Word Alignment via Submodular Maximization over Matroids

Hui Lin, Jeff Bilmes

University of Washington, Seattle Dept. of Electrical Engineering

June 21, 2011

Matching-based Word Alignment

- Word alignment is a key component in most statistical machine translation systems
- Matching-based approaches (Melamed, 2000; Matusov et al., 2004; Taskar et al., 2005)
 - each word pair is associated with a score
 - alignment: highest scored matching

We generalize

- linear (modular) objective \rightarrow submodular objective
- $\bullet \ matching \ constraint \rightarrow matroid \ constraint$

Benefit:

- expressive power (can represent complex interactions among alignment decisions).
- fertility of words are allowed to be larger than 1

We generalize

- linear (modular) objective \rightarrow submodular objective
- $\bullet \ matching \ constraint \rightarrow matroid \ constraint$

Benefit:

- expressive power (can represent complex interactions among alignment decisions).
- fertility of words are allowed to be larger than 1
- scalable and near-optimal algorithm is available, thanks to submodularity

Outline

- Matroid Constrains
- 2 Algorithms
- 3 Submodular Fertility
- 4 Results

- A source language (English) string $e_1^{\prime} = e_1, \cdots, e_i, \cdots, e_l$
- A target language (French) string $f_1^J = f_1, \cdots, f_j, \cdots, f_J$
- $E \triangleq \{1, \cdots, I\}$: word positions in the English string
- $F \triangleq \{1, \cdots, J\}$: word positions in the French string
- Ground set: V = E × F = {(i,j) : i ∈ E, j ∈ F}, set of edges in a bipartite graph.
- Any alignment A is a subset of V.
- $s_{i,j}$: score of aligning word *i* and *j*.

Partition of Word Alignments

- for English word at position *i*, define $P_i^F = \{i\} \times F$
- P_i^F : the set of all possible edges in the ground set that connect to *i*

Partition of Word Alignments

- for English word at position i, define $P_i^F = \{i\} \times F$
- P_i^F : the set of all possible edges in the ground set that connect to *i*
- for any $i \neq j$, $P_i^F \cap P_j^F = \emptyset$, and $\bigcup_{i \in E} P_i^F = V$
- therefore, P_i^F , $\forall i \in E$ forms a **Partition** of the ground set V.

Partition Matroid for Word Alignments

• $|A \cap P_i^F|$: how many edges in A are connected to i

Partition Matroid for Word Alignments

- $|A \cap P_i^F|$: how many edges in A are connected to i
- $|A \cap P_i^F| \le k_i$: fertility of English word at *i* is at most k_i .

Partition Matroid for Word Alignments

- $|A \cap P_i^F|$: how many edges in A are connected to i
- $|A \cap P_i^F| \le k_i$: fertility of English word at *i* is at most k_i .
- Constraint $\forall i \in E, |A \cap P_i^F| \le k_i$ is a partition matroid constraint.

Partition Matroid for Word Alignments

- $|A \cap P_i^F|$: how many edges in A are connected to i
- $|A \cap P_i^F| \le k_i$: fertility of English word at *i* is at most k_i .
- Constraint $\forall i \in E, |A \cap P_i^F| \le k_i$ is a partition matroid constraint.
- A matroid is combinatorial structure that generalize the notion of **linear independence** in matrices, and it plays an important role in combinatorial optimization
- Example: sub-trees of a graph constitute a type of matroid.

We use a set function $f : 2^V \to \mathbb{R}$ to model the quality (score) of an alignment A, then the word alignment problem can be cast as:

Problem

$$\begin{array}{l} \max_{A \subseteq V} f(A), \text{ subject to:} \\ \forall i \in E, |A \cap P_i^F| \leq k_i, \\ \forall j \in F, |A \cap P_j^E| \leq k_j. \end{array}$$

We use a set function $f : 2^V \to \mathbb{R}$ to model the quality (score) of an alignment A, then the word alignment problem can be cast as:

Problem

$$\begin{array}{l} \max_{A \subseteq V} f(A), \text{ subject to:} \\ \forall i \in E, |A \cap P_i^F| \leq k_i, \\ \forall j \in F, |A \cap P_j^E| \leq k_j. \end{array}$$

- if $k_i = 1$ for all *i*, and $k_j = 1$ for all *j*, the constraints reduce to the standard matching constraints.
- if f(S) is modular (linear) as well, the above problem is reduced to the problem solved in standard matching-based approaches.

