, this method addresses the un-
derlying problem; different values of λ will amount to different
vocabulary sizes. Unfortunately, unlike SCSC and SCSK, we do
not have explicit control over the vocabulary size and we instead
need to tune λ to obtain the right solution. Like SCSC/SCSK
this problem is NP-hard, but the algorithms proposed in [26, 27]
are scalable and work well in practice.

3.3. Unconstrained submodular function minimization

The third (and final) approach we consider is
Problem 4 (SFM): min

X⊆V
h(X)

where h(X) = g(V \X)+λf(X) is a submodular function. We
minimize g(V \X), the quality ofX’s complement V \X , rather
than maximizing the quality of X . Since g(·) is polymatroidal
and normalized, we have g(V \X) ≥ g(V)− g(X). Thus, we
minimize an upper bound (g(V \X) + λf(X)) of the objective
rather than the actual objective (g(V) − g(X) + λf(X)).

However, if g(·) is modular, then we exactly maximize the
objective [11]. Also, h(X) with λ ≥ 0 is a mixture of two
submodular functions; hence, h(X) is also submodular and we
can minimize h exactly using unconstrained submodular func-
tion minimization in polynomial time. Third, finding solutions
for all possible values of λ and finding solutions for a single
λ have the same complexity, thanks to the principle partition
of submodular systems (see [12, 28]). On the other hand, this
approach has the disadvantage that for strictly submodular
g(·) we minimize only an upper bound of our goal. Another
disadvantage is that we have to accept the solutions that we get
for different values of λ, and in general there is only a small set
of critical values of λ that matter — any other value of lambda
will produce a solution that is identical to one of the critical
values of λ. This is a disadvantage if the resulting solutions do
not fit our goals, needs, and budgets. Finally, for submodular g
and f , general purpose submodular function minimization, while
theoretically requiring polynomial time, can be slow in practice.

3.4. Corpus creation via various g(·) and f(·)

We next describe different function instantiations for g(·) and
f(·). We start with four different modular functions as quality
functions g. All are normalized so that g(∅) = 0 and g(V) = 1.
Utterance count: g1(X) = |X|/|V |. This defines high qual-
ity as containing a large percentage of utterances in V . Each
utterance (short or long) is given equal weight.
Amount of speech: g2(X) = wV (X)/wV (V) where
wV (X) =

∑
v∈X wV (v) and wV (v) measures how much

speech (excluding silence) is in the acoustic signal v.
Number of tokens: g3(X) = wV (X)/wV (V) where
wV (X) =

∑
v∈X wV (v) and wV (v) measures how many to-

kens are contained in the transcription of utterance v.
Intra-utterance acoustic dispersion/diversity. g4(X) =
wV (X)/wV (V) where wV (X) =

∑
v∈X wV (v) and wV (v)

measures the “acoustic dispersion” of utterance v. If xv =
(xv1 , x

v
2 , . . . , x

v
T) is a sequence of MFCC vectors for utterance

v, then we can measure acoustic dispersion via:

wV (v) =
1

T 2

∣∣∣∣∣
T∑
i=1

T∑
j=1

(xvi − xvj)(xvi − xvj)ᵀ

∣∣∣∣∣ (2)

Hence, we prefer an utterance if it is acoustically diverse.
All the above functions are modular, i.e. the score of an

utterance does not interact with the score of another. Thus, there
is a high chance of choosing a set X that has high quality but
that is also redundant. As an extreme example, if a corpus had
duplicate entries each of which is very high quality, both would
be chosen even though the corpus diversity would not improve.

