Optimal Selection of Limited Vocabulary Speech Corpora

Hui Lin, Jeff Bilmes

Department of Electrical Engineering, University of Washington, Seattle

{hlin,bilmes}@ee.washington.edu

Abstract

We address the problem of finding a subset of a large speech data
corpus that is useful for accurately and rapidly prototyping novel
and computationally expensive speech recognition architectures.
To solve this problem, we express it as an optimization problem
over submodular functions. Quantities such as vocabulary
size (or quality) of a set of utterances, or quality of a bundle
of word types are submodular functions which make finding
the optimal solutions possible. We, moreover, are able to
express our approach using graph cuts leading to a very fast
implementation even on large initial corpora. We show results
on the Switchboard-I corpus, demonstrating improved results
over previous techniques for this purpose. We also demonstrate
the variety of the resulting corpora that may be produced using
our method.

Index Terms: corpus subset selection, submodularity, LVCSR

1. Introduction

Large vocabulary spontaneous conversational speech recognition
is one of the most challenging tasks in speech processing and
is one of the most computationally demanding in all machine
learning. In recent times, very large amounts of transcribed data,
with both many tokens and many types, have become available.
Some corpora have a vocabulary size as large as one million and
as many as 230 billion tokens [1]! While having such a wealth
of training data is useful from the perspective of producing
better speech recognition systems (there is no data like more
data), the data size itself presents a serious problem for novel
speech recognition research.

Novel ASR systems are often not highly optimized or tuned,
including at the implementation level (where low-level coding
tricks and years of human effort can have a significant speed
and memory benefit) and also at the algorithmic level (where
different or new algorithms can later be discovered to more
efficiently solve the same underlying problem). The more novel
the idea, the more effort it takes to get it working on a large
system since there is less chance of potential implementation
reuse from a pre-existing system. In general, it is important to
be able to test a novel idea quickly, without investing enormous
amounts of time on the engineering effort to make the ideas
perform well, and if a new idea ends up performing poorly,
knowing this sooner rather than later will avoid futile work.

Novel speech recognition systems, moreover, deserve rich
data on which to be evaluated. For example, novel systems
might not show their benefit on data lacking the characteristics
the novel system is designed to address. Now, large corpora
are useful not simply because they are large, but because
they contain information simply unavailable in typical smaller
corpora. For example, a large corpus can contain not only rich
phonetic variety but also a full representation of that variety.
That is, a large corpus has many samples of high probability

word pronunciations (certain pronunciations might even be
over-represented, and less data is sufficient to produce for an
accurate model). Even low probability pronunciations, however,
might have a sufficient number of samples in a very large corpus
to produce a good statistical pronunciation model.

On the other hand, recent large data sets are unkind to novel
ASR systems simply because they are so large. ASR systems
often have complexity that is linear in the number of tokens
and polynomial in the number of types (e.g., decoding using
a trigram language model with size-N vocabulary has, in the
worst case, a complexity of at least O(N?3)). A challenge is
determining how to quickly test a new system on large data sets.

One way to address this problem is to produce a smaller ver-
sion of the corpus, and one way to do this is to draw a subset uni-
formly at random. Any such subset, however, might not possess
the richness mentioned above. It should moreover be possible to
produce a smaller corpus that removes over-representation while
retaining proper representation for every speech unit. Ideally, we
would like a process that can take a large corpus and produce
a subset that satisfies a particular purpose. For example, when
vocabulary size is the key attribute hindering the rapid evaluation
of novel acoustic method, we might choose a limited vocabulary
subset of data of maximal size. On the other hand, we may wish
to correct for some other quality, such as imposing a bias against
certain word forms. We moreover wish the results from the cor-
pus to be an accurate reflection of results from the entire corpus.

In this paper we address this problem by formulating it as
an optimization problem via the use of submodular functions [2].
As we will see, this allows us to express the problem of corpus
subset selection in a variety of flexible ways, suiting the needs
of an individual novel ASR system and its designer, and allows
us to find the optimal solution for our objective, improving on
a previously proposed method for this purpose [3][1_-]

2. Why Not Greedy

Our goal is to create a corpus of spontaneous conversational
speech with limited (small) vocabulary. We do this by selecting
utterances from a large vocabulary conversational speech corpus
(e.g., Swithboard). The question is: how can we select as
much and as rich acoustic data as possible while limiting the
vocabulary size?