We use a set function $f : 2^V \to \mathbb{R}$ to model the quality (score) of an alignment A, then the word alignment problem can be cast as:

Problem

$$\begin{array}{l} \max_{A \subseteq V} f(A), \text{ subject to:} \\ \forall i \in E, |A \cap P_i^F| \leq k_i, \\ \forall j \in F, |A \cap P_j^E| \leq k_j. \end{array}$$

- if $k_i = 1$ for all *i*, and $k_j = 1$ for all *j*, the constraints reduce to the standard matching constraints.
- if f(S) is modular (linear) as well, the above problem is reduced to the problem solved in standard matching-based approaches.

We use a set function $f : 2^V \to \mathbb{R}$ to model the quality (score) of an alignment A, then the word alignment problem can be cast as:

Problem

$$\begin{array}{l} \max_{A \subseteq V} f(A), \text{ subject to:} \\ \forall i \in E, |A \cap P_i^F| \leq k_i, \\ \forall j \in F, |A \cap P_j^E| \leq k_j. \end{array}$$

• Alternatively, If *f* is monotone submodular, a greedy algorithm can solve the above problem near-optimally even if *k_i*, *k_j* are not restricted to be 1 (see the paper for details).

Submodular Set Function

Definition of Submodular Functions

For any $R \subseteq S \subseteq V$ and $k \in V, k \notin S$, $f(\cdot)$ is submodular if

$$f(S+k) - f(S) \le f(R+k) - f(R)$$

This is known as the principle of diminishing returns

Example: Number of Colors of Balls in Urns

$$f(R) = f(\textcircled{O}) = 3$$

$$f(S) = f(\textcircled{O}) = 4$$

- Given a set A of colored balls
- f(A): the number of distinct colors contained in the urn
- Incremental value of object **diminishes** in a **larger** context (diminishing returns).

Example: Number of Colors of Balls in Urns

- Given a set A of colored balls
- f(A): the number of distinct colors contained in the urn
- Incremental value of object **diminishes** in a **larger** context (diminishing returns).

• consider align "de" to "the" or to "of"

- consider align "de" to "the" or to "of"
- the correct alignment should be the one on the left

- consider align "de" to "the" or to "of"
- the correct alignment should be the one on the left
- modular (linear) objective: 0.7 + 0.4 < 0.7 + 0.6.
- competitive linking (Melamed, 2000): one-to-one mapping assumption

- consider align "de" to "the" or to "of"
- the correct alignment should be the one on the left
- modular (linear) objective: 0.7 + 0.4 < 0.7 + 0.6.
- competitive linking (Melamed, 2000): one-to-one mapping assumption
- diminishing the marginal benefits of aligning a word to more than one words in the other string

- modular (linear) objective: 0.7 + 0.4 < 0.7 + 0.6.
- submodular objective: $0.7 + 0.4 > \sqrt{0.7 + 0.6}$.
- thus, a submodular objective gets the better alignment in this case

• Data: English-French Hansards data from the 2003 NAACL shared task

Table:	AER	results
--------	-----	---------

ID	Objective function	Constraint	AER(%)
1		$Fert_F(A) \leq 1, Fert_E(A) \leq 1$	21.0
2	modular	$Fert_{F}(A) \leq 1$	23.1
3		$\operatorname{Fert}_F(A) \leq k_j$	22.1
4	submodular	$\operatorname{Fert}_F(A) \leq 1$	19.8
5		$Fert_F(A) \leq k_j$	18.6
Generative model (IBM 2, $E \rightarrow F$)			21.0
Maximum weighted bipartite matching			20.9
Matching with negative penalty on fertility (ILP)			19.3

Results

• Data: English-French Hansards data from the 2003 NAACL shared task

Table	e: AER	results
-------	--------	---------

ID	Objective function	Constraint	AER(%)
1		$Fert_{F}(A) \leq 1, Fert_{E}(A) \leq 1$	21.0
2	modular	$Fert_{F}(A) \leq 1$	23.1
3		$\operatorname{Fert}_F(A) \leq k_j$	22.1
4	submodular	$Fert_F(A) \leq 1$	19.8
5		$Fert_F(A) \leq k_j$	18.6
Generative model (IBM 2, $E \rightarrow F$)			21.0
Maximum weighted bipartite matching			20.9
Matching with negative penalty on fertility (ILP)			19.3

• our approach is at least 50 times faster than the ILP-based approach

Summary

- a novel framework where word alignment is framed as submodular maximization subject to matroid constraints.
- extension of previous matching-based frameworks in two respects:
 - $\textcircled{0} modular objective} \rightarrow \mathsf{submodular objective}$
 - 2 matching constraint \rightarrow matroid constraint
- such generalizations do not incur a prohibitive computational cost since submodular maximization over matroids can be efficiently approximated with high quality performance guarantees.
- the full potential of our approach has yet to be explored: we plan to investigate richer submodular functions as well (see our paper/presentation "A Class of Submodular Functions for Document Summarization" from yesterday).
- our approach might lead to novel approaches for machine translation as well.