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Abstract
We propose a method for finding keywords in an audio

database using a spoken query. Our method is based on per-
forming a joint alignment between a phone lattice generated
from a spoken utterance query and a second phone lattice repre-
senting a long utterance needing to be searched. We implement
this joint alignment procedure in a graphical models framework.
We evaluate our system on TIMIT as well as on the Switch-
board conversational telephone speech (CTS) corpus. Our re-
sults show that a phone lattice representation of the spoken
query achieves higher performance than using only the 1-best
phone sequence representation.
Index Terms: speech lattice, keyword spotting, graphical mod-
els, lattice alignment

1. Introduction
A wide variety of methods have been proposed for searching
for text-specified word queries in a speech database. The essen-
tial feature of these systems is that a keyword or a key-phrase
is given using textual input which is then transformed in some
way so that it may match the audio needing to be searched. In
many cases, a lattice over words or some sub-word unit is used
for this representation. A lattice is a concise representation of a
large number of string hypotheses that uses only a small amount
of space. Such lattices can be based on units such as phones
[1, 2, 3], phonetic classes, syllables [4], or full words. Hybrid
lattices with words and subword units can also be used [5, 6, 7].
However, producing word lattices is computationally more ex-
pensive than producing phone lattices, and does not work well
for out-of-vocabulary (OOV) queries [2, 4, 8, 6, 3].

In certain cases, speech-based keyword spotting is more ap-
propriate than text-based keyword detection, such as whenever
it is inconvenient, unsafe, or impossible for the user to enter a
search query using a standard keyboard. For example, speech
queries are preferable while driving a car and wishing to search
for a name or key phrase in voice mail messages, or for a phrase
previously heard in a radio program. Anyone with a need to
find relevant messages in recordings of meetings, interviews,
lectures, and radio or TV programs quickly and with limited
access to a computer would need to rely on a voice-specified
keyword search. This is particularly true with portable devices
(e.g., multi-media cell phones). Speech input moreover may
also be easier to specify than typing, and it can be used by indi-
viduals who are unable to use their hands (e.g., amputees, orin-
dividuals with motor impairments or physical injuries). Another
application of spoken keyword spotting is in the military. For
example, modern soldiers are sometimes equipped with a multi-
sensor platform that has been augmented with a close-talking
microphone, a camera, and a wrist-mounted display. Spoken
queries can be used by soldiers to search through recordings
of conversations (during an after-action review) and to locate

audio, photos, and video that have been recorded on the device.
Moreover, in situations that require the soldier’s attention, voice
commands are the only practical way to interact with the device.

There has been relatively little research work on spoken
keyword spotting. First, all of the aforementioned methodscan
be applied to spoken queries by converting the spoken query
into a phone string using a word recognizer and a pronuncia-
tion dictionary. In [9], a system for spoken query information
retrieval on mobile devices is presented where the spoken query
is passed to a large vocabulary continuous speech recognition
(LVCSR) system, and the recognized query word sequences are
then used in the same way as text queries. Many of the above
applications, however, require the system to be run on a portable
device, and/or to search through large amounts of data quickly.
Such systems are not capable of running a full LVCSR system.
Moreover, it is often hard to anticipate the final lexicon, sosuch
spoken keyword systems would have potential (out of vocabu-
lary or OOV) problems (arising from either new lexical itemsor
foreign language words).

In this paper, we propose a new approach to spoken key-
word spotting that uses a joint alignment between multiple
phone lattices. The first phone lattice comes from the database
itself and can be processed offline. The second phone latticeis
generated at query-specification time, namely once the userhas
spoken the query utterance. The query lattice is then adjusted
to remove its time-marks, and then the two are jointly aligned.
Every region of time where the query lattice is properly aligned
then becomes a candidate spoken keyword detection. Our align-
ment procedure is implemented using a graphical model expres-
sion of the algorithm — the benefit of this paradigm is that it
allows us to quickly evaluate a variety of different alignment al-
gorithms all using the same underlying dynamic programming
code. This is possible since the family of possible models ex-
pressible by graphical models is very large.

Our proposed approach has several potential benefits. First,
we avoid the OOV problem since both the utterance and spo-
ken query lattice are at the phone level rather than the word
level. Therefore, no fixed lexicon and no pronunciation dictio-
nary are needed as would be the case in a text based query, or
one where a full automatic speech recognition (ASR) system is
utilized first. It may even be the case that such a phone-only
system could be made entirely language independent given a
rich enough phone set and an accurate enough phone recog-
nizer. A second benefit is that, by not requiring an ASR system,
our approach has fewer computational demands than one requir-
ing an ASR system. Our approach therefore is more amenable
to running on a portable resource-constrained (e.g., low power)
device.