One straightforward and simple way to solve this corpus
subset selection problem is to use a greedy algorithm: Here,
we start with an empty vocabulary. In each greedy step, we
add an out-of-vocabulary (OOV) word into the vocabulary if the
amount of data containing only and nothing other than this
new vocabulary is maximized (this is made formal below via
function fyp). The algorithm stops when the desired vocabulary

'We note, early aspects of our approach were presented in a previous
unrefereed workshop paper [4], while in this paper we elaborate on
speech applications and explanations.

(a) Bipartite graph

(b) s-t graph

Figure 1: In subfigure[(@)] V = {v1, vz, vs, va} represents four
utterances, which might be (from top to bottom) “yes”, “oh yes”,
“oh right, right” and “right”; F' = {f1, f2, f3} is the vocabulary,
i.e., f1, f2, f3 represent words “yes”, “oh” and “right” respec-
tively. For X = {vs,va}, v(X) = {f2, fs}. For Y = {f1},

¢(Y) = {v1}. In[(b)} the s-t graph corresponding to Eq.[4]

size is reached. This algorithm was used in [3]], for instance.

The greedy algorithm, although conceptually simple, could
perform arbitrarily poorly for the corpus subset selection
problem. To see this, we first formalize the greedy approach
as follows. Let F' be the set of distinct words (i.e., vocabulary,
or types) in the original (large) corpus. For Y C F, let the
function ¢(Y") denote the set of utterances that contain only
words in Y. Given an utterance v, let ¢, represent the amount
of data contained in . For instance, in [3]], £, is the number of
word tokens in utterance v. The greedy algorithm then attempts
to select a set of words such that a set function fep : 2F 4 R
is maximized, where fob(Y) £ Zueg(y) to.

Now it can be shown that fiy is a supermodular [5] set func-
tion herefore, the greedy algorithm above attempts to solve
the problem of maximizing a supermodular function subject to
a cardinality constraint. Unfortunately, the greedy algorithm
in this case has an unboundedly poor approximation factor. For
instance, let F' = {a,b,c}, f({a}) = 1, f({b}) = f({c}) =
0,f({a,0}) = f{a,c}) = L f({b,c}) = p > 1 and the
cardinality is constrained to be at most 2. This function f is
supermodular. Greedily maximizing f leads to a solution {a, b}
with objective function value 1, while the true optimal objective
function value is p. Since p is arbitrary, the approximation factor
for this example is unboundedly poor. This is unsurprising, as
it is known that greedy algorithm works near-optimally only
when maximizing a submodular function subject to cardinality
(knapsack) constraint [6]], and this nice property has been used
in our previous work on selecting good unlabeled training data
to transcribe [7]] and for document summarization [8, 9].

3. Problem Setup

In this paper, we treat the corpus creation problem as finding a
subset of utterances that simultaneously minimizes the vocab-
ulary size and maximizes the total amount of data, measured
as either the number of utterances, the number of tokens in the
utterances, or duration of speech. The problem can be seen as a
combinatorial optimization problem defined on a bipartite graph.
Let V' be a set of corpus utterances, and let F' be the vocabulary
(set of distinct words) contained collectively in these utterances.
We define a bipartite graph G = (V, F, E) where E C V x F
are the set of edges. Each (v, f) = e € F is an edge between an

2 A set function f : 2V — R is submodular if forany A C B C V

and k ¢ B, we have f(AU{k}) — f(A) > f(BU{k}) — f(B). f

is said to be supermodular if — f is submodular.

utterance v € V and a word f € F if utterance v contains word
f (see Figure for example). We find X C V' that maximizes
the following objective function

w(X) — AD(X) (1

where w(X) measures the amount of data contained in
utterances X, I'(X) represents the vocabulary size associated
with utterances X, and A > 0 is a tradeoff coefficient.

Intuitively, maximizing Eq. [1] simultaneously maximizes
the total amount of data (w(X)) and minimizes the vocabulary
size (I'(X)). Note that we optimize the vocabulary size instead
of having hard constraints on it. By changing the value of A,
we can produce corpora with different vocabulary sizes, where
each vocabulary size is determined during the optimization
process and is optimal in terms of balancing with the amount
of the associated data. In general, the larger A is, the smaller
the resulting vocabulary size will be.

There are at least two advantages of formulating the corpus
subset selection problem as maximizing Eq.[T] First of all, this
allows us to express the problem of corpus subset selection in a
variety of flexible ways, suiting the needs of an individual novel
ASR system its designer. Secondly, unlike the problem setup in
[3] where only a sub-optimal solution is available, our optimiza-
tion problem can be solved exactly and efficiently by leveraging
techniques of submodular function minimization. We discuss
these two aspects in more detail in the following two sections.

