
IMPROVING MULTI-LATTICE ALIGNMENT BASED SPOKEN KEYWORD SPOTTING

Hui Lin, Alex Stupakov and Jeff Bilmes

Department of Electrical Engineering, University of Washington, Seattle, Washington, USA

ABSTRACT

In previous work, we showed that using a lattice instead of

the 1-best path to represent both the query and the utterance

being searched is beneficial for spoken keyword spotting. In

this paper, we introduce several techniques that further im-

prove our multi-lattice alignment approach, including edit op-

eration modeling and supervised training of the conditional

probability table, something which cannot be directly trained

by traditional maximum likelihood estimation. Experiments

on TIMIT show that the proposed methods significantly im-

prove the performance of spoken keyword spotting.

Index Terms— Spoken keyword spotting, lattice align-

ment, edit operation modeling, negative training, auxiliary

training

1. INTRODUCTION

In certain cases, speech-specified keyword spotting is more

appropriate than text-based keyword detection, such as when-

ever it is inconvenient, unsafe, or impossible for the user to

enter a search query using a standard keyboard. For example,

modern police officers or soldiers are sometimes equipped

with a multi-sensor platform that has been augmented with a

close-talking microphone, a camera, and a wrist-mounted dis-

play. During many on-the-job scenarios (such as while driv-

ing, walking, or whenever the hands are unavailable), spoken

queries may be more appropriate to search through recordings

of conversations in order to locate audio, photos, and video

that have been recorded on the device during an investigation.

In [1], we proposed a new approach to spoken keyword

spotting that uses a joint alignment between multiple phone

lattices. The first phone lattice comes from the database itself

and can be created offline. We refer to this as the utterance

lattice. A second phone lattice is generated once the user has

spoken a query phrase. This query lattice is then modified by

removing its time marks, and then the two lattices are jointly

aligned. Every region of time where the query lattice is prop-

erly aligned then becomes a candidate spoken keyword detec-

tion.

In this paper, we propose several methods to improve the

performance of our multi-lattice alignment approach. The

This work was supported by DARPA’s ASSIST Program (No. NBCH-C-

05-0137) and an ONR MURI grant (No. N000140510388).

first method is related to edit operation modeling, which fo-

cuses on providing robustness against mistakes in the phone

lattices. The learning of the consistency conditional proba-

bility table (CPT) is also investigated in this paper. As seen

in [1] (a prerequisite reference for understanding the current

paper), the consistency CPT plays an important role in gluing

the query lattice and utterance lattice together to produce ac-

curate alignments. Maximum likelihood training alone, how-

ever, is inappropriate for the consistency CPT — we address

this issue in this paper using negative training data [2]. Ex-

periments on TIMIT show that these methods significantly

improve the performance of our spoken keyword spotting sys-

tem relative to [1].

2. MULTI-LATTICE ALIGNMENT

We first briefly review the multi-lattice alignment approach to

spoken keyword spotting that we proposed in [1]. We refer

the reader to [1] for full details of our method.

In our approach, the lattice of the query keyword and the

lattice of the utterance are both represented by graphical mod-

els, as shown in Fig 1. The upper half of the graph corre-

sponds to the query, and the lower half to the utterance. The

graphical model representations of the two lattices have simi-

lar topology — for each lattice, two distinct random variables

represent the lattice node and lattice link. For instance, for the

query lattice, we have the query node variable N q
t for the

lattice node, and the query phone variable Hq
t for the lat-

tice links (which represent phones) in the phone lattice. The

major difference between the two lattices is that for the graph

that represents the query lattice, the time information associ-

ated with each node in the original lattice is discarded, while

the graphical model for the utterance lattice uses a time in-

homogeneous conditional probability table (CPT) to encode

the starting/ending time points of links in the lattice. Specifi-

cally, the utterance phone transition variable T u
t

can take the value 1 (meaning there will be a transition for the

utterance phone variable Hu
t+1) only when there is an

actual transition in the original lattice.

The consistency variable Ct, which is always ob-

served with value 1, couples the query and utterance lat-

tices together. In particular, the CPT p(Ct = 1|Hq
t ,H

u
t ) =

f(Hq
t ,H

u
t ) is simply a function of Hq

t and Hu
t . If Hq

t is iden-

tical or similar to Hu
t , f(Hq

t ,H
u
t ) should take larger values,



query node query node query node

query phone query phone query phone

query phone trans. query phone trans.

utt. phone trans. utt. phone trans.

consistencyconsistency

utt. node utt. node utt. node

utt. phone utt. phone utt. phone

consistency

first query node

first utt. node

first utt. trans.

prologue chunk epilogue

edit op. edit op.