There are of course multiple options in designing a system
as we propose, and these include not only the usual detection
thresholds that need to be tuned to carve out the trade-off be-
tween precision and recall, but also the fact that each of theut-



terance and query lattices can have varying degrees of density.
I.e., we expect that as density of either lattice increases,recall
will improve but at the expense of reduced precision (since there
will be a greater chance of a false positive). On the other hand,
since phone recognizers are not perfect, we hypothesize that it
is important to have more than just a 1-best phone string rep-
resented either for the utterance or the query in order to have
reasonable recall. Our empirical results in fact confirm ourhy-
pothesis as is seen in Section 3.2.

2. Multi-lattice alignment
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Figure 1: Graph for keyword spotting with spoken query. Dark
circles represent observed variables, and light circles represent
hidden variables

Graphical model representations of lattices have been suc-
cessfully used in our previous work for OOV detection [10],
where an independently generated word lattice and phone lat-
tice are aligned and the mis-aligned region is used to indicate
a possible OOV region. The approach we propose herein is
also based on this idea. Fig. 1 shows the graphical model that
implements keyword spotting with a spoken query. The upper
and lower layers of the graph represent the lattice of the query
keyword and the lattice of the utterance (audio to be searched)
respectively. Both of them have similar topology — two inde-
pendent vertices represent the lattice node and lattice link. The
major difference between them, however, lies in the fact that,
for the upper layer which represents the query lattice, the time
information associated with each node in the original lattice is
discarded, while the lower graph layer uses a time inhomoge-
neous conditional probability table (CPT) to encode the start-
ing/ending time points of links in the lattice [11]. In the follow-
ing sections, we will focus on the description of the upper layer
of the graph, and refer the reader to [11] for full details of the
lower layer of the graph.

2.1. Graphical model representation for query lattice

A lattice consists of a directed graph with nodes and links. For
the phone lattice of the spoken keyword query, two variables,
N q

t (query node in Fig 1) andHq
t (query phone in Fig 1), are

utilized to represent nodes and links. BothN q
t andHq

t only
change their values when the query phone transition variable
T q

t−1
takes value unity.

The connectivity between nodes in the query lattice is rep-
resented as non-zero entries in the conditional probability table
(CPT), i.e.p(N q

t = nj |N
q
t−1

= ni, T
q

t−1
= 1) 6= 0 if there is a

link from ni to nj , andp(N q
t = nj |N

q
t−1

= ni, T
q

t−1
= 1) =

0 if there is no link fromni to nj . Here,N q
t−1

represents the
node variable at previous time frame. Entries for each nodeni

are normalized based on the score of the link betweenni andnj

so that
∑

j p(N q
t = nj |N

q
t−1

= ni, T
q

t−1
= 1) = 1. This CPT

is actually quite sparse which allows us to reduce computation
by using a sparse representation.

The phone associated with the link in the query lattice is
represented as the value ofHq

t . If there is a link (representing
phonemehk) from nodeni to nj , thenp(Hq

t = hk|N
q
t−1

=
ni,N

q
t = nj) = 1.

2.2. Dummy state and the entering keyword probability

During the alignment, when the keyword has not yet appeared,
the utterance lattice is aligned to a dummy state. In the graph,
valuehd is assigned to the query node variableHq

t to indicate
the dummy state; whenN q

t is at the starting nodenstart,H
q
t al-

ways takes valuehd. Also, the end node is connected to the start
node to make the loop; in other words,p(N q

t = nstart|N
q
t−1

=
nend, T q

t−1
= 1) = 1. During decoding, the query node vari-

able will stay at valuenstart when the keyword has not yet ap-
peared. If there is a possible keyword to be aligned, the query
node variable may leave valuenstart and enter the keyword
model. This behavior is controlled by an entering keyword
probability Penter, i.e. p(N q

t 6= nstart|N
q
t−1

= nstart) =
Penter. By entering the keyword model, the overall alignment
is supposed to produce a higher score, and this is ensured by the
consistency probability table setting described below.