To address this problem we utilize a strictly submodular
function for g(·) in order to choose not only high-quality but
also a diverse set of utterances. A natural choice for g is the
class of feature based function [23, 29, 30], defined as,

g5(X) =
∑
u∈U

wuφ(mu(X)) (3)

where φ(·) is a non-negative monotone non-decreasing concave
function, U is a set of features, wu is a non-negative weight
of feature u, and mu(S) =

∑
j∈Smu(j) is a non-negative

score for feature u in set S, with mu(j) measuring the degree
to which utterance j ∈ S possesses feature u. Each term in
Eq. (3) is based on a “feature” or “concept” of the objects X be-
ing scored. Features can consist of phonetic or prosodic feature
labels (e.g. phonemes, triphones, words, syllables, tones, par-
alinguistic attributes, etc.) and hence, such functions are useful

SVitchboard-II Dataset
Task Vocab Size Avg. Phone # Utts # Tokens Speech (hrs) g-value # conv. norm. ent 1 norm. ent 2
50 50 3.32 24033 38154 4.01 4.13054e9 4491 0.4688 0.3916

100 100 3.28 27228 51254 4.93 4.8425e9 4571 0.4998 0.4203
500 500 3.95 39694 131815 10.30 7.70767e9 4749 0.6122 0.5243

1000 1001 4.50 48445 230876 16.81 9.70981e9 4801 0.6831 0.5911
5000 5003 5.55 74162 668261 46.28 1.49496e10 4867 0.78340 0.6911
10000 9983 5.97 84636 883710 61.19 1.68402e10 4871 0.8059 0.7152

All 30021 6.22 262473 3109768 224.11 1.0244404e11 4876 0.8016 0.7108
(310 total)

FiSVer-I Dataset
Task Vocab Size Avg. Phone # Utts # Tokens Speech (hrs) g-value # conv. norm. ent 1 norm. ent 2
10 10 4.6 64998 73650 9.96 3.21993e10 15561 0.4740 0.3815
50 50 5.92 115512 144906 17.95 6.91023e10 21052 0.5609 0.4678

100 100 5.6 138722 191156 22.01 9.56028e10 22062 0.5891 0.4958
500 500 5.34 258307 653847 55.32 2.25651e11 23111 0.7129 0.6175

1000 1000 5.43 352261 1299566 99.06 3.23534e11 23214 0.7744 0.5911
All 42154 6.36 1.7M 17M 1242.5 1.30739e12 23300 0.8596 0.7737

(1593 total)

Table 1: Statistics of SVitchboard-II (top table) and FiSVer-I (bottom table) datasets. Vocab size: actual vocabulary size; Avg. Phone:
average number of phonemes per word; #Utts: number of utterances; #Tokens: number of tokens; Speech: hours of speech (excluding
the silence parts); g-value: the function value of g5(X); # conv.: number of conversation sides; norm. ent 1: normalized entropy of
phoneme distribution; norm. ent 2: normalized entropy of non-silence phoneme distribution

for applications in speech processing. Maximizing this objective
asks for sets X that possess diversity over and coverage of the
features. Such functions, moreover, easily scale to large-scale
data selection problems.

In this work, U is the set of clustered triphone HMM state
labels produced by a forced Viterbi alignment of the word tran-
scriptions (using a trained system), and φ() is the square root
function. The score mu(s) is the count of feature u in element
s, normalized by term frequency-inverse document frequency
(TF-IDF), i.e., mu(s) = TFu(s) × IDFu(s), where TFu(s) is
the count of feature u in s, and IDFu = log(|V |

d(u)
) is the inverse

document count of the feature u with d(u) being the number of
utterances that contain the feature u (each utterance is considered
a “document”). The weight for u is given as wu = mu(V).

One obvious candidate for a submodular complexity func-
tion f(·) is the vocabulary corresponding to X . We define
f(X) = wU (γ(X)) =

∑
u∈γ(X) wU (u) where γ(X) are the

vocabulary items (i.e., “types”) associated with X and wU (u)
indicates the undesirability of word u (see [28]). Minimizing f
thus expresses a desire to have a small vocabulary.