T u
tT u

t−1

T
q

t−1 T
q

t

Ct−1 Ct Ct+1

Et Et+1

H
q

t−1
H

q

t H
q

t+1

Hu
t−1 Hu

t Hu
t+1

N u
t−1 N u

t
N u

t+1
N u

0

T u
0

N
q

0

N
q

t−1
N

q

t N
q

t+1

Fig. 1. Graph for keyword spotting with spoken query. Dark

circles represent observed variables and light circles represent

hidden variables.

and f(·) should take smaller values otherwise. This ensures

that better matched phone hypothesis string pairs will likely

survive any pruning stage in decoding, potentially indicating

a discovered keyword.

3. EDIT OPERATION MODELING

When transforming a source string into a target string, edit

operations (deletion, insertion, or substitution) may be per-

formed. The weighted sum of the minimum cost set of

edit operations needed to transform one string into another,

namely the Levenshtein or edit distance, is commonly used to

measure the distance between two strings. In [3], where the

task is keyword spotting based on phone lattices, the mini-

mum edit distance is successfully used during a lattice search

to compensate for phone recognizer insertion, deletion and

substitution errors. In our case, lattices comprising multi-

ple hypothesized strings (rather than single hypotheses) are

aligned. One naive way of finding the minimum edit distance

between lattices is to consider all possible strings contained

in both the query and utterance lattice, and to compute the

edit distance for all the string pairs. This would be compu-

tationally intractable as a linear length lattice can represent

an exponential number of hypotheses. Actually, the tree edit

distance and alignment distance problems are NP-hard [4].

Here we propose an edit operation modeling method for lat-

tice alignment under the Dynamic Bayesian Network (DBN)

framework, which allows us to quickly evaluate a variety of

different alignment algorithms all using the same underlying

(exact or approximate) inference code. We note that DBNs

have been used as a generalized string alignment scheme in

the past [5].

Specifically, we incorporate insertion and deletion op-

erations explicitly into the aforementioned joint alignment

graph. There are two benefits to representing edit operations

using a DBN. First, by representing a lattice with random

variables, all combinations of all paths from both query

and utterance lattices can be taken into consideration during

alignment — this is done, thanks to the underlying DBN dy-

namic programming inference algorithms, without needing

to consider a combinatorial explosion of hypotheses. Second,

since “cost” is equivalent to negative log probability, the cost

functions for insertion and deletion can be expressed as prob-

ability tables associated with phone random variables, which

makes the learning of such cost functions possible [5], as we

show in Section 4.

Our approach starts by employing an edit operation

variable Et that indicates the type of edit operation occurring

at time t. It is a discrete variable with cardinality 4, taking

values from set {I,D,S,M}, where I indicates insertion, D rep-

resents deletion, S represents substitution, and M represents

a good match. As shown in Fig. 1, Et has four parents, and

their logical relationship is illustrated in Algorithm 1.

Algorithm 1

if Hq
t = Hu

t then

match operation: Et = M

else

if T q
t−1 = 1 and T u

t−1 = 0 then

insertion operation: Et = I

else if T q
t−1 = 0 and T u

t−1 = 1 then

deletion operation: Et = D

else if T q
t−1 = 1 and T u

t−1 = 1 then

substitution operation: Et = S

else if T q
t−1 = 0 and T u

t−1 = 0 then

no operation: Et = M

end if

end if

The edit operation variable Et serves as a switch-

ing parent of the consistency variable Ct. Specifically,

the per-frame consistency variable score used during decod-

ing is given by















(ps(Ct = 1|Hq
t ,H

u
t ))

ws : if Et = S

(pi(Ct = 1|Hq
t ,H

u
t ))

wi : if Et = I

(pd(Ct = 1|Hq
t ,H

u
t ))

wd : if Et = D

1 : if Et = M.

(1)

Subscripts s, i, and d to p(·) are used to indicate that al-

though the graph topology is the same, probability distribu-

tions (which are determined by the switching parent Et) can

be different. Moreover, the exponential weights are also po-

tentially different depending on the switching parent — i.e.,

we use both different scaling factors (ws, wi and wd) different

consistency CPTs for different edit operations. When there is



a match operation, Et takes value M, resulting in a unity score

being used, i.e., pm(Ct = 1|Hq
t ,H

u
t ) = 1.

While the consistency CPTs can be manually assigned by

phonetic and/or prior knowledge, a potentially better way is

to automatically learn them from data, as introduced in the

following section.

4. LEARNING OF THE CONSISTENCY CPT

The consistency CPT p(Ct = 1|Hq
t ,H

u
t ) plays an crucial

role in the alignment process, as we can see from the scor-

ing functions in Eq.1. From the perspective of decoding,

p(Ct = 1|Hq
t ,H

u
t ) is proportional to a non-negative func-

tion of Hq
t and Hu

t (any proportionality constant does not

change the results). We may thus write, for example, ps(Ct =
1|Hq

t ,H
u
t ) = fs(H

q
t ,H

u
t ) for non-negative function fs(·, ·).