4. Objective Functions

When designing a corpus for novel ASR system development,
certain properties of the data as well as certain word forms might
be preferred, both of which can be easily modeled in our ap-
proach by using different forms of the objective function (Eq.[T).
In particular, we may have different w functions depending on
our needs. For instance, when w is the cardinality function, i.e.
w(X) = > ,cx 1 = |X|, it measures the number of the utter-
ances. In this case, maximizing Eq. [I] will give us a corpus that
favors a large number of utterances. We can also have a weight
on each utterance where the weight indicates how important the
corresponding utterance is, i.e., we can have w(X) = > ¢ Sv,
where s, is the weight for utterance . When s, represents the
speech time-length of utterance x,). s, measures the total
speech duration of the utterances X, in which by maximizing
Eq.|l} we will have a bias on utterances that contain more speech.
On the other hand, we can also have different forms of I'(X) to
impose a bias against certain word forms. First, we define (X))
to be the distinct words that appear in utterances X . That is

YWX)E2{feF:3weXst (v,f) € E}. ®)

In other words, (X)) is the vocabulary of utterances (corpus) X,
and the cardinality of (X)) (i.e., |y(X)]) is the size of the vo-
cabulary (see Figure[I(a)). Then we can have I'1 (X) = |v(X)],
which represents the collective vocabulary size of utterances in
set X. We can also have

La(X)= Y or, 3)

fev(X)

where p; indicates the unimportance of word f. A larger
py states that word f is less important. This allows certain
desirable properties of the vocabulary of the resultant corpus
to be expressed (e.g., words with more syllables might be
preferred). Note if py = 1,V f, then I'y =T';.

By using different forms of objective function, corpora
suiting different needs can be created. Table[T]illustrates several
objective functions that we used in our experiments, where for
instance, Corpus D was created by maximizing the total speech
duration in the resultant corpus while limiting the vocabulary
with preference for words with more syllables.

5. Algorithm

Note that maximizing Eq. (I) is identical to finding X that
minimizes

LX) 2wV X) 4+ AI(X). 4)

For a given A, if L(A, X)) is a submodular function on X,
then minxcy L(A, X) can solved exactly in polynomial time
[2] Fortunately, all the aforementioned w functions are modular
(both submodular and supermodular), and all I' functions are
submodular, making L(A, X) submodular in all our cases.
Therefore we can solve our corpus creation problem optimally
by leveraging submodular function minimization techniques.

To create a corpus with the desired property (e.g., a
fixed upper limit on vocabulary size), different values of the
trade-off coefficient A must be tried, where multiple calls
of the optimization algorithm are required. In other words,
we do not have direct control over the vocabulary constraint,
only indirect control via . In our case, however, all possible
solutions for minxcy L(A, X) for all possible A > 0 can be
found in the same complexity as the complexity of solving
minxcy L(A, X) for a single A\, and moreover there are only
a finite (no more than |V'|) number of distinct values of \ that
makes a difference, all thanks to submodularity.

Finding all distinct A values (and minimizing sets) can
be done using parametric submodular function minimization.
When using a push-relabel framework [[10]], finding solutions for
all X requires only the same asymptotic running time as a single
submodular function minimization. Note that the push-relabel
framework was firstly introduced in [11] for network flow
(graph cut) problems.

Now, interestingly, the submodular functions used in this
paper are all graph-representable. In other words, we can
convert our submodular minimization problem to the problem
of finding minimum s-t cuts in a graph, and therefore a fast
parametric flow algorithm [11] can be used to find all the
solutions for the corpus creation problem for all possible values
trade-off coefficient A, while only requiring the computational
complexity of running a single minimum s-t cut, which can be
solved very efficiently even on very large graphs.

We next describe how we convert our minimization problem
into a minimum s-t graph cut problem. Take minxcy w(V \
X) + AI'2(X) for example. We build an s-t graph as follows.
Add a source node s and connect it to every node v € V with
weight ¢,,. Add a sink node ¢ and connect to it every node in
f € F with weight Ap;. Use an infinite weight for every original
graph edge (v, f) € E. Now in such a graph, due to the max-
flow/min-cut theorem, any minimum cut cannot have any edge
(v, f) € E since that edge has infinite capacity, and therefore,
any minimum cut will consist of either:

1. all the edges {(s,v) : v € V} having a cut value of
2vev v =w(V);

2. all of the edges {(f,t) : f € F} having a cut value of
/\Zferf = A2 (V); or

Table 1: Objective functions used for Corpora A, B, C and D. ¢,, and s,
are the number of word tokens, and the duration of speech in utterance
v respectively. gy is the number of phonemes in the pronunciation of
word f.