4. Experiments and Results
Comparison of Different Algorithms: In the previous section
we proposed three different algorithms with different f(·) and
g(·) instantiations. Our goal here is to create subsets using
different submodular optimization algorithms as well as function
instantiations. For Switchboard I and Fisher we first remove
utterances containing the disfluencies and fillers. For example,
we remove utterances that contain only word fragments (e.g.
sim[ilar]-), uh, [noise], yeah, [laughter], huh, hm, [laughter-*],
uh-huh, um-hum hum, huh-uh, um. The size of the resulting
ground sets V for Switchboard I and Fisher is 93312, and 1.7
million, respectively. For Switchboard I, we use a combination
of different algorithms and function instantiations for a given
target vocabulary size. For Fisher, we use the SCSK algorithm
with g5 as the quality function because of scalability and the

computational efficiency of the SCSK algorithm.
To choose the best resulting corpus for a particular target

vocabulary size, we run each of the optimization methods (Sec-
tions 3.1, 3.2, and 3.3) which gives us a relatively small number
of corpora to choose from. We then compute a set of statistics
on each of the resulting corpora such as the actual vocabulary
size, average number of phonemes per word, the number of ut-
terances and tokens, the speech durations, etc. We also compute
the value g5 for each subset; note that the g5 function measures
the representativeness of the subsets. We believe this value is a
good indicator of corpus diversity. To show a corpus’s phonetic
balance, we compute the normalized entropy of the phoneme dis-
tribution H(p)

log(43)
and the normalized entropy of the non-silence

phoneme distribution H(p)
log(42)

, where we use 43 phones in the
lexicon with 42 non-silence phones. H(p) is the entropy of the
probability distribution over phonemes in the selected subset.

In order to have the best final corpus for the current vocab-
ulary size, we make the final selection by visual inspection of
these statistics (i.e., by hand).1 Table 1 shows the statistics of our
chosen corpora, comprising both SVitchboard II and FiSVer I.
Table 2 shows the specific algorithm and function instantiations
we used to create each subset in Svitchboard II.

Task Algorithm and Function
50 DS, g5

100 SFM, g2
500 DS, g5
1000 DS, g5
5000 SFM, g2

10000 SFM, g2

Table 2: Selected datasets for Svitchboard-II and the correspond-
ing algorithms and functions.

1We will release all corpora that resulted from Sections 3.1, 3.2, and
3.3, although we here run baselines experiments only on our chosen sets.

Data Partition for Cross-Validation: For SVitchboard-II, our
baselines define a cross-validation procedure. The conversation
sides in each subsets are split into 5 non-overlapping folds; each
conversation only exists in one fold. Similar to [10], we denote
these five folds as sets A, B, C, D, and E (with no conversation
side overlaps). For each vocabulary task, we create 5 subtasks:
we use 4 out of the 5 folds as training data. For development
data, we use the first half of the remaining fold; for evaluation
data, we use the second half of the remaining fold. Table 3 shows
the cross-validation schemes of SVitchboard-II. For the FiSVer-I
10-vocabulary and 50-vocabulary subsets, we split the first 90%
utterances as training data, and the remaining 5% and 5% utter-
ances as used as development and evaluation set, respectively.
For other vocabulary sizes we split the data into 98%, 1% and
1% as training, development and evaluation sets, respectively. A
trigram language model is built for each experiment. For each
subtask in SVitchboard-II, the language models must be trained
only on the training data as shown in Table 3, not on the entire
data before the splitting.

Subtask Train Dev Eval
1 ABCD E1 E2

2 BCDE A1 A2

3 CDEA B1 B2

4 DEAB C1 C2

5 EABC D1 D2

Table 3: Five-fold cross-validation schemes of SVitchboard-II.
A-E corresponds the five non-overlapping folds of the original
dataset. The numbers in subscripts denote the first half or second
half of the block.