2.3. Consistency between phone variables

A consistency variableCt which is always observed with value
unity is added to connect the query phone variableHq

t and ut-
terance phone variableHu

t . The CPTp(Ct = 1|Hq
t ,H

u
t ) =

f(Hq
t ,H

u
t ) is simply a function ofHq

t andHu
t . If Hq

t is identi-
cal or similar toHu

t , f(Hq
t ,Hu

t ) should take larger values, and
f(·) should take smaller values otherwise. This function can be
formed in a number of ways. For example, it can be derived
from linguistic/phonetic knowledge, or it can be estimatedfrom
the acoustic models of different phones.

Since the dummy state is designed to absorb the non-
keyword states of the utterance lattice, a dummy state score
sd is set so that forHq

t that is identical or similar toHu
t ,

f(Hq
t ,H

u
t ) > sd, andf(Hq

t ,H
u
t ) < sd otherwise. Heresd

actually equals top(Ct = 1|Hq
t = hd,Hu

t ). This ensures that
better matched phone hypothesis string pairs will likely survive
any pruning stage in decoding (indicating keywords spotted),
while a hypothesis that produces less similar phone sequences
will get a lower score than the dummy state hypothesis.

2.4. Phone transitions

The binary phone transition variables control the transition of
node variables and phone variables. When there is a transi-
tion, the node variable will change its value based on the CPT
obtained from the original lattice; meanwhile, the phone vari-
able value will also be changed based on the new node vari-
able value at this time frame and the node variable value at the
previous time frame, as described in Section 2.1. For the ut-
terance, the time information of the lattice is preserved sothe
phone transition is actually fixed. In other words, the transi-
tion variable will only take value unity when there is a node
in the original lattice at this time frame. For the query lat-
tice, ideally the phone transition variable should be basedon



a duration model of different phones. This would result in a
large state space and increase the time to search for the opti-
mal alignment. To achieve the trade-off between efficiency and
accuracy, a simple way is to add a dependency between the ut-
terance transition variableT u

t and the query transition variable
T u

t . By settingp(T q
t = 1|T u

t = 1) andp(T q
t = 0|T u

t = 0)
to large values, hypotheses that are highly asynchronized can
be pruned away during the early stage of the decoding. The
extreme case is when we setp(T q

t = 1|T u
t = 1) = 1 and

p(T q
t = 0|T u

t = 0) = 1, which means the query transition
variable will actually transit at the same time point as the utter-
ance transit — if only one single phone string were to be repre-
sented by the keyword lattice, this would actually reduce tothe
typical approach when matching a phone sequence to a phone
lattice, where both query and utterance phones are assumed to
have the same boundaries.

3. Experiments
3.1. Experimental setup

Experiments were performed to show that spoken keyword
spotting via multi-lattice alignment outperforms using only 1-
best phone strings for the query lattice. Two sets of data were
used: one is the test set of the TIMIT microphone speech
database, and the other one was taken from switchboard RT-04
data.

The first data set we used is the TIMIT database. Keyword
query phrases were selected from the TIMIT test set as follows:
We chose single-word and multi-word phrases with lengths of
6-12 phones that occurred at least twice in the test set. 67 total
keywords were randomly chosen, evenly distributed over the
lengths. Some examples are: “objects”, “who authorized”, and
“love millionaires”. In total, there were about 400 instances of
these keywords.

For each selected keyword, we picked one instance from the
test set that was bounded by at least 40 ms of silence on each
side. The audio was cut at the midpoint of the silent regions,
and was processed to create a phone lattice to be used as the
query.

The whole TIMIT test set (excluding SA1 and SA2 utter-
ances) was used as the evaluation data set, which has about 1.5
hours of audio. TIMIT phone lattices were generated with the
CMU Sphinx 3.7 decoder in allphone mode, with a phone bi-
gram language model and a speaker-independent monophone
acoustic model. The 61-phone transcriptions were mapped
down to the 48-phone set described in [12] for training the
acoustic model, and the same 48-phone set was used when de-
coding. All phones in the resulting lattices were then trans-
formed to the 39-phone set described in [12]. The 39-phone set
was used for lattice quality evaluation and for the multi-lattice
alignment. The resulting lattices yielded a 33.4% PER (phone
error rate) and 11.1% oracle PER on the NIST core test set.