Corpus ID o)O(I;Jectlve Funlgt(lt))él)
A 1X] 1(X)
B 2 pex by (X)
C D vex Sv 7(X)
D 2pex Sv | 2feqy(x) %

3. theedges {(s,v) : v € V\ X} U{(f,?t) : f e v(X)},
with a cut value of 37 i\ xto + AXrc () Pf =
w(V \ X) + AT2(X).

Note that the first case has X = (), and the second case X =V,
both of which are special cases of the third case. The transfor-
mation is shown in Figure[T(b)] Therefore, finding the minimum
s-t cut will minimize our objective w(V \ X) + A'2(X).

6. Experiments

We tested our corpus subset selection approach on Switchboard 1.
To be comparable with [3]], we followed the same experimental
setup. In particular, each side of the long conversations in the
Switchboard-I corpus was divided into shorter segments. The
initial cuttings used were based on the segmentations produced
by Mississippi State University [[12]. These segments were
further divided into smaller utterances at every silence longer
than 500ms. The resulting utterances were pruned by removing
those containing disfluency and filler-model words: i.e., all word
fragments (e.g. sim[ilar]-), words ending in a digit, uh, [noise],
i-, yeah, [laughter], huh, hm, [laughter-*], uh-huh, um-hum
hum, huh-uh, um.

We investigated several types of w and I" function, and pro-
duced corpora with different properties. In particular, we created
four corpora (corpus A, B, C and D) using objective functions
illustrated in Table[I] and compare them to SVitchboard (SVB,
corpora created using the greedy algorithm [3]].) Note that in
our approach the vocabulary sizes of the resulting corpora are
naturally determined by the objective rather than predefined,
and we choose those that are as close as possible to the SVB
vocabulary sizes (10, 25, 50, 100, and 500) for comparison.

Corpus A was produced with the objective function that
maximizes the number of utterances while restricting the
vocabulary size. It turns out that corpus A indeed includes more
utterances compared to other corpora (created with objectives
that are not maximizing the number of utterances) given the
same vocabulary size. For instance, with vocabulary size 10,
corpus A contains 7615 utterances while SVB has 6775. It
even contains more utterances (26165 vs. 23670) with a smaller
vocabulary (489 vs. 500), compared to SVB.

Corpora B and C were produced in a similar way as corpus
A except that utterance weights were used. In particular, for
corpus B, each utterance was weighted by the number of tokens
it contains (i.e.) .y t. measures the number of tokens in
utterances X), while in corpus C, each utterance was weighted
by the duration of the non-silence speech (i.e. sz
measures the total speech duration of X). The resulting
corpora B and C do have the desired property. As illustrated in
Figure[2(a)] with vocabulary size 50, there are 23124 tokens in
corpus B, which is larger than those in SVB, or in corpora C and
D; there are about 122 minutes of speech in corpus C, which

23500 124

23000

22500
= SVB

22000 7 M CorpusA

21500 CorpusB

 CorpusC

number of tokens

21000 +
= CorpusD

speech duration (minutes)

20500

20000

19500 -+

=svB = SvB

 CorpusA CorpusA
CorpusB CorpusB
B Corpus C " CorpusC

= CorpusD = CorpusD

average pronunciation length

(a) toal number of tokens

(b) total speech duration (minutes)

(c) average number of phones per pronunciation

Figure 2: Corpora statistics on the total number of tokens in the utterances, the duration of speech, and the average number of phones in
the pronunciations of the corpus vocabulary. The plots correspond to a vocabulary size of 50.

S ~
~ O
o A N
?f , ;h:s but 3’]‘::][]]11(understand >
::bout / dony and really zr(;'b?'t)lly \
- / know WOW that’s e
m you they | sounds \
too I did . wonderful
exactly it i i I
a;’f | o do e interesting
f \ not rue mean e J
0 o we - absolutely /
guess \ i i pretty
s \ no 1s right b /
on " ol B ecause
N just
Jlike Oh was -
~ have -

Figure 3: Venn diagram showing the vocabulary difference be-
tween SVB-50 [3]] and our D-50.

is more than those in SVB, or in corpora B and D, as shown in
Figure 2(b)] Note that for corpus A, the vocabulary size closest
to 50 is 51, but all the remaining corpora have a A yielding a
vocabulary size of exactly 50. While corpus C (at 50 types) is
optimized for speech duration, corpus A is slightly larger in this
measure, due to it having a 51 types. Corpus C, however, also
had a A corresponding to 51 types and in this case, a 51-type
corpus C had a total speech duration of 123.17, beating the
51-type corpus A with its total speech duration of 122.49.