Baseline Experiments: For each task, we establish two base-
line systems, one with a triphone GMM-HMM system, and
the other with a triphone DNN-HMM system, both of which
are trained using the Kaldi open-source toolkit [31]. For the
GMM-HMM system, we first flat-start a monophone GMM-
HMM system, with 13 MFCCs and their deltas and delta-deltas
(MFCC+∆+∆∆). Cepstral mean normalization is performed
for each conversation side. After the monophone system has
been trained, we use it to train a context-dependent GMM tri-
phone model with MFCC+∆+∆∆ features. The total number
of Gaussians for each task is around 25k. For the DNN-HMM
system, we use alignments from the GMM-HMM system to
bootstrap a triphone DNN/HMM system. Kaldi supports two
different DNN training schemes: the first one is based on [32],
which includes standard Restricted Boltzmann Machines (RBM),
pre-training and stochastic gradient descent (SGD) training with
GPUs; the second one supports parallel training on multiple
CPUs and GPUs, and uses greedy layer-wise supervised training
or layer-wise backpropagation [33, 34] and is described in detail
in [35]. We use the second DNN training recipe with GPUs to
create our baselines: for each task, we create a 4-layer network,
with 1024 nodes in each network. The input features are spliced
MFCCs (with a context window size of 4), followed by an LDA
transformation (without dimensionality reduction) which is used
to decorrelate the input features. The resulting feature vector has
117 dimensions in total. We use 20 epochs to train the DNN, with
a mini-batch size of 256. For the first 15 epochs, we decrease the
learning rate from 0.01 to 0.001 and fix the learning rate at 0.001
for the last 5 epochs. The number of Gaussian components is
around 25k for each system. The numbers of parameters in the
DNN systems are around 3.8 millions and 4.0 millions for the
50/100-vocabulary tasks, and around 5.2 millions for others. The

baselines results for SVitchboard-II and FiSVer-I are shown in
Table 4 and Table 5, respectively. We also run the same system
on the 109-hour Switchboard and obtained a WER of 46.4% and
31.6% on the Hub-5 Eval 2000 dataset, which is comparable to
previous work [36] with a similar setup.

Task Subtask GMM-HMM DNN-HMM
Dev Eval Dev Eval

50

1 35.37% 36.98% 26.89% 29.93%
2 34.90% 31.97% 28.32% 26.78%
3 32.39% 35.63% 27.61% 30.18%
4 35.14% 31.29% 28.61% 25.45%
5 32.05% 34.16% 26.34% 26.49%

100

1 39.13% 41.53% 29.74% 33.18%
2 38.85% 36.31% 32.26% 30.74%
3 36.05% 39.09% 31.06% 32.50%
4 38.47% 35.11% 31.04% 27.98%
5 35.51% 36.77% 28.68% 28.24%

500

1 44.85% 43.15% 37.86% 35.00%
2 41.75% 40.74% 33.85% 32.72%
3 43.18% 44.48% 35.64% 36.96%
4 42.27% 40.96% 34.29% 33.00%
5 42.58% 40.44% 33.62% 32.52%

1000

1 44.54% 43.77% 36.14% 34.21%
2 42.11% 41.97% 33.22% 32.10%
3 44.31% 46.75% 35.59% 37.08%
4 42.89% 41.29% 33.18% 31.69%
5 43.84% 40.99% 34.17% 32.17%

5000

1 44.52% 44.23% 33.69% 33.49%
2 40.52% 40.68% 30.19% 30.34%
3 45.10% 45.79% 35.74% 34.63%
4 42.86% 40.61% 31.96% 29.30%
5 43.53% 41.56% 32.84% 31.28%

10000

1 45.22% 45.26% 32.04% 32.17%
2 41.28% 41.50% 29.01% 29.20%
3 45.16% 46.74% 31.25% 33.14%
4 43.03% 40.31% 30.05% 27.21%
5 44.53% 43.00% 31.47% 30.43%

Table 4: Baseline results (word error rates) on SVitchboard-II
using GMM-HMM systems and DNN-HMM systems.

Task GMM-HMM DNN-HMM
Dev Eval Dev Eval

10 3.76% 8.55% 2.25% 5.43%
50 11.37% 15.69% 8.66% 13.30%

100 25.09% 20.71% 19.03% 17.89%
500 36.97% 32.69% 27.87% 23.80%
1000 41.91% 39.95% 31.14% 29.11%

Table 5: Baseline results (word error rates) on FiSVer-I using
GMM-HMM systems and DNN-HMM systems.

