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b) Baseline Systems
1. Background b) Submodular Functions for Feature Selection ) y

. . . . - Task 1: Data Subset Selection
- Generative acoustic score spaces, such as the Fisher score space, are widely Problem Eormulation

used in speech processing, including acoustic event classification, acoustic- B _ - dimensionality of Fisher score vectors: 186,577
. . . . . « Asetof features V ={f1, fa, -, fu}; . . L L
phonetic classification, segmental minimum Bayes risk decoding, and speaker - baseline feature selection method: use top N features with highest mutual

e _ A - ORS - A submodular function f:2" —s R measures the quality of feature subset S; . . .
verification. The drawback of these score space is their high dimensionality. / ~ quatty iInformation between feature and phonetic class

« K is the total number of features to be selected.

« This work presents a general-purpose feature selection method based on S . | ol < K - Task 2: Graph-based SSL for phone segment classification
submodular function maximization. The problem can be constant-factor Optimization problem: S* = argmaxf(S) subjectto |5] =

. . . . SCV - dimensionality of Fisher score vectors: 182,017
approximated with a simple scalable accelerated greedy algorithm. - baseline segment classifier: HMM, accuracy = 68.02% (TIMIT core test set)

Submodular Function Instantiations .
- graph-based learner: measure propagation[1]

* Facility location function:

2. Fisher Score Spaces Ly(S) =) _maxw;; 5. Results

ieV
indicates how well each feature ¢ € V' is represented by the selected subset S and wi;

. . ) . ) Two-stage feature selection strate
Is the mutual information between feature i and feature j. g gy

 Fisher score vectors: contain derivatives of data log-likelihood w.r.t. the

parameters of a generative model Let V ={f, f.,--- . f»} be the set of all features in the Fisher score vectors.

0 . * Saturated coverage function: _ o
Ux = VglogP(X|0) :acoustic data, 6: parameters 9 Stage 1: prune away features whose mutual information is less than = = 0.01;

Loo(S) =Y min{Ci(S),C:(V)} with Ci(S) =) wy Stage 2: apply submodular feature selection (in Task 1, saturated coverage function;

« When multiple models are involved, Fisher score vectors for each model are ; . . . .
P S , PISHOES S 1€V A in Task 2, facility location function).

stacked to form complete score space:
Ux = (U7 (UR)Ts ey (UR)T)T

- C;(5) measures the degree to which feature = € V' is covered by S.

. . , a) Task 1: Data Subset Selection
« [ is a hyperparameter that determines a saturation threshold, such that the features
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- Often used to compute Fisher kernel similarity measure: are not over-.represe.nted by the_ selec.ted subset S. | Phone Recognition Accuracy e T IR R 5%
/ - - |If saturated, increasing C;(S) will not increase the value of the function. Thus, the R Tkm | -020% | -049% | 148% | 0.52% | 1.52%

K, =U:F U, . Ei - ' i function is forced to pick features that are not yet saturated. & 2ks | 0.11% | 1.60% | 2.33% | 1.46% | 1.97%

2,] i j F’ : Fisher information matrix P y 5 e Soan | osom | oase | Loac | 1ase

- Problem with Fisher score spaces: g 55158 ;)-323 ll-jggo 266441? 161320‘(7; 16312‘{;

* . . . . . . 5 -m . (4] . (4] -U. (] -V. (] -VU. 0
e>_<tremely hlgh-dlmensanI (e.g.. 48 HMMs with 16-component Gaussian Accelerated Qreedy Algorithm o | | | < TTEE IR AR AR N AR
mixtures each => >180k dimensions) * Greedy algorithm can be used to solve the optimization with near-optimal solution. § 10k-m [ 279% | 1.29% | 1.03% | 0.97% | 0.92%

. . . ..
computationallv inefficient * oAl : : : o 20k-s | 6.45% | 3.36% | 434% | 2.58% | 1.46%

. manp dimensioyns S b noiev/uninformative Scalable to high-dimensional feature spaces with an accelerated greedy algorithm ; o Data Selection (Facilty Location) e e BT B e e

y y y O Data Selection (Random) 50k-s | 479% | 5.27% | 3.92% | 2.79% | 2.71%
402 55 5 100 200 30p 400 50p 50k-m | 2.55% | 3.85% | 2.48% | 1.38% | 2.11%
* Previous Approaches to dimensionality reduction in Fisher kernels: ' | all | 521% | 496% | 4.04% | 2.92% | 2.38%
1) Selectively use some dimensions (i.e. means, diagonal covariance matrices i Peroentage of speech in seledted subset
2; Binary cor};pression ( J ) 4' TaSkS! Data Sets and Basellne SyStems Figure 2 Phone accuracy for random subset selection Table 1 Relative improvement in phone accuracy for different
_ and submodular subset selection using the entire Fisher data subset sizes, different number of features, and modular
3) Feature selection using mutual information (modu|ar rank-and-select a) Evaluation Tasks: score space. All (100%) of data (red), facility location (m) vs. submodular (s) feature selection methods. In 28 out
. . - - = . £ (blue), and average (of 100) random selection (green).  of 30 settings, submodular feature selection outperforms
approach) Task 1: Data subset selection for phone recognizer training: find a subset of the modular selection and outperforms the full feature set in 5

original training dataset without significant reduction in performance settings. Submodular function = saturated coverage function.

b) Task 2: Segment Classification
70

3. Submodular Feature Selection

- Data subset selection: also done using submodular selection; requires a graph with — -_—
a) Submodular Functions \ =i W7 similarity weights. 65
_ _ e h - Similarity is computed by Fisher kernel; goal is to reduce dimensionality of Fisher 60
- Class of discrete functions that have a <= —_——

scores to improve graph and thereby the data selection results.

diminishing returns property f(R) = f(@) =3 f(S) = F(@R) =4 55

- Task 2: Graph-based semi-supervised learning (SSL) for phone segment 50

- Given a finite set V, a function J : 2Y 5 Risg

Segment-based Phone Accuracy
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Figure 1: An example of the diminishing . . : : . . . : B Modular Feature Selection ~ [l/Submodular Feature Selection
returns property in submodular functions. - Both tasks involve a high-dimensional acoustic feature space (dimensionality > 180k). o o i .
- Experimental evaluation is conducted on the TIMIT dataset. Figure 3 Phone segment classification accuracy with modular (blue) 'S .matena 'S based on research sponsored by
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