If Hq
t is “similar” to Hu

t , fs(H
q
t ,H

u
t ) should take larger val-

ues, and otherwise fs(H
q
t ,H

u
t ) should take smaller values.

Such a function can be formed in a number of ways. For ex-

ample, it can be derived from linguistic/phonetic knowledge

[6, 1], or it can be approximated by estimating the Kullback-

Leibler distance of the acoustic models for different phones

[1]. Another natural way of obtaining the consistency CPT

is to train it in place, within the model, using a supervised

training procedure. The maximum likelihood estimate of this

CPT, however, is simply the ratio of counts:

p(Ct = 1|Hq
t ,H

u
t ) =

N(Ct = 1,Hq
t ,H

u
t )

N(Hq
t ,H

u
t )

=
N(Ct = 1,Hq

t ,H
u
t )

N(Ct = 0,Hq
t ,H

u
t ) + N(Ct = 1,Hq

t ,H
u
t )

(2)

where N(·) is the count function (or the sum of expected suf-

ficient statistics in the EM case). Note that without any data

labeled Ct = 0, known as “negative training data” [2], the

estimated ratio is always 1 (unity), and no statistical relation-

ship between Hq
t and Hu

t is learnt. In this paper, we propose

two methods to overcome this problem.

4.1. Negative Training

Our first method is based on the negative training approach

proposed in [2]. We express the count function as in [2]:

N(Ct = 1,Hq
t ,H

u
t ) = M1 · p(Hq

t ,H
u
t )

N(Ct = 0,Hq
t ,H

u
t ) = n · M1 · p(Hq

t )p(Hu
t )

where M1 is the number of samples in the positive training

data, nM1 is the total number of samples in the induced neg-

ative training data, and n is the ratio of the amount of positive

to negative training data, which can be assigned based the

prior beliefs about consistency. The consistency CPT can be

formed without generating any actual negative training data

using the following sigmoidal form:

p(Ct = 1|Hq
t ,H

u
t ) =

1

1 + n
(

p(Hq
t ,Hu

t )
p(Hq

t )p(Hu
t )

)−1 (3)

Based on the above, we utilize the following EM procedure

to train the consistency CPT:

1. Select a set of keywords for the training set, then seg-

ment out all instances of the selected keywords from

the audio files, and generate the query lattices.

2. Initialize p(Ct = 1|Hq
t ,H

u
t ) either by phonetic knowl-

edge, or by estimating the Kullback-Leibler distance of

the acoustic models for different phones.

3. With the keyword location observed, get the alignments

for each query in all the utterances where the query oc-

curs, and obtain the frame by frame Viterbi outputs in

the aligned keyword regions.

4. Re-estimate p(Ct = 1|Hq
t ,H

u
t ) using Eq. 3, where the

p(Hq
t ,H

u
t ), p(Hq

t ) and p(Hu
t ) are calculated based on

the Viterbi outputs obtained in step 3.

5. Repeat steps 3 and 4 until apparent convergence, i.e.,

the numerical changes in the consistency CPT fall be-

low a preset threshold.

4.2. Auxiliary training

query phone query phone 

utt. phone utt. phone 

consistency var. 
consistency var. 

auxiliary var.

Ct Ct

H
q

t
H

q

t

Hu
t Hu

t

At

Fig. 2. Training with an auxiliary variable

The second method we propose here is to train the consis-

tency CPT with an auxiliary variable, similar to an approach

used in [7]. Originally, we have one observed child (the con-

sistency variable) with two parents (the query and utterance

phone variables). A discrete auxiliary variable At is added

as another parent of the consistency variable, forming a graph

with one observed child and three parents, as shown in Fig. 2

on the right. At has cardinality d2, where d is the cardinality

for Hq
t and Hu

t . The logical relationship among these vari-

ables is:

p(Ct = 1|Hq
t = i,Hu

t = j,At = k) = 1 : if k = d · i + j

p(Ct = 1|Hq
t = i,Hu

t = j,At = k) = 0 : otherwise

In other words, there is a one-to-one mapping from

k ∈ {0, ..., d2 − 1} to the pair (i, j) so that the only way

to explain the observed child is that values i and j match k.

Thus, after EM training, p(At = k) is the learnt score for

f(Hq
t = i,Hu

t = j), and can be used to form the consistency



CPT. Auxiliary training does not make any assumptions about

quantities of negative training data, but it is computationally

more expensive since the added auxiliary variable At has

large cardinality d2.

5. EXPERIMENTS

We performed experiments on the TIMIT speech database for

evaluating the effect of our proposed methods on spoken key-

word spotting performance. The experimental setup was the

same as in [1]. Keyword query phrases were selected from

the TIMIT test set by choosing single-word and multi-word

phrases with lengths of 6-12 phones that occurred at least

twice in the test set. 67 total such keywords were chosen,

distributed evenly over lengths. The TIMIT test set was used

as the evaluation data set, which has about 1.5 hours of audio.