For the experiments on conversational telephone speech
(CTS), we used the same 3 hour test set and phone lattices set as
in our previous work [10]. The PER and oracle PER of the lat-
tices are 42.6% and 18.0%, respectively. The keyword selection
procedure was the same as for the TIMIT experiments, result-
ing in 67 keywords evenly distributed over phoneme length 6 to
12. Some example selected keywords are “Chicago”, “exactly”,
and “American idol”. In total, there were about 400 instances
of these keywords. To generate query lattices, we chose one in-
stance of each keyword bounded on each side by a silence of at
least 80 ms and cut out the corresponding lattice segment.
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Figure 2: TIMIT: Area under the ROC curve for various de-
grees of query and utterance lattice density. The leftmost points
represent the results using only the 1-best as the query.

To test the performance of our system on lattices of var-
ious densities, we used SRI’slattice-tool to prune the lattices
with various levels of the posterior pruning threshold. A max-
imally pruned lattice is equivalent to the 1-best path. For the
TIMIT experiments, 6 different degrees of density (including
the 1-best case) of the query lattices were created; for the ut-
terance lattices, 3 density levels were generated. For the CTS
set, we have 5 different degrees of density for the query lattices
and 3 for the utterance lattices. Lattice density is measured us-
ing the SRIlattice-tool standard measure (number of non-null
phones per second), so higher numbers indicate higher density.

The graphical model shown in Fig 1 was implemented us-
ing the Graphical Models ToolKit (GMTK). The Viterbi align-
ment between query lattice and utterance lattice was generated,
and the time ranges where the query node variableN q

t takes
values other thannstart indicate detected keywords. For both
the query and utterance lattices, the posteriors were computed
and used during the alignment. We usedPenter = 0.01 and
p(T q

t = 1|T u
t = 1) = 1 for all the experiments. For experi-

ments on TIMIT, the Kullback-Leibler divergences between the
hidden Markov models for each phone pair were approximated
using the method introduced in [13]. The resulting asymmetric
divergences were then averaged for each phone pair to produce
the phone distance measures. For experiments on CTS, we used
a phone similarity measure derived from linguistic knowledge
as used in [10]. These phone distance measures were then used
to produce the functionf(Hq

t ,H
u
t ).

For each pair of densities of the query and utterance lattice,
an ROC curve was generated by varying the dummy state score
sd defined in section 2.3, where thex axis indicates the number
of false alarms per hour per keyword, and they axis indicates
the recall rate of detection (Fig 3, 5). The area under the ROC
curve was calculated and used as an overall performance metric.
Generally, a larger area indicates better performance.

3.2. Results and Discussion

Fig 2 shows the area under the ROC curve for each density of
the query lattice in the TIMIT experiment. As we can see, for
all of the three different densities of the utterance lattice, us-
ing a lattice for the spoken query works better than only using
the 1-best case. Fig 3 shows the detailed ROC curves with dif-
ferent degrees of density of query lattices for utterance lattices
with density 90. In this experiment, as the density of the ut-
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Figure 3: TIMIT: ROC curves for varying degrees of query lat-
tice density
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Figure 4: CTS: Area under the ROC curve for various levels of
query and utterance lattice density. The left most points repre-
sent the results using only the 1-best as the query.

terance lattice grows, the performance of the system also im-
proves. Fig 4 shows the area plot for the CTS experiments. It
also verifies our claim that using lattices for a spoken queryis
beneficial. As a sanity check comparison, we also ran our exact
same system with text-based queries, where the keywords are
exact and we use dictionary pronunciation models. This would
be the performance using a perfect oracle ASR system. For
CTS (resp. TIMIT), we achieve 54% (resp. 75%) recall with
1.49 (resp. 1.26) false alarms per hour per keyword.

Performance depends both on the densities of the query lat-
tice and the utterance lattice. For example, as shown in Fig 2,
when the query lattice gets denser, the performance gets sat-
urated for the utterance density 42 case, and even becomes
worse for the utterance density 217 case. In the CTS experi-
ment, utterance lattices with density 39 do not outperform ut-
terance lattices with density 13. Indeed, as the lattices gener-
ated by these imperfect phone recognizers get denser, additional
“anti-discriminative” information is introduced that results in
increased false alarms. On the other hand, it is important to
have more than just the 1-best phone strings represented either
for the utterance or the query. Our system was not tuned for
each keyword length individually. Tuning the entering keyword
probability and the weight of the phone consistency score sep-
arately for different lengths of keywords is expected to further
improve the performance. As illustrated in Fig 5, for the length
12 keywords used in our CTS experiments, over 60% recall was
achieved with a low false alarm of 5 per hour.

Future work will focus on jointly training the phone confu-
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Figure 5: CTS: ROC curves for varying levels of query lattice
density

sion matrix, the dummy state score, and the entering keyword
probability.
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