5. Conclusions
We have introduce a new set of benchmark corpora derived from
the Switchboard-I and Fisher datasets. Our goal is to provide to
the ASR and machine learning communities high-quality limited-
complexity corpora of conversational English speech. The result-
ing SVitchboard-II and FiSVer-I datasets will hopefully enable
researchers to conduct experiments on novel machine learning
algorithms and acoustic modeling methods without inordinate
turnaround time. The data can be downloaded from https:
//bitbucket.org/melodi/hqlc-speechcorpora.

6. Acknowledgments
We thank the anonymous reviewers for their suggestions and
comments. This material is based upon work supported by the
National Science Foundation under Grant No. IIS-1162606, and
by a Google, a Microsoft, and an Intel research award. Rishabh
Iyer acknowledges support from the Microsoft Research Ph.D
Fellowship.

https://bitbucket.org/melodi/hqlc-speechcorpora
https://bitbucket.org/melodi/hqlc-speechcorpora

7. References
[1] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,

A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep
neural networks for acoustic modeling in speech recognition: The
shared views of four research groups,” Signal Processing Magazine,
IEEE, vol. 29, no. 6, pp. 82–97, 2012.

[2] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neural networks for large-vocabulary speech recog-
nition,” Audio, Speech, and Language Processing, IEEE Transac-
tions on, vol. 20, no. 1, pp. 30–42, 2012.

[3] T. N. Sainath, A.-r. Mohamed, B. Kingsbury, and B. Ramabhad-
ran, “Deep convolutional neural networks for lvcsr,” in Acoustics,
Speech and Signal Processing (ICASSP), 2013 IEEE International
Conference on. IEEE, 2013, pp. 8614–8618.

[4] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition
with deep recurrent neural networks,” in Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Conference
on. IEEE, 2013, pp. 6645–6649.

[5] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory
recurrent neural network architectures for large scale acoustic
modeling,” in Proc. Annual Conference of the International Speech
Communication Association (INTERSPEECH), 2014.

[6] H. Sak, O. Vinyals, G. Heigold, A. Senior, E. McDermott,
R. Monga, and M. Mao, “Sequence discriminative distributed
training of long short-term memory recurrent neural networks,”
2014.

[7] G. Saon, H.-K. J. Kuo, S. Rennie, and M. Picheny, “The ibm 2015
english conversational telephone speech recognition system,” arXiv
preprint arXiv:1505.05899, 2015.

[8] J. Godfrey, E. Holliman, and J. McDaniel, “Switchboard: tele-
phone speech corpus for research and development,” in Proceed-
ings of ICASSP, 1992, pp. 517–520.

[9] C. Cieri, D. Miller, and K. Walker, “The Fisher corpus: a resource
for the next-generation speech-to-text,” in Proceedings of LREC,
2004.

[10] S. King, C. Bartels, and J. Bilmes, “SVitchboard 1: Small Vocabu-
lary Tasks from Switchboard,” in Ninth European Conference on
Speech Communication and Technology. ISCA, 2005.

[11] H. Lin and J. A. Bilmes, “Optimal selection of limited vocabulary
speech corpora,” in Proc. Annual Conference of the International
Speech Communication Association (INTERSPEECH), Florence,
Italy, August 2011.

[12] S. Fujishige, Submodular functions and optimization. Elsevier
Science Ltd, 2005.

[13] A. Krause, B. McMahan, C. Guestrin, and A. Gupta, “Robust
submodular observation selection,” Journal of Machine Learning
Research (JMLR), vol. 9, pp. 2761–2801, 2008.

[14] A. Das and D. Kempe, “Submodular meets spectral: Greedy algo-
rithms for subset selection, sparse approximation and dictionary
selection,” in ICML, 2011.

[15] Y. Liu, K. Wei, K. Kirchhoff, Y. Song, and J. Bilmes, “Submodular
feature selection for high-dimensional acoustic score space,” in
International Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP). IEEE, 2013.

[16] K. Kirchhoff, Y. Liu, and J. Bilmes, “Classification of develop-
mental disorders from speech signals using submodular feature
selection,” in Proc. Annual Conference of the International Speech
Communication Association (INTERSPEECH), Lyon, France, Au-
gust 2013.

[17] M. Narasimhan, N. Jojic, and J. Bilmes, “Q-clustering,” in NIPS,
2005.