In total, there were about 400 instances of the keywords in

the test set. One instance of each keyword was chosen as the

query.

Both the query and utterance phone lattices were gener-

ated with the CMU Sphinx 3.7 decoder in allphone mode, us-

ing a phone bigram language model and a speaker-independent

monophone acoustic model. The resulting lattices yielded a

33.4% PER (phone error rate) and 11.1% oracle PER on the

NIST core test set.

The TIMIT training set was used for training the consis-

tency CPT. Keyword query phrases were selected in the same

way as the test set. For each selected keyword, audio that cor-

responds to all instances from the training set was excised and

processed to create phone lattices to be used as the queries in

the training. In total, over 1500 query lattices were generated.

Each query lattice was forced aligned to the utterances which

contain the query occurrences. The initial consistency CPT

was derived from acoustic models using KL distances, as was

done in [1]. The frame-by-frame Viterbi outputs were then

used as the supervised training data for both negative training

and auxiliary training.

ROC curves were generated by varying the dummy state

(which is used to absorb the non-keyword region) score sd

defined in [1]. The x axis indicates the number of false alarms

per hour per keyword, and the y axis indicates the recall rate

of detection.

To see whether introducing the edit operation into the

graphical model improves performance, we kept ps(·) the

same as the baseline (where the consistency CPT was derived

from acoustic models using KL distances), while assigning

pi(·), pd(·) using prior knowledge (i.e., silence phone is

allowed to be inserted/deleted). Suitable weights ws, wd, wi

were found by grid search. As shown in Fig. 3 (the edit op.

modeling curve), this gives us significant improvements over

the baseline. We also separately investigated the effects of

methods for learning the consistency CPTs. In particular, the

consistency CPTs in the baseline model were replaced by

those learned from negative training and auxiliary training,

and improvements were also achieved (the negative training

0 5 10 15 20
10

20

30

40

50

60

70

False Alarm/Hour 

R
e

c
a

ll 
(%

)

TIMIT, utterance density 90, query lattice density 30

 

 

negative training+edit op. modeling

negative training

auxiliary training

edit op. modeling

baseline, as reported in [1]

Fig. 3. ROC curves of different methods. Baseline is without edit operation

modeling, and uses consistency CPT derived from the acoustic models by KL

distances, as used in [1].

and auxiliary training curves in Fig. 3). Finally, using learned

CPTs for edit operation modeling (negative training + edit

operation modeling) further improves the performance.

6. DISCUSSION

Our results show quite a significant improvements over past

work [1], yet we believe there are additional steps that could

improve results further. First, discriminative training should

be evaluated against our negative training and auxiliary train-

ing approaches. Second, additional acoustic information

could be incorporated directly into the model (Figure 1)

rather than only indirectly via a phone variable. Third, more

advanced context-dependent edit operations could be incor-

porated into the model and automatically learned, as in [5].

7. REFERENCES

[1] H. Lin, A. Stupakov, and J. Bilmes, “Spoken Keyword Spotting via

Multi-lattice Alignment,” in Proc. Interspeech, 2008.

[2] S. Reynolds and J. Bilmes, “Part-of-speech tagging using virtual evi-

dence and negative training,” in Human Language Technology Confer-

ence/Conference on Empirical Methods in Natural Language Processing

(HLT/EMNLP-2005), Vancouver, CA, Oct 2005.

[3] K. Thambiratnam and S. Sridharan, “Dynamic Match Phone-Lattice

Searches For Very Fast And Accurate Unrestricted Vocabulary Keyword

Spotting,” in Proc. ICASSP, 2005.

[4] A. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, “Proof

verification and hardness of approximation problems,” in Proc. of the

33rd IEEE Symposium on the Foundations of Computer Science, 1992.

[5] K. Filali and J. Bilmes, “A dynamic Bayesian framework to model con-

text and memory in edit distance learning: An application to pronunci-

ation classification,” in Proceedings of the 43rd Annual Meeting of the

Association for Computational Linguistics (ACL), 2005.

[6] H. Lin, J. Bilmes, D. Vergyri, and K. Kirchhoff, “OOV detection by joint

word/phone lattice alignment,” in IEEE Workshop on Automatic Speech

Recognition & Understanding (ASRU)., 2007, pp. 478–483.

[7] K. Saenko and K. Livescu, “An Asynchronous DBN for Audio-Visual

Speech Recognition,” in Proc. IEEE Workshop on Spoken Language

Technologies, 2006.


	 Introduction
	 Multi-lattice Alignment
	 Edit operation modeling
	 Learning of the consistency CPT
	 Negative Training
	 Auxiliary training

	 Experiments
	 Discussion
	 References