In some situations, we may be concerned not only with the
amount of data and the vocabulary size, but also wish for the
resulting vocabulary to possess certain properties. Our method
can handle such scenarios naturally and efficiently. For instance,
a corpus with a limited vocabulary but rich phonetic variety
could be useful for research on novel pronunciation modeling,
and this is how we produced corpus D. We approximated the
phonetic richness by the number of phoneme tokens in the
pronunciation of a word [[12]. We used an objective function
as shown in Table[T] Intuitively, by using this objective function,
words with more phones will have a lower weight and therefore
a higher chance of being selected. The resulting corpus D is
well balanced in terms of corpus size and vocabulary variety.
Compared to SVB at vocabulary size 50, corpus D not only
has a vocabulary with longer average pronunciation length
(Figure 2(c)) but also includes more tokens (Figure 2(a)) and
more acoustic speech (Figure 2(b)). We compare the complete
vocabulary of SVB-50 and D-50 using a Venn diagram in
Figure[3] clearly showing that D-50 has a richer lexicon (with
words like “absolutely” and “definitely”).

7. Conclusions

We have presented a framework for selecting a limited vocabu-
lary subset of a large speech corpora. We show that a previous ap-
proach [3] for this purpose is theoretically unjustified, while the
selection process in our new approach is optimal in the sense that
formulating the subset selection problem as an optimization prob-
lem over submodular functions leads to an optimal solution. Our
approach can be scaled to very large initial corpora, thanks to the
efficiency of finding a minimum graph cut. Experimental results
on Switchboard show that our approach indeed produces limited
vocabulary corpora with both additional and richer acoustic data.

8. References

[1] C. Chelba, T. Brants, W. Neveitt, and P. Xu, “Study on interaction
between entropy pruning and Kneser-Ney smoothing,” in Proc. of
Interspeech, September 2010.

[2] S. Fujishige, Submodular functions and optimization, Elsevier
Science Ltd, 2005.

[3] S.King, C. Bartels, and J. Bilmes, “SVitchboard 1: Small Vocabu-
lary Tasks from Switchboard,” in Ninth European Conference on
Speech Communication and Technology. ISCA, 2005.

[4] H. Lin and J. Bilmes, “An application of the submodular principal
partition to training data subset selection,” in NIPS Workshop
on Discrete Optimization in Machine Learning: Submodularity,
Sparsity & Polyhedra, Vancouver, Canada, December 2010.

[5] H. Narayanan, Submodular Functions and Electrical Networks,
North-Holland, Amsterdam, 1997.

[6] G.L. Nemhauser, L.A. Wolsey, and M.L. Fisher, “An analysis
of approximations for maximizing submodular set functions I,”
Mathematical Programming, vol. 14, no. 1, pp. 265-294, 1978.

[7]1 H.Lin andJ. Bilmes, “How to select a good training-data subset
for transcription: Submodular active selection for sequences,” in
Proc. of Interspeech, Brighton, UK, September 2009.

[8] H. Lin and J. Bilmes, “Multi-document summarization via bud-
geted maximization of submodular functions,” in NAACL/HLT-
2010, Los Angeles, CA, June 2010.

[9] H. Lin and J. Bilmes, “A class of submodular functions for docu-
ment summarization,” in The 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human Language Technolo-
gies (ACL-HLT), Portland, OR, June 2011.

[10] L. Fleischer and S. Iwata, “A push-relabel framework for sub-
modular function minimization and applications to parametric
optimization,” in Symposium on Theory of Computing, 2000.

[11] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan, “A fast parametric
maximum flow algorithm and applications,” STAM J. Comput., vol.
18, no. 1, pp. 30-55, 1989.

[12] N. Ganapathiraju, A. Deshmukh, A. Gleeson, A. Hamakera, and
J. Picone, “Resegmentation of SWITCHBOARD,” in Proc. ICSLP,
1998.

	 Introduction
	 Why Not Greedy
	 Problem Setup
	 Objective Functions
	 Algorithm
	 Experiments
	 Conclusions
	 References