[18] M. Narasimhan and J. Bilmes, “PAC-learning bounded tree-width
graphical models,” in Uncertainty in Artificial Intelligence: Pro-
ceedings of the Twentieth Conference (UAI-2004). Morgan Kauf-
mann Publishers, July 2004.

[19] H. Lin and J. Bilmes, “A class of submodular functions for docu-
ment summarization,” in The 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language Technolo-
gies (ACL-HLT), Portland, OR, June 2011.

[20] ——, “Learning mixtures of submodular shells with application to
document summarization,” in Uncertainty in Artificial Intelligence
(UAI). Catalina Island, USA: AUAI, July 2012.

[21] S. Tschiatschek, R. Iyer, H. Wei, and J. Bilmes, “Learning mix-
tures of submodular functions for image collection summarization,”
in Neural Information Processing Society (NIPS), Montreal, CA,
December 2014.

[22] H. Lin and J. A. Bilmes, “How to select a good training-data subset
for transcription: Submodular active selection for sequences,” in
Proc. Annual Conference of the International Speech Communi-
cation Association (INTERSPEECH), Brighton, UK, September
2009.

[23] K. Wei, Y. Liu, K. Kirchhoff, C. Bartels, and J. Bilmes, “Submod-
ular subset selection for large-scale speech training data,” in Proc.
IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing,
Florence, Italy, 2014.

[24] A. Krause, J. Leskovec, C. Guestrin, J. VanBriesen, and C. Falout-
sos, “Efficient sensor placement optimization for securing large
water distribution networks,” Journal of Water Resources Planning
and Management, vol. 134, no. 6, pp. 516–526, 2008.

[25] R. Iyer and J. Bilmes, “Submodular optimization with submodular
cover and submodular knapsack constraints,” in Neural Informa-
tion Processing Society (NIPS), Lake Tahoe, CA, December 2013.

[26] ——, “Algorithms for approximate minimization of the difference
between submodular functions, with applications,” In UAI, 2012.

[27] M. Narasimhan and J. Bilmes, “A submodular-supermodular pro-
cedure with applications to discriminative structure learning,” in
UAI, 2005.

[28] H. Lin and J. Bilmes, “An application of the submodular principal
partition to training data subset selection,” in NIPS Workshop
on Discrete Optimization in Machine Learning: Submodularity,
Sparsity & Polyhedra, Vancouver, Canada, December 2010.

[29] K. Kirchhoff and J. Bilmes, “Submodularity for data selection in
machine translation,” in Empirical Methods in Natural Language
Processing (EMNLP), October 2014.

[30] P. Stobbe and A. Krause, “Efficient minimization of decomposable
submodular functions,” in NIPS, 2010.

[31] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz et al.,
“The Kaldi speech recognition toolkit,” in Proc. ASRU, 2011, pp.
1–4.

[32] K. Veselỳ, A. Ghoshal, L. Burget, and D. Povey, “Sequence-
discriminative training of deep neural networks,” in Proc. INTER-
SPEECH, 2013, pp. 2345–2349.

[33] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle et al., “Greedy
layer-wise training of deep networks,” Advances in neural infor-
mation processing systems, vol. 19, p. 153, 2007.

[34] F. Seide, G. Li, and D. Yu, “Conversational speech transcription
using context-dependent deep neural networks,” in Interspeech,
2011, pp. 437–440.

[35] D. Povey, X. Zhang, and S. Khudanpur, “Parallel training of deep
neural networks with natural gradient and parameter averaging,”
arXiv preprint arXiv:1410.7455, 2014.

[36] L. Lu and S. Renals, “Probabilistic linear discriminant analysis
with bottleneck features for speech recognition,” in Proc. INTER-
SPEECH, 2014.

	 Introduction
	 Goals
	 Submodular Optimization
	 Constrained Submodular Optimization
	 Difference of Submodular Functions Optimization
	 Unconstrained submodular function minimization
	 Corpus creation via various g() and f()

	 Experiments and Results
	 Conclusions
	 Acknowledgments
	 